
Streaming Coresets for Symmetric Tensor Factorization

A. Appendix
Well-Conditioned Basis: (Dasgupta et al., 2009) Let
A ∈ Rn×d a rank d matrix. For p ≥ 1, it has a dual
q = p/(p − 1). A matrix U is said to be (α, β, p) well-
conditioned basis of A, if U spans the column space of
A,
∑d
i=1 ‖uj‖p ≤ α, ∀x ∈ Rd, ‖x‖q‖Ux‖p ≤ β and (α, β) are

dO(1) and also independent of n.

Theorem A.1. Bernstein (Dubhashi & Panconesi, 2009)
Let the scalar random variables x1, x2,··· , xn be inde-
pendent that satisfy ∀i ∈ [n], |xi − E[xi]| ≤ b. Let
X =

∑n
i=1 xi and let σ2 =

∑n
i=1 σ

2
i be the variance

of X . Then for any t > 0,

Pr
(
X > E[X] + t

)
≤ exp

(
−t2

2σ2+bt/3

)
Theorem A.2. Matrix Bernstein (Tropp et al., 2015) Let
X1, . . . ,Xn are independent d× d random matrices such
that ∀i ∈ [n], ‖Xi‖ ≤ b and var(‖X‖) ≤ σ2 where X =∑n
i=1 Xi, then for some t > 0,

Pr(‖X‖ − E[‖X‖] ≥ t) ≤ d exp

(
−t2/2

σ2 + bt/3

)
ε-net argument: Here we discuss the ε-net argument,
which we use to ensure a our guarantee for all query vec-
tor x from a fixed dimensional query space Q using union
bound argument. Similar use of the argument is discussed
in various applications (Woodruff et al., 2014).

Definition A.1. ε-net (Haussler & Welzl, 1987) Given some
metric space Q its subset P ⊂ Q is an ε-net of Q on `p
norm if, ∀x ∈ Q,∃y ∈ P such that ‖x− y‖p ≤ ε.

Let ‖ΠAx‖pp =
∑m
i=1 |ãTi x|p, where Π is a sampling ma-

trix which samples m rows from A with proper scaling.
Now we argue this ∀x ∈ Q, i.e. ‖ΠAx‖pp = (1±ε) ‖Ax‖pp
which is same as ‖ΠUy‖pp = (1± ε) ‖Uy‖pp where Uy =

Ax. Now with an ε−net, we argue ∀x ∈ Q, Q ⊆ Rd.

Let B = {z ∈ Rn|z = Uy for some y ∈ Rk and ‖z‖p =
1}. From this set we intend to find a finite subset N which is
an ε-net to the set. Now here we argue that if we can ensure
‖Πw‖pp = (1± ε) ‖w‖pp ,∀w ∈ N then we can claim that
‖Πz‖pp = (1 ± ε) ‖z‖pp ,∀z ∈ B which further imply that
‖ΠAx‖pp = (1± ε) ‖Ax‖pp ,∀x ∈ Q.

Let v ∈ B whose closest ε-net point is w1 ∈ N such that
‖v −w1‖p ≤ ε. Now note that,

‖Πv‖pp = ‖Πw1 + Π(v −w1)‖pp
≤ (‖Πw1‖p + ‖Π(v −w1)‖p)

p

≤ (1 + ε+ ‖Π(v −w1)‖p)
p

= (1 + ε+ ‖Π(w2/α+ v −w1 −w2/α)‖p)
p

≤ (1 + ε+ ε(1 + ε) + ‖Π(v −w1 −w2/α)‖p)
p

Repeated application of this argument yields

‖Πv‖pp ≤
(∑

i≥0(1 + ε)εi
)p
≤
(

1+ε
1−ε

)p
≤ 1 +O(ε)

By similar argument one can show that ‖Πv‖pp ≥ 1−O(ε).
Finally by rescaling ε by some constant factor we achieve
‖Πz‖pp ∈ 1± ε,∀z ∈ B.

Lemma A.1. There is an ε-net N, with |N| ≤ (2/ε)k.

Proof. Let N be the maximal subset of y ∈ Rn in the
column space of A such that ‖y‖p = 1 and ∀y 6= y′ ∈
N, ‖y − y′‖p > ε. Now as N is a maximal set, hence
∀y ∈ B,∃w ∈ N for which ‖w − y‖p ≤ ε. Further
∀y 6= y′ ∈ N two balls centered at y and y′ with radius ε/2
are disjoint otherwise by triangle inequality, ‖y − y′‖p ≤ ε,
is a contradiction. So it follows that in a unit sphere in Rk
there could be at most (2/ε)k such balls, i.e. the number of
points in N.

Now we state the modified version of Sherman Morrison
which we use in the function Score(·).
Lemma A.2. Given a rank-k positive semi-definite matrix
M ∈ Rd×d and a vector x such that it completely lies in
the column space of M. Then we have,

(M + xxT)† = M† − M†xxTM†

1 + xTM†x

Proof. The proof is in the similar spirit to lemma 5.3. Con-
sider [V,Σ,V] = SVD(M) and since x lies completely in
the column space of M, hence ∃y ∈ Rk such that Vy = x.
Note that V ∈ Rd×k.

