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A. Proof of Theorem 1
Proof. Since pbias(x|z = k) and pbias(x|z = k0) have disjoint supports for k 6= k0, we know that for all x, there exists a
deterministic mapping f : X ! Z such that pbias(x|z = f(x)) > 0.

Further, for all x̃ 62 f�1(z):

pbias(x̃|z = f(x)) = 0; (9)
pref(x̃|z = f(x)) = 0. (10)

Combining Eqs. 21,22 above with the assumption in Eq. 20, we can simplify the density ratios as:
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From Eq. 5 and Eq. 23, the Bayes optimal classifier c⇤ can hence be expressed as:
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The optimal cross-entropy loss of a binary classifier c for density ratio estimation (DRE) can then be expressed as:
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(using Eqs. 21,22). (19)

The performance of Algorithm 1 critically depends on the quality of estimated density ratios, which in turn is dictated by the
training of the binary classifier itself.

To analyze the conditions under which we can learn optimal ratios via a binary classifier, we need a more refined characteri-
zation of the dataset bias.

In order to do so, we consider data distributions pbias and pref that admit an (unknown) many-to-one, deterministic mapping
f : X ! Z of the input variables x onto a set of bias variables Z 2 Z such that the conditional distributions over x match:

pbias(x|Z = f(x)) = pref(x|Z = f(x)). (20)

Since f is assumed to be many-to-one and letting z = f(x), we also have for all x̃ 62 f�1(z):

pbias(x̃|z) = 0; (21)
pref(x̃|z) = 0. (22)
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For example, as we shall see in our experiments, x can correspond to images, whereas Z represents a subgroup defined via
unobserved sensitive bias factors for each image, such as gender, race, etc. that leads to dataset bias.

With the assumption in Eq. 20, we can simplify the density ratios as:
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:= b(f(x)). (23)

where z = f(x) as before and we simplified the integrals based on the assumption that f exists and is many-to-one. From
Eq. 5 and Eq. 23, the Bayes optimal classifier c⇤ can hence be expressed as:

c⇤(Y = 1|x) = �b(f(x))

�b(f(x)) + 1
. (24)

The optimal negative cross-entropy of a binary classifier c for density ratio estimation (DRE) can then be expressed as:
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B. Dataset Details
B.1. Dataset Construction Procedure

We construct such dataset splits from the full CelebA training set using the following procedure. We initially fix our dataset
size to be roughly 135K out of the total 162K based on the total number of females present in the data. Then for each
level of bias, we partition 1/4 of males and 1/4 of females into Dref to achieve the 50-50 ratio. The remaining number of
examples are used for Dbias, where the number of males and females are adjusted to match the desired level of bias (e.g.
0.9). Finally at each level of reference dataset size perc, we discard the appropriate fraction of datapoints from both the
male and female category in Dref . For example, for perc = 0.5, we discard half the number of females and half the number
of males from Dref .

B.2. FID Calculation

As noted Sections 2.3 and 6, the FID metric may exhibit a relative preference for models trained on larger datasets in
order to maximize perceptual sample quality, at the expense of propagating or amplifying existing dataset bias. In order to
obtain an estimate of sample quality that would also incorporate a notion of fairness across sensitive attribute classes, we
pre-computed the relevant FID statistics on a ”balanced” construction of the CelebA dataset that matches our reference
dataset pref . That is, we used all train/validation/test splits of the data such that: (1) for single-attribute, there were 50-50
portions of males and females; and (2) for multi-attribute, there were even proportions of examples across all 4 classes
(females with black hair, females without black hair, males with black hair, males without black hair). We report ”balanced”
FID numbers on these pre-computed statistics throughout the paper.

C. Architecture and Hyperparameter Configurations
We used PyTorch (Paszke et al., 2017) for all our experiments. Our overall experimental framework involved three different
kinds of models which we describe below.

C.1. Attribute Classifier

We use the same architecture and hyperparameters for both the single- and multi-attribute classifiers. Both are variants of
ResNet-18 where the output number of classes correspond to the dataset split (e.g. 2 classes for single-attribute, 4 classes for
the multi-attribute experiment).
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Architecture. We provide the architectural details in Table 2 below:

Name Component
conv1 7⇥ 7 conv, 64 filters. stride 2

Residual Block 1 3⇥ 3 max pool, stride 2

Residual Block 2

3⇥ 3 conv, 128 filters
3⇥ 3 conv, 128 filters

�
⇥ 2

Residual Block 3

3⇥ 3 conv, 256 filters
3⇥ 3 conv, 256 filters

�
⇥ 2

Residual Block 4

3⇥ 3 conv, 512 filters
3⇥ 3 conv, 512 filters

�
⇥ 2

Output Layer 7⇥ 7 average pool stride 1, fully-connected, softmax

Table 2. ResNet-18 architecture adapted for attribute classifier.

