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Proof of Theorem 3.2
Proof. First we bound the sample size for a fixed query q ∈ Q. Let si be the
sensitivity of the ith point xi and S be the sum of the sensitivities. Let the
sampling probability be pi = si

S .
For all q ∈ Q and xi ∈ X define a function gq(xi) =

fq(xi)
Spi

∑n
j=1 fq(xj)

. So,

E[gq(xi)] =
1

S

and
1

r

∑
i∈[n]s.t.
x̃i∈C

gq(xi) =

∑
x̃i∈C fq(x̃i)

S
∑

xi∈X fq(xi)

Let
T =

∑
i∈[n]s.t.
x̃i∈C

gq(xi)

then
E[T ] =

∑
i∈[n]s.t.
x̃i∈C

E[gq(xi)] = r/S

var(gq(xi)) ≤ E[(gq(xi))
2]

=
∑
xi∈X

(fq(xi))
2

(
∑n
j=1 fq(xj))2S2pi

≤
∑
xi∈X

(fq(xi))
2
∑n
j=1 fq(xj)

(
∑n
j=1 fq(xj))2fq(xi)S

= 1/S

We get the third equation by replacing values of pi and si.
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Now var(gq(xi)) ≤ E[(gq(xi))
2] ≤ 1/S. So var(T ) ≤ r/S.

Now applying Bernstein Inequality as given in [2] we get,

Pr(|T − E[T ]| ≥ rε′) ≤ exp(− r2ε′2

r/S + rε′/3
)

Pr
(∣∣∣ ∑x̃i∈C fq(x̃i)

S
∑

xi∈X fq(xi)
− 1

S

∣∣∣ ≥ ε′) ≤ exp

(
− rε′2

(1/S) + (ε′/3)

)
Replacing ε′ with ε/S we get,

Pr
(∣∣∣ ∑

x̃i∈C

fq(x̃i)−
∑
xi∈X

fq(xi)
∣∣∣ ≥ ε ∑

xi∈X

fq(xi)

)
≤ 2 exp

(
−2rε2

S(1 + ε
3 )

)

To make the above probability less than δ, we choose r ≥ S
2ε2 (1 +

ε
3 ) log

2
δ which

depends on S for a fixed query q ∈ Q. Now to bound the number of samples
required to give a uniform bound for all queries simultaneously ∀q ∈ Q, we use
the same ε-net argument as described in [1]. This part is essentially a repeat
of their argument. However we present it here for completeness. Observe that
function gq(xi) lies in the interval [0, 1]. Due to the bounded dimension d of Q,
the queries in Q span a subspace of [0, 1]d. There may be an infinite number of
queries in Q. However these may be covered up to L1 distance ε/2 by some set
Q∗ ⊂ Q of O(ε−d) points [3] as given in [1]. For the ε-net argument let E be the
bad event that the coreset property is not satisfied by some C. Therefore

Pr(E) = Pr
[
∃q ∈ Q :

∣∣∣ ∑
x̃i∈C

fq(x̃i)−
∑
xi∈X

fq(xi)
∣∣∣ > ε

∑
xi∈X

fq(xi)

]
≤ Pr

[
∃q ∈ Q∗ :

∣∣∣ ∑
x̃i∈C

fq(x̃i)−
∑
xi∈X

fq(xi)
∣∣∣ > ε

2

∑
xi∈X

fq(xi)

]

≤ 2|Q∗| exp
(
−2rε2

S(1 + ε
3 )

)
To makeC an ε-coreset with probability at least 1-δ, we choose r = O( Sε2 (log |Q

∗|+
log 2

δ ). Now as |Q∗| ∈ O(ε−d) we have r = O
(
S
ε2 (d log

1
ε + log 1

δ )
)
.