(M + xxT)† = (VΣVT + VyyTVT)†

= V(Σ + yyT)−1VT

= V

(
Σ−1 − Σ−1yyTΣ−1

1 + yTΣ−1y

)
V

= V

(
Σ−1 − Σ−1VTVyyTVTVΣ−1

1 + yTVTVΣ−1VTVy

)
V

= M† − M†xxTM†

1 + xTM†x

In the above analysis, the first couple of inequalities are by
substitution. In the third equality, we use Sherman Morrison
formula on the smaller k×k matrix Σ and the rank-1 update
of yyT .

A.1. LineFilter

Here we provide the proofs of the lemmas used to prove the
guarantee claimed in theorem 4.1 by LineFilter.

Streaming Coresets for Symmetric Tensor Factorization

A.1.1. PROOF OF LEMMA 5.1

Proof. We define the restricted streaming (online) sensitiv-
ity scores s̃i for each row i as follows,

s̃i = sup
x

|aTi x|p∑i
j=1 |aTj x|p

= sup
y

|uTi y|p∑i
j=1 |uTj y|p

Here y = ΣVTx where [U,Σ,V] = svd(A) and uTi
is the ith row of U. Now at this ith step we also define
[Ui,Σi,Vi] = svd(Ai). So with y = ΣiV

T
i x and ũTi is

the ith row of Ui we rewrite the above optimization function
as follows,

s̃i = sup
x

|aTi x|p∑i
j=1 |aTj x|p

= sup
y

|ũTi y|p

‖Uiy‖pp

= sup
y

|ũTi y|p

|ũTi y|p +
∑i−1
j=1 |ũTj y|p

Let there be an x∗ which maximizes s̃i. Corresponding
to it we have y∗ = ΣiV

T
i x∗. For a fixed x, let f(x) =

|aTi x|
p∑i

j=1 |aTj x|p
=
|aTi x|

p

‖Aix‖pp and g(y) =
|ũTi y|

p

‖Uiy‖pp
. By assumption

we have f(x∗) ≥ f(x),∀x.

We prove this by contradiction that ∀y, g(y∗) ≥ g(y),
where y = ΣiV

T
i x. Let ∃y′ such that g(y′) ≥ g(y∗).

Then we get x′ = ViΣ
−1
i y′ for which f(x′) ≥ f(x∗), as

by definition we have f(x) = g(y) for y = ΣiV
T
i x. This

contradicts our assumption, unless x′ = x∗.

Now to maximize the score, s̃i,x is chosen from the row
space of Ai. Next, without loss of generality we assume
that ‖y‖ = 1 as we know that if x is in the row space
of Ai then y is in the row space of Ui. Hence we get
‖Uiy‖ = ‖y‖ = 1.

We break denominator into sum of numerator and the rest,
i.e. ‖Uiy‖pp = |ũTi y|p +

∑i−1
j=1 |ũTj y|p. Consider the de-

nominator term as
∑i−1
j=1 |ũTj y|p ≥ f(n)

(∑i−1
j=1 |ũTj y|2

)
.

From this we estimate f(n) as follows,

i−1∑
j=1

|ũTj y|2 =

(i−1∑
j=1

|ũTj y|2 · 1
)

(i)

≤
(i−1∑
j=1

|ũTj y|2p/2
)2/p(i−1∑

j=1

1p/(p−2)

)1−2/p

(ii)

≤
(i−1∑
j=1

|ũTj y|p
)2/p

· (i)1−2/p

Here equation (i) is by holder’s inequality, where we
have 2/p + 1 − 2/p = 1. So we rewrite the above
term as

(∑i−1
j=1 |ũTj y|p

)2/p(
i
)1−2/p ≥

∑i−1
j=1 |ũTj y|2 =

1− |ũTi y|2. Now substituting this in equation (ii) we get,(i−1∑
j=1

|ũTj y|p
)2/p

≥
(

1

i

)1−2/p

(1− |ũTi y|2)

(i−1∑
j=1

|ũTj y|p
)
≥

(
1

i

)p/2−1

(1− |ũTi y|2)p/2

So we get s̃i ≤ supy
|ũTi y|

p

|ũTi y|p+(1/i)p/2−1(1−|ũTi y|2)p/2
. Note

that this function increases with value of |ũTi y|, which is
maximum when y = ũi

‖ũi‖ , which gives,

s̃i ≤
‖ũi‖p

‖ũi‖p + (1/i)p/2−1(1− ‖ũi‖2)p/2

As we know that a function a
a+b ≤ min{1, a/b}, so we get

l̃i = min{1, ip/2−1 ‖ũi‖p}. Note that l̃i = ip/2−1 ‖ũi‖p
when ‖ũi‖p < (1/i)p/2−1.

Here the scores are similar to leverage scores (Woodruff
et al., 2014) but due to p order and data point coming in
online manner LineFilter charges an extra factor of
ip/2−1 for every row. Although we have bound on the∑n
i l̃i from lemma 5.3, but this factor can be very huge as i

increases which eventually sets many l̃i = 1.

A.1.2. PROOF OF LEMMA 5.2

Proof. For simplicity, we prove this lemma at the last times-
tamp n. But it can also be proved for any timestamp ti,
which is why the LineFilter can also be used in the
restricted streaming (online) setting.

Now for a fixed x ∈ Rd and its corresponding y, we
define a random variables as follows, i.e. the choice
LineFilter has every for incoming row i.

wi =

{
1
pi

(uTi y)p with probability pi
0 with probability (1− pi)

where uTi is the ith row of U for [U,Σ,V] = svd(A) and
y = ΣVTx. Here we get E[wi] = (uTi y)p. In our on-
line algorithm we have defined pi = min{rl̃i/

∑i
j=1 l̃j , 1}

where r is some constant. When pi ≤ 1, we have

pi = rl̃i/

i∑
j=1

l̃j ≥
r|uTi y|p∑i

j=1 l̃j
∑i
j=1 |uTj y|p

≥ r|uTi y|p∑n
j=1 l̃j

∑n
j=1 |uTj y|p

As we are analysing a lower bound on pi and both the terms
in the denominator are positive so we extend the sum of first
i terms to all the n terms. Now to apply Bernstein inequality

Streaming Coresets for Symmetric Tensor Factorization

A.1 we bound the term |wi − E[wi]| ≤ b. Consider the two
possible cases,

Case 1: Whenwi is non zero, then |wi−E[wi]| ≤ |u
T
i y|

p

pi
≤

|uTi y|
p(

∑n
j=1 l̃j)

∑n
j=1 |u

T
j y|

p

r|uTi y|p
=

(
∑n
j=1 l̃j)

∑n
j=1 |u

T
j y|

p

r . Note
for pi = 1, |wi − E[wi]| = 0.

Case 2: When wi is 0 then pi < 1. So we have
1 > rl̃i∑i

j=1 l̃j
≥ r|uTi y|

p

(
∑n
j=1 l̃j)

∑n
j=1 |uTj y|p

. So |wi − E[wi]| =

|E[wi]| = |(uTi y)p| < (
∑n
j=1 l̃j)

∑n
j=1 |u

T
j y|

p

r .

So by setting b =
(
∑n
j=1 l̃j)

∑n
j=1 |u

T
j y|

p

r we can bound the
term |wi − E[wi]|. Next we bound the variance of the sum,
i.e.

∑n
i=1 l̃i. Let σ2 = var

(∑n
i=1 wi

)
=
∑n
i=1 σ

2
i , since

every incoming rows are independent of each other and here
we consider σ2

i = var(wi)

σ2 =

n∑
i=1

σ2
i =

n∑
i=1

E[w2
i]− (E[wi])

2

≤
n∑
i=1

|uTi y|2p

pi

≤
n∑
i=1

|uTi y|2p(
∑n
k=1 l̃k)

∑n
j=1 |uTj y|p

r|uTi y|p

≤
(
∑n
k=1 l̃k)(

∑n
j=1 |uTj y|p)2

r

Note that ‖Uy‖pp =
∑n
j=1 |uTj y|p. Now in Bernstein in-

equality we set t = ε
∑n
j=1 |uTj y|p, let

P = Pr
(
|W −

n∑
j=1

(uTj y)p| ≥ ε
n∑
j=1

|uTj y|p
)

which we bound as follows,

P ≤ exp

((
ε
∑n
j=1 |uTj y|p

)2
2σ2 + bt/3

)
≤ exp

(
−rε2(‖Uy‖pp)2

(‖Uy‖pp)2
∑n
j=1 l̃j(2 + ε/3)

)

= exp

(
−rε2

(2 + ε/3)
∑n
j=1 l̃j

)

Now to ensure that the above probability at most 0.01,∀x ∈
Q we use ε-net argument as in A where we take a union
bound over (2/ε)k,x from the net. Note that for our purpose
1/2-net also suffices. Hence with the union bound over all

x in 1/2-net we need to set r as O(
k
∑n
j=1 l̃j

ε2).

Now to ensure the guarantee for `p subspace embedding for
any p ≥ 2 as in equation (2) one can consider the following

form of the random variable,

wi =

{
1
pi
|uTi y|p with probability pi

0 with probability (1− pi)

and follow the above proof. Finally by setting r as

O(
k
∑n
j=1 l̃j

ε2) one can get

P = Pr
(
|W − ‖Ax‖pp| ≥ ε‖Ax‖pp

)
≤ 0.01

Since for both the guarantees of equation (1) and (2) the
sampling probability of every incoming row is the same,
just the random variables are different, hence for integer
valued p ≥ 2 the same sampled rows preserves both tensor
contraction as in equation (1) and `p subspace embedding
as in equation (2).

Now we give the detail proof of sum of upper bounds of
sensitivity scores,

∑n
i=1 l̃i. The proof is novel because

of the way we use matrix determinant lemma for a rank
deficient matrix, which is further used to get a telescopic
sum for all the terms.

A.1.3. PROOF OF LEMMA 5.3

Proof. Recall that Ai denotes the i× d matrix of the first
i incoming rows. LineFilter maintains the covariance
matrix M. At the (i− 1)th step we have M = AT

i−1Ai−1.
This is then used to define the score l̃i for the next step i, as
l̃i = min{ip/2−1ẽ

p/2
i , 1}, where ẽi = aTi (M+aia

T
i)†ai =

aTi (AT
i Ai)

†ai and aTi is the ith row. The scores ẽi are also
called online leverage scores. We first give a bound on∑n
i=1 ẽi. A similar bound is given in the online matrix row

sampling by (Cohen et al., 2016), albeit for a regularized
version of the scores ẽi. As the rows are coming, the rank of
M increases from 1 to at most d. We say that the algorithm
is in phase-k if the rank of M equals k. For each phase
k ∈ [1, d− 1], let ik denote the index where row aik caused
a phase-change in M i.e. rank of (AT

ik−1Aik−1) is k − 1,
while rank of (AT

ik
Aik) is k. For each such ik, the online

leverage score ẽik = 1, since row aik does not lie in the row
space of Aik−1. There are at most d such indices ik.

We now bound the
∑
i∈[ik,ik+1−1] ẽi. Suppose the

thin-SVD(AT
ik

Aik) = VΣikV
T , all entries in Σik being

positive. Furthermore, for any i in this phase, i.e. for
i ∈ [ik +1, ik+1−1], V forms the basis of the row space of
Ai. Define Xi = VT (AT

i Ai)V and the ith row ai = Vbi.
Notice that each Xi ∈ Rk×k, and Xik = Σik . Also, Xik is
positive definite. Now for each i ∈ [ik + 1, ik+1 − 1], we
have Xi = Xi−1 + bib

T
i .

So we have, ẽi = aTi (AT
i Ai)

†ai = bTi VT (V(Xi−1 +
bib

T
i)VT)†Vbi = bTi (Xi−1 + bib

T
i)−1bi where the

Streaming Coresets for Symmetric Tensor Factorization

last equality uses the invertibility of the matrix. Since
Xi−1 is not rank deficient so by using matrix determinant
lemma (Harville, 1997) on det(Xi−1 + bib

T
i) we get,

= det(Xi−1)(1 + bTi (Xi−1)−1bi)

(i)

≥ det(Xi−1)(1 + bTi (Xi−1 + bib
T
i)−1bi)

= det(Xi−1)(1 + ẽi)

(ii)

≥ det(Xi−1) exp(ẽi/2)

exp(ẽi/2) ≤ det(Xi−1 + bib
T
i)

det(Xi−1)

Inequality (i) follows as X−1
i−1− (Xi−1 +bbT)−1 � 0 (i.e.

p.s.d.). Inequality (ii) follows from the fact that 1 + x ≥
exp(x/2) for x ≤ 1. Now with ẽik = 1, we analyze the
product of the remaining terms of the phase k i.e.,∏

i∈[ik+1,ik+1−1] exp(ẽi/2)

which is,

≤
∏

i∈[ik+1,ik+1−1]

det(Xi)

det(Xi−1)
≤

det(Xik+1−1)

det(Xik+1)
.

Now by taking the product over all phases the term

exp

(∑
i∈[1,id−1] ẽi/2

)
gets,

= exp((d− 1)/2)
(∏
k∈[1,d−1]

∏
i∈[ik+1,ik+1−1]

exp(ẽi/2)
)

= exp((d− 1)/2)
(∏
k∈[1,d−1]

det(Xik+1−1)

det(Xik+1)

)
= exp((d− 1)/2)

(det(Xi2−1)

det(Xi1)

∏
k∈[2,d−1]

det(Xik+1−1)

det(Xik+1)

)
Because we know that for any phase k we have
(AT

ik+1−1Aik+1−1) � (AT
ik+1Aik+1) so we get,

det(Xik+1−1) ≥ det(Xik+1). Further between inter phases
terms, i.e. between the last term of phase k − 1 and the
second term of phase k we have det(Xik−1) ≤ det(Xik+1).
Note that we independently handle the first term of phase
k, i.e. phase change term. Hence we get exp((d − 1)/2)
as there are d − 1 many i such that ẽi = 1. Due to these
conditions the product of terms from 1 to id − 1 yields a
telescopic product, which gives,

exp

(∑
i∈[1,id−1]

ẽi/2

)
≤ exp((d− 1)/2)det(Xid−1)

det(Xi1+1)

≤
exp((d− 1)/2)det(AT

id
Aid)

det(Xi1+1)
.

Furthermore, we know ẽid = 1, so for i ∈ [id, n], the matrix
M is full rank. We follow the same argument as above, and
obtain the following,

exp

(∑
i∈[id,n]

ẽi/2

)
≤ exp(1/2)det(ATA)

det(AT
id+1Aid+1)

≤ exp(1/2)‖A‖d

det(AT
id+1Aid+1)

Let ai1+1 be the first non independent incoming row. Now
multiplying the above two expressions and taking logarithm
of both sides, and accounting for the indices ik for k ∈
[2, d], ∑

i≤n

ẽi ≤ d/2 + 2d log ‖A‖ − 2 log ‖ai1+1‖

≤ d/2 + 2d log ‖A‖ −min
i

2 log ‖ai‖.

Now, we give a bound on
∑n
i=1 l̃i where l̃i =

min{1, ip/2−1ẽ
p/2
i } ≤ min{1, np/2−1ẽ

p/2
i }. We consider

two cases. When ẽ
p/2
i ≥ n1−p/2 then l̃i = 1, this

implies that ẽi ≥ n2/p−1. But we know
∑n
i=1 ẽi ≤

O(d + d log ‖A‖ −mini log ‖ai‖) and hence there are at-
most O(n1−2/p(d + d log ‖A‖ − mini log ‖ai‖)) indices
with l̃i = 1. Now for the case where ẽp/2i < n1−p/2, we get
ẽ
p/2−1
i ≤ (n)(1−p/2)(1−2/p). Then

∑n
i=1 n

p/2−1ẽ
p/2
i =∑n

i=1 n
p/2−1ẽ

p/2−1
i ẽi ≤

∑n
i=1 n

1−2/pẽi is O(n1−2/p(d+
d log ‖A‖ −mini log ‖ai‖)).

A.2. LineFilter+StreamingLW

As we know that any offline algorithm can be converted
into a streaming algorithm by using merge and reduce
method (Har-Peled & Mazumdar, 2004), so we apply merge
and reduce on (Cohen & Peng, 2015). The results in (Cohen
& Peng, 2015) is better than the results of (Dasgupta et al.,
2009; Woodruff & Zhang, 2013; Clarkson et al., 2016) in
terms of sampling complexity, ignoring the ε factor in it.
Now we discuss the guarantee that we get from the stream-
ing version of (Cohen & Peng, 2015).

A.2.1. PROOF OF LEMMA 4.1

Proof. Here the data is coming in streaming sense and it
is feed to the streaming version of the algorithm in (Co-
hen & Peng, 2015), i.e. StreamingLW for `p subspace
embedding. We use merge and reduce from (Har-Peled &
Mazumdar, 2004) for streaming data. From the results of
(Cohen & Peng, 2015) we know that for a set P of size
n takes O(ndC log n) time to return a coreset Q of size
O(dp/2(log d)ε−5) where C is a constant. Note that for
the StreamingLW in section 7 of (Har-Peled & Mazum-
dar, 2004) we set M = O(dp/2(log d)ε−5). The method

Streaming Coresets for Symmetric Tensor Factorization

returns Qi as the (1 + δi) coreset for the partition Pi where
|Pi| is either 2iM or 0, here ρj = ε/(c(j + 1)2) such
that 1 + δi =

∏i
j=0(1 + ρj) ≤ 1 + ε/2,∀j ∈ dlog ne.

Thus we have |Qi| is O(dp/2(log d)(i + 1)10ε−5). In
StreamingLW the method reduce sees at max log n many
coresets at any point of time. Hence the total working space
is O(dp/2(log11 n)(log d)ε−5). The StreamingLW never
actually uses the entire Pi and run offline Lewis Weight
based sampling. Instead it uses all Qj , where j < i. Now
the amortized time spent per update is,

dlog(n/M)e∑
i=1

1

2iM
(|Qi|dC log |Qi|)

=

dlog(n/M)e∑
i=1

1

2iM
(M(i+ 1)4dC log |Qi|) ≤ dCp log d

So finally the algorithm return Q as the final coreset of
O(dp/2(log10 n)(log d)ε−5) rows and uses O(dCp log d)
amortized update time.

Next we discuss the proof of the guarantee of the improved
streaming algorithm i.e. LineFilter+StreamingLW.
Here we do not pass an incoming row directly to
StreamingLW, instead first we feed it to LineFilter,
if it samples then the row is further passed on to
StreamingLW.

A.2.2. PROOF OF LEMMA 4.2

Proof. Here the data is coming in streaming sense. The
first method LineFilter filters out the rows with small
sensitivity scores and only the sampled rows (high sen-
sitivity score) are passed to StreamingLW. Here the
LineFilter ensures that StreamingLW only gets
Õ(n1−2/pd), hence the amortized update time is same
as that of LineFilter, i.e. O(d2). Now similar to
the above proof A.2.2, by the StreamingLW from sec-
tion 7 of (Har-Peled & Mazumdar, 2004) we set M =
O(dp/2(log d)ε−5). The method returns Qi as the (1 + δi)
coreset for the partition Pi where |Pi| is either 2iM or 0,
here ρj = ε/(c(j + 1)2) such that 1 + δi =

∏i
j=0(1 +

ρj) ≤ 1 + ε/2,∀j ∈ dlog ne. Thus we have |Qi| is
O(dp/2(log d)(i + 1)10ε−5). Hence the total working
space is O((1 − 2/p)11dp/2(log11 n)(log d)ε−5). So fi-
nally LineFilter+StreamingLW returns a coreset Q
of O((1− 2/p)10dp/2(log10 n)(log d)ε−5) rows.

Note that LineFilter+StreamingLW also returns
a slightly improved sampling complexity compare to
StreamingLW. We get this benefit due to the sublinear
size sample, which LineFilter returns.

A.3. KernelFilter

In this section we discuss the supporting lemma for proving
the theorem 4.3. First we show the reduction from p order
operation to q order operation, where q ≤ 2. While doing
that we go from d dimensional vectors to its corresponding
higher dimensional vector depending on the value of p.

A.4. Proof of Lemma 4.2

Proof. The term |xTy|p = |xTy|bp/2c|xTy|dp/2e. We de-
fine |xTy|bp/2c = |x̀Ti ỳ| = |〈x⊗bp/2c,y⊗bp/2c〉|2 and
|xTy|dp/2e = |x́Ti ý| = |〈x⊗dp/2e,y⊗dp/2e〉|2. Here the
x̀ and x́ are the higher dimensional representation of x
and similarly ỳ and ý are defined from y. For even val-
ued p we know bp/2c = dp/2e, so for simplicity we
write as |xTy|p/2 = |x́Ti ý|. Hence we get |xTy|p =
|〈x⊗p/2,y⊗p/2〉|2 = |x́T ý|2 which is same as in (Schecht-
man, 2011). Here the vector x́ is the higher dimensional
vector, where x́ = vec(x⊗p/2) ∈ Rp/2 and similarly ý is
also defined from y. Now for odd value of p we have x̀ =
vec(x⊗(p−1)/2) ∈ R(p−1)/2 and x́ = vec(x⊗(p+1)/2) ∈
R(p+1)/2. Similarly ỳ and ý are defined from y. Further
note that |x̀T ỳ| = |x́T ý|(p−1)/(p+1) which gives |xTy|p =
|〈x⊗(p−1)/2,y⊗(p−1)/2〉| · |〈x⊗(p+1)/2,y⊗(p+1)/2〉| =
|x̀T ỳ| · |x́T ý| = |x́T ý|2p/(p+1). It completes the proof.

Here the novelty is in the kernelization for the odd value p.
In the following supporting lemmas, we will see the benefit
for our above kernelization method.

A.4.1. PROOF OF LEMMA 5.4

Proof. We define the online sensitivity scores s̃i for each
point i as follows,

s̃i = sup
{x|‖x‖=1}

|aTi x|p

‖Aix‖pp

Let Á be the matrix where its jth row áj =

vec(aJ⊗d
dp/2e

) ∈ Rddp/2e . Further let Ái are the cor-
responding matrices Ai ∈ Ri×d which represents first i
streaming rows. We define [Úi, Σ́i, V́i] = svd(Ái) such
that áTi = úTi Σ́iV́

T
i . Now for a fixed x ∈ Rd its corre-

sponding x́ is also fixed in its corresponding higher dimen-
sion. Here Σ́iV́

T
i x́ = ź from which we define unit vector

ý = ź/‖ź‖. Now for even value p (Schechtman, 2011), we
can easily upper bound the terms s̃i as follows,

s̃i = sup
{x|‖x‖=1}

|aTi x|p

‖Aix‖pp
= sup
{x́|‖x́‖=1}

|áTi x́|2

‖Áix́‖2

= sup
{ý|‖ý‖=1}

|úTi ý|2

‖Úiý‖2
≤ ‖úi‖2

Here every equality is by substitution from our above men-
tioned assumptions and the final inequality is well known

Streaming Coresets for Symmetric Tensor Factorization

from (Woodruff et al., 2014; Cohen et al., 2015). Hence
finally we get s̃i ≤ ‖úi‖2 for even value p as defined in
KernelFilter.