Hyperparameters. During training, we use a batch size of 64 and the Adam optimizer with learning rate = 0.001. The
classifiers learn relatively quickly for both scenarios and we only needed to train for 10 epochs. We used early stopping with
the validation set in CelebA to determine the best model to use for downstream evaluation.

C.2. Density Ratio Classifier

Architecture. We provide the architectural details in Table 2.

Name Component
conv1 7⇥ 7 conv, 64 filters. stride 2

Residual Block 1 3⇥ 3 max pool, stride 2

Residual Block 2

3⇥ 3 conv, 128 filters
3⇥ 3 conv, 128 filters

�
⇥ 2

Residual Block 3

3⇥ 3 conv, 256 filters
3⇥ 3 conv, 256 filters

�
⇥ 2

Residual Block 4

3⇥ 3 conv, 512 filters
3⇥ 3 conv, 512 filters

�
⇥ 2

Output Layer 7⇥ 7 average pool stride 1, fully-connected, softmax

Table 3. ResNet-18 architecture adapted for attribute classifier.

Hyperparameters. We also use a batch size of 64, the Adam optimizer with learning rate = 0.0001, and a total of 15
epochs to train the density ratio estimate classifier.

Experimental Details. We note a few steps we had to take during the training and validation procedure. Because of the
imbalance in both (a) unbalanced/balanced dataset sizes and (b) gender ratios, we found that a naive training procedure
encouraged the classifier to predict all data points as belonging to the biased, unbalanced dataset. To prevent this phenomenon
from occuring, two minor modifications were necessary:

1. We balance the distribution between the two datasets in each minibatch: that is, we ensure that the classifier sees equal
numbers of data points from the balanced (y = 1) and unbalanced (y = 0) datasets for each batch. This provides
enough signal for the classifier to learn meaningful density ratios, as opposed to a trivial mapping of all points to the
larger dataset.

2. We apply a similar balancing technique when testing against the validation set. However, instead of balancing the
minibatch, we weight the contribution of the losses from the balanced and unbalanced datasets. Specifically, the loss is
computed as:

L =
1

2

✓
accpos

npos
+

accneg

nneg

◆
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where the subscript pos denotes examples from the balanced dataset (y = 1) and neg denote examples from the
unbalanced dataset (y = 0).

C.3. BigGAN

Architecture. The architectural details for the BigGAN are provided in Table 4.

Generator Discriminator
1⇥ 1⇥ 2ch Noise 64⇥ 64⇥ 3 Image

Linear 1⇥ 1⇥ 16ch ! 1⇥ 1⇥ 16ch ResBlock down 1ch ! 2ch
ResBlock up 16ch ! 16ch Non-Local Block (64⇥ 64)
ResBlock up 16ch ! 8ch ResBlock down 2ch ! 4ch
ResBlock up 8ch ! 4ch ResBlock down 4ch ! 8ch
ResBlock up 4ch ! 2ch ResBlock down 8ch ! 16ch

Non-Local Block (64⇥ 64) ResBlock down 16ch ! 16ch
ResBlock up 4ch ! 2ch ResBlock 16ch ! 16ch

BatchNorm, ReLU, 3⇥ 3 Conv 1ch ! 3 ReLU, Global sum pooling
Tanh Linear ! 1

Table 4. Architecture for the generator and discriminator. Notation: ch refers to the channel width multiplier, which is 64 for 64⇥ 64
CelebA images. ResBlock up refers to a Generator Residual Block in which the input is passed through a ReLU activation followed by
two 3⇥ 3 convolutional layers with a ReLU activation in between. ResBlock down refers to a Discriminator Residual Block in which
the input is passed through two 3 ⇥ 3 convolution layers with a ReLU activation in between, and then downsampled. Upsampling is
performed via nearest neighbor interpolation, whereas downsampling is performed via mean pooling. “ResBlock up/down n ! m”
indicates a ResBlock with n input channels and m output channels.