Generalizing the Proof of Corollary 4.1.1
The proof can be generalized to the setting when b is in the column-space of A in
the following manner. Suppose b = Au. Also supposeAc and bc can be obtained
as Ac = SA and bc = Sb where S can be either a sampling and reweighing or a
sketching matrix. Now we want to prove the following : If S is a coreset creation
matrix for (A,b) for regression i.e. ∀x, ‖Acx− bc‖rp ∈ (1± ε)‖Ax− b‖rp, then
it must be that ∀x, ‖Acx‖rp ∈ (1± ε)‖Ax‖rp. Proving this statement and using
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Theorem 4.1 essentially proves the corollary for the more general setting of b
in column space of A. To prove the statement we use contradiction. Let us
suppose that the statement is false. Then ∃v ∈ Rd s.t. ‖Acv‖rp > (1 + ε)‖Av‖rp.
We will create a y s.t that ‖Acy−bc‖rp > (1 + ε)‖Ay−b‖rp. Consider the ratio

‖S(Ay − b)‖rp
‖Ay − b‖rp

=
‖SA(y − u)‖rp
‖A(y − u)‖rp

Now if we choose y = u+v then we have ‖SAv‖rp
‖Av‖rp

> (1+ ε). This a contradiction
to the fact that (SA,Sb) is coreset for ‖Ay − b‖rp. Hence our assumption is
false. So ∀x, ‖Acx‖rp ≤ (1 + ε)‖Ax‖rp. The other direction for coreset definition
is proved in similar manner. This combined with the Theorem 4.1 gives our
corollary

Proof of Corollary 6.1.1

Proof. For Â = [A −B] and X̂ =

[
X
Ik

]
where Ik is k-dimensional identity

matrix, the sensitivity of Multiresponse RLAD problem is given as

si = sup
X̂

‖âTi X̂‖1 +
λ‖X̂‖1
n∑

j ‖âTj X̂‖1 + λ‖X̂‖1

Let Â = UY where U is an (α, β, 1) well conditioned basis for Â. So âTj X̂ =

uj
TYX̂. Let YX̂ = Z. So the sensitivity equation becomes

si = supZ
‖uTi Z‖1+

λ‖Y−1Z‖1
n∑

j ‖uTj Z‖1+λ‖Y−1Z‖1

≤ supZ
‖uTi Z‖1∑

j ‖uTj Z‖1+λ‖Y−1Z‖1
+ 1

n

Instead of supremum of the first quantity on the right hand side, we take the
infimum of its reciprocal. Lets call it m.

m = infZ

∑
j ‖u

T
j Z‖1+λ‖Y

−1Z‖1
‖uTi Z‖1

≥ infZ

∑
j ‖u

T
j Z‖1

‖uTi Z‖1
+ infZ

λ‖Y−1Z‖1
‖uTi Z‖1

Let us consider the first part. U is an (α, β, 1)- well conditioned basis for Â.
Hence by definition ‖U‖1 ≤ α and ∀z ∈ Rd+k, ‖z‖∞ ≤ β‖Uz‖1. So the first
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term in the infimum

inf
Z

∑
j ‖uTj Z‖1
‖uTi Z‖1

= inf
Z

∑k
l=1 ‖Uzl‖1∑k
l=1 |ui

T zl|

≥
1
β

∑k
l=1 ‖zl‖∞

‖ui‖1
∑k
l=1 ‖zl‖∞

=
1

β‖ui‖1

Now for the second term in the infimum let us consider instead

inf
Z

‖AY−1Z‖1
‖uTi Z‖1

= inf
Z

‖UZ‖1
‖uTi Z‖1

≥ 1

β‖ui‖1

Now ‖AY−1Z‖1 ≤ ‖A‖(1)‖Y−1Z‖1. Therefore

inf
Z

‖Y−1Z‖1
‖uTi Z‖1

≥ inf
Z

‖AY−1Z‖1
‖A‖(1)‖u

T

i
Z‖1

≥ 1

β‖A‖(1)‖ui‖1

Combining both these

m ≥ 1

β‖ui‖1

(
1 +

λ

‖A‖(1)

)
Now sensitivity of ith point is bounded as si ≤ 1

m+ 1
n . Therefore si ≤

β‖ui‖1
1+ λ
‖A‖(1)

+ 1
n .

So the sum of sensitivities is bounded by S ≤ αβ
1+ λ
‖A‖(1)

+ 1. This fact combined

with fact that dimension of X is dk and applying theorem 3.2 proves the
corollary
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