Now for odd value p we analyze s̃i as follows,

s̃i = sup
{x|‖x‖=1}

|aTi x|p

‖Aix‖pp

i
= sup

{x́|‖x́‖=1}

|áTi x́|2p/(p+1)∑
j≤i |áTj x́|2p/(p+1)

= sup
{x́|‖x́‖=1}

|áTi x́|2p/(p+1)

‖Áix́‖2p/(p+1)
2p/(p+1)

= sup
{ý|‖ý‖=1}

|úTi ý|2p/(p+1)

‖Úiý‖2p/(p+1)
2p/(p+1)

ii
≤ sup

{ý|‖ý‖=1}

|úTi ý|2p/(p+1)

‖Úiý‖2p/(p+1)

= sup
{ý|‖ý‖=1}

|úTi ý|2p/(p+1)

= ‖úi‖2p/(p+1)

The equality (i) is by lemma 4.2. Next with similar assump-
tion as above let [Úi, Σ́i, V́i] = svd(Ái). The inequality
(ii) is because ‖Úiý‖2p/(p+1) ≥ ‖Úiý‖ and finally we get
s̃i ≤ l̃i as defined in KernelFilter for odd p value.

A.4.2. PROOF OF LEMMA 5.5

Proof. For simplicity we prove this lemma at the last times-
tamp n. But it can also be proved for any timestamp ti
which is why the KernelFilter can also be used in re-
stricted streaming (online) setting. Also for a change we
show this for `p subspace embedding. Now for some fixed
x ∈ Rd consider the following random variable for every
row i.

wi =

{
(1/pi − 1)|aTi x|p w.p. pi
−|aTi x|p w.p. (1− pi)

Note that E[wi] = 0. Now to show the concentration of
the expected term we will apply Bernstein’s inequality A.1
on W =

∑n
i=1 wi. For this first we bound |wi − E[wi]| =

|wi| ≤ b and then we give a bound on var(W) ≤ σ2.

Now for the ith timestamp KernelFilter defines pi =
min{1, rl̃i/

∑
j≤i l̃j} where r is some constant. If pi = 1

then |wi| = 0, else if pi < 1 and KernelFilter samples
the row then |wi| ≤ |aTi x|p/pi = |aTi x|p

∑i
j=1 l̃j/(rl̃i) ≤

‖Aix‖pp|aTi x|p
∑i
j=1 l̃j/(r|aTi x|p) ≤ ‖Ax‖pp

∑n
j=1 l̃j/r.

Next when KernelFilter does not sample the
ith row, it means that pi < 1, then we have
1 > rl̃i/

∑i
j=1 l̃j ≥ r|aTi x|p/(‖Aix‖pp

∑i
j=1 l̃j) ≥

r|aTi x|p/(‖Ax‖pp
∑n
j=1 l̃j). Finally we get |aTi x|p ≤

‖Ax‖pp
∑n
j=1 l̃j/r. So for each i we get |wi| ≤

‖Ax‖pp
∑n
j=1 l̃j/r.

Next we bound the variance of sum of the random variable,
i.e. W =

∑n
i=1 wi. Let, σ2 = var(W) =

∑n
i=1 var(wi) =∑n

i=1 E[w2
i] as follows,

σ2 =

n∑
i=1

E[w2
i] =

n∑
i=1

|aTi x|2p/pi

≤
n∑
i=1

|aTi x|2p
i∑

j=1

l̃j/(rl̃i)

= ‖Aix‖pp
n∑
i=1

|aTi x|2p
i∑

j=1

l̃j/(r|aTi x|p)

≤ ‖Ax‖2pp
n∑
j=1

l̃j/r

Now we can apply Bernstein A.1 to bound the proba-
bility P = Pr(|W | ≥ ε‖Ax‖pp), Here we have b =

‖Ax‖pp
∑n
j=1 l̃j/r, σ

2 = ‖Ax‖p2p
∑n
j=1 l̃j/r and we set

t = ε‖Ax‖pp, then we get

P ≤ exp

(−(ε‖Ax‖pp)2

2‖Ax‖2pp
∑n
j=1 l̃j/r + ε‖Ax‖2pp

∑n
j=1 l̃j/3r

)
= exp

(−rε2‖Ax‖2pp
(2 + ε/3)‖Ax‖2pp

∑n
j=1 l̃j

)
= exp

(
−rε2

(2 + ε/3)
∑n
j=1 l̃j

)
Now to ensure that the above probability at most 0.01,∀x ∈
Q we use ε-net argument as in A where we take a union
bound over (2/ε)k,x from the net. Note that for our purpose
1/2-net also suffices. Hence with the union bound over all
x in 1/2-net we need to set r = O(kε−2

∑n
j=1 l̃j).

Now to ensure the guarantee for tensor contraction as equa-
tion (1) one can define

wi =

{
(1/pi − 1)(aTi x)p w.p. pi
−(aTi x)p w.p. (1− pi)

and follow the above proof. By setting the r =
O(kε−2

∑n
j=1 l̃j) one can get following ∀x ∈ Q,

P = Pr
(
|W −

n∑
j=1

(aTj x)p| ≥ ε
n∑
j=1

|aTj x|p
)
≤ 0.01

One may follow the above proof to claim the final guarantee
as in equation 1 using the same sampling complexity. Again
similar to LineFilter as the sampling probability of the
rows are same for both tensor contraction and `p subspace
embedding, hence the same subsampled rows preserves both
the properties as in equation (1) and (2).