Hyperparameters. We sweep over a batch size of {16, 32, 64, 128}, and the Adam optimizer with learning rate = 0.0002,
and �1 = 0,�2 = 0.99. We train the model by taking 4 discriminator gradient steps per generator step. Because the
BigGAN was originally designed for scaling up class-conditional image generation, we fix all conditioning labels for the
unconditional baselines (imp-weight, equi-weight) to the zero vector.

Additionally, we investigate the role of flattening in the density ratios used to train the generative model. As in (Grover et al.,
2019), flattening the density ratios via a power scaling parameter ↵ � 0 is defined as:

Ex⇠pref [`(x,✓)] ⇡
1

T

TX

i=1

w(xi)
↵`(xi, ✓)

where xi ⇠ pbias. We perform a hyperparameter sweep over ↵ = {0.5, 1.0, 1.5}, while noting that ↵ = 0 is equivalent to
the equi-weight baseline (no reweighting).

D. Density Ratio Classifier Analysis
In Figure 5, we show the calibration curves for the density ratio classifiers for each of the Dref dataset sizes across all levels
of bias. As evident from the plots, most classifiers are already calibrated and did not require any post-training recalibration.

E. Fairness Discrepancy Metric
In this section, we motivate the fairness discrepancy metric and elaborate upon its construction. Recall from Equation 2 that
the metric is as follows for the sensitive attributes u:

f(pref , p✓) = |Epref [p(u|x)]� Ep✓ [p(u|x)]|2.

To gain further insight into what the metric is capturing, we rewrite the joint distribution of the sensitive attributes u and our
data x: (1) pref(u,x) = p(u|x)pref(x) and (2) p✓(u,x) = p(u|x)p✓(x). Then, marginalizing out x and only looking at
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(a) bias=0.9, perc=1.0 (b) bias=0.8, perc=1.0 (c) multi, perc=1.0

(d) bias=0.9, perc=0.5 (e) bias=0.8, perc=0.5 (f) multi, perc=0.5

(g) bias=0.9, perc=0.25 (h) bias=0.8, perc=0.25 (i) Multi perc=0.25

(j) bias=0.9, perc=0.1 (k) bias=0.8, perc=0.1 (l) Multi perc=0.1

Figure 5. Calibration curves

the distribution of u, we get that p(u) =
R
p(u,x)dx =

R
p(u|x)p(x)dx = Ep(x)p(u|x). Thus the fairness discrepancy

metric is |pref(u)� p✓(u)|2.

This derivation is informative because it allows us to relate the fairness discrepancy metric to the behavior of the (oracle)
attribute classifier. Suppose we use a deterministic classifier p(u|x) as in the paper: that is, we threshold at 0.5 to label all
examples with p(u|x) > 0.5 as u = 1 (e.g. male), and p(u|x)  0.5 as u = 0 (e.g. female). In this setting, the fairness
discrepancy metric simply becomes the `2 distance in proportions of different populations between the true (reference)
dataset and the generated examples.

It is easy to see that if we use a probabilistic classifier (without thresholding), we can obtain similar distributional
discrepancies between the true (reference) data distribution and the distribution learned by p✓ such as the empirical KL.

F. Additional Results
F.1. Toy Example with Gaussian Mixture Models

We demonstrate the benefits of our reweighting technique through a toy Gaussian mixture model example. In Figure 6(a),
the reference distribution is shown in blue and the biased distribution in red. The blue distribution is an equi-weighted
mixture of 2 Gaussians (reference), while the red distribution is a non-uniform weighted mixture of 2 Gaussians (biased).
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(a) Biased and Reference Distributions (b) Density Ratios

Figure 6. (a) Comparison between two biased (non-uniform weighted mixture, shown in blue) and reference (equi-weighted Gaussian
mixture, shown in red). After the optimal density ratios are estimated using a two-layer MLP, we observe that the estimated density ratios
are extremely similar to the ratios output by the Bayes optimal classifier, as desired.

(a) Baseline samples (b) Samples after reweighting

Figure 7. Results from the Shapes3D dataset. After restricting the possible floor colors to red or blue and using a biased dataset of
bias=0.9, we find that the samples obtained after importance reweighting (b) are considerably more balanced than those without
reweighting (a), as desired.