Streaming Coresets for Symmetric Tensor Factorization

A.4.3. PROOF OF LEMMA 5.6

Proof. Let ći = ‖úi‖. Now for even value p we have∑n
i=1 l̃i =

∑n
i=1 ć

2
i . From lemma 5.3 we get

∑n
i=1 ć

2
i is

O(dp/2(1 + log ‖Á‖ − d−p/2 mini log ‖ái‖). Now with
[u,Σ,V] = svd(A) we have áT = vec(aTi ⊗p/2) =

vec((uTi ΣVT)p/2). So we get ‖Á‖ ≤ σ
p/2
1 . Hence∑n

i=1 l̃i isO(dp/2(1+p(log ‖A‖−d−p/2 mini log ‖ai‖))).

Now for the odd p case
∑n
i=1 l̃i =

∑n
i=1 ć

2p/(p+1)
i . From

lemma 5.3 we get
∑n
i=1 ć

2
i is O(ddp/2e(1 + log ‖Á‖ −

d−dp/2emini log ‖ái‖). Now with [u,Σ,V] = svd(A) we
have áT = vec(aTi ⊗dp/2e) = vec((uTi ΣVT)dp/2e). So
we get ‖Á‖ ≤ σ

(p+1)/2
1 . Hence

∑n
i=1 ć

2
i is O(ddp/2e(1 +

(p + 1)(log ‖A‖ − d−dp/2emini log ‖ai‖))). Now let
ć is a vector with each index ći is defined as above.
Then in this case we have

∑n
i=1 l̃i = ‖ć‖2p/(p+1)

2p/(p+1) ≤
n1/(p+1)‖ć‖2p/(p+1) which is O(n1/(p+1)dp/2(1 + (p +
1)(log ‖A‖ − d−dp/2emini log ‖ai‖))p/(p+1)).

Now for LineFilter+KernelFilter first we pass
every incoming row to LineFilter by setting r such
that a coreset returned from it will give an 1/3 approxi-
mation factor. Next when we pass the sampled rows to
KernelFilter, there we set r to get the final coreset C
with ε approximation. Note that due a factor of n in the
coreset size for odd value p returned by KernelFilter,
hence we get a O(n(p−2)/(p2+p)) along with extra factors
of (dk)1/4 in the final coreset size.

A.5. p = 2 case

In this subsection we state the guarantees of our algorithm in
the matrix case, where the rows of the matrix are coming in
online manner. First we give a corollary stating one would
get by following the analysis mentioned above, i.e. by using
the scalar Bernstein inequality A.1.

Corollary A.1. Given a matrix A ∈ Rn×d with rows
coming one at a time, for p = 2 our algorithm uses
O(d2) update time and samples O(dε2 (d + d log ‖A‖ −
mini log ‖ai‖)) rows and preserves the following with prob-
ability at least 0.99, ∀x ∈ Rd (1− ε)‖Ax‖2 ≤ ‖Cx‖2 ≤
(1 + ε)‖Ax‖2.

Just by using Matrix Bernstein inequality (Tropp et al., 2011)
we can slightly improve the sampling complexity from fac-
tor of O(d2) to factor of O(d log d). For simplicity we
modify the sampling probability to pi = min{rl̃i, 1} and
get the following guarantee.

Theorem A.3. The above modified algorithm samples
O(d log d

ε2 (1 + log ‖A‖− d−1 mini log ‖ai‖)) rows and pre-
serves the following with probability at least 0.99, ∀x ∈ Rd

(1− ε)‖Ax‖2 ≤ ‖Cx‖2 ≤ (1 + ε)‖Ax‖2

Proof. We prove this theorem in 2 parts. First we show
that sampling ai with probability pi = min{rl̃i, 1} where
l̃i = aTi (AT

i Ai)
†ai preserves ‖CTC‖ ≤ (1 ± ε)‖ATA‖.

Next we give the bound on expected sample size.

We define, ui = (ATA)−1/2ai and we define a random
matrix Wi corresponding to each streaming row as,

Wi =

{
(1/pi − 1)uiu

T
i with probability pi

−uiu
T
i with probability (1− pi)

Now we have,

l̃i = aTi (AT
i−1Ai−1 + aia

T
i)†ai

≥ aTi (ATA)†ai = uTi ui

For pi ≥ min{ruTi ui, 1}, if pi = 1, then ‖Wi‖ = 0, else
pi = ruTi ui < 1. So we get ‖Wi‖ ≤ 1/r. Next we bound
E[W2

i].

E[W2
i] = pi(1/pi − 1)2(uiu

T
i)2 + (1− pi)(uiuTi)2

� (uiu
T
i)2/pi � uiu

T
i /r

Let W =
∑n
i=1 Wi, then variance of ‖W‖

var(‖W‖) =

n∑
i=1

var(‖Wi‖) ≤
n∑
i=1

E[‖Wi‖2]

≤
∥∥∥∥ n∑
j=1

uju
T
j /r

∥