The weights are 0.9 and 0.1 for the two Gaussians in the biased case. We trained a two layer multi-layer perceptron (MLP)
(with tanh activations) to estimate density ratios based on 1000 samples drawn from the two distributions. We then compare
the Bayes optimal and estimated density ratios in Figure 6(b), and observe that the estimated density ratios closely trace the
ratios output by the Bayes optimal classifier.

F.2. Shapes3D Dataset

For this experiment, we used the Shapes3D dataset (Burgess & Kim, 2018) which is comprised of 480,000 images of shapes
with six underlying attributes. We chose a random attribute (floor color), restricted it to two possible instantiations (red vs.
blue), and then applied Algorithm 1 in the main text for bias=0.9 for this setting. Training on the large biased dataset
(containing excess of red floors) induces an average fairness discrepancy of 0.468 as shown in Figure 7(a). In contrast,
applying the importance-weighting correction on the large biased dataset enabled us to train models that yielded an average
fairness discrepancy of 0.002 as shown in Figure 7(b).
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F.3. Downstream Classification Task

We note that although it is difficult to directly compare our model to supervised baselines such as FairGAN (Xu et al., 2018)
and FairnessGAN (Sattigeri et al., 2019) due to the unsupervised nature of our work, we conduct further evaluations on a
relevant downstream task classification task, adapted to a fairness setting.

In this task, we augment a biased dataset (165K exmaples) with a ”fair” dataset (135K examples) generated by a pre-trained
GAN to use for training a classifier, then evaluate the classifier’s performance on a held-out dataset of true examples.
We train a conditional GAN using the AC-GAN objective (Odena et al., 2017), where the conditioning is on an arbitrary
downstream attribute of interest (e.g., we consider the attractiveness attribute of CelebA as in (Sattigeri et al., 2019)). Our
goal is to learn a fair classifier trained to predict the attribute of interest in a way that is fair with respect to gender, the
sensitive attribute.

As an evaluation metric, we use the demographic parity distance (�dp), denoted as the absolute difference in demographic
parity between two classifiers f and g:

�dp = |fdp � gdp|

We consider 2 AC-GAN variants: (1) equi-weight trained on Dbias [Dref ; and (2) imp-weight, which reweights the
loss by the density ratio estimates. The classifier is trained on both real and generated images for both AC-GAN variants,
with the labels given by the conditioned attractiveness values for the respective generations. The classifier is then asked to
predict attractiveness for the CelebA test set.

As shown in Table 5, we find that the classifier trained on both real data and synthetic data generated by our imp-weight
AC-GAN achieved a much lower �dp than the equi-weight baseline, demonstrating that our method achieves a higher
demographic parity with respect to the sensitive attribute, despite the fact that we did not explicitly use labels during training.

Model Accuracy NLL �dp

Baseline classifier, no data augmentation 79% 0.7964 0.038
equi-weight 79% 0.7902 0.032
imp-weight (ours) 75% 0.7564 0.002

Table 5. For the CelebA dataset, classifier accuracy, negative log-likelihood, and �dp across bias = 0.9 and perc=1.0 on the downstream
classification task. Our importance-weighting method learns a fair classifier that achieves a lower �dp, as desired, albeit with a slight
reduction in accuracy.

F.4. Single-Attribute Experiment

The results for the single-attribute split for bias=0.8 are shown in Figure 8.
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(a) Samples generated via importance reweighting. Faces above orange line classified as female (55/100) while rest as male.

(b) Fairness Discrepancy (c) FID

Figure 8. Single Attribute Dataset Bias Mitigation for bias=0.8. Standard error in (b) and (c) over 10 independent evaluation sets of
10,000 samples each drawn from the models. Lower fairness discrepancy and FID is better. We find that on average, imp-weight
outperforms the equi-weight baseline by 23.9% and the conditional baseline by 12.2% across all reference dataset sizes for bias
mitigation.

G. Additional generated samples
Additional samples for other experimental configuration are displayed in the following pages.
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(a) equi-weight

(b) conditional

(c) imp-weight

Figure 9. Additional samples of bias=0.9, across different methods. All samples shown are from the scenario where |Dref | = |Dbias|.
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(a) equi-weight

(b) conditional

(c) imp-weight

Figure 10. Additional samples of bias=0.8, across different methods. All samples shown are from the scenario where |Dref | = |Dbias|.
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(a) equi-weight

(b) conditional

(c) imp-weight

Figure 11. Additional samples of the multi-attribute experiment, across different methods. All samples shown are from the scenario where
|Dref | = |Dbias|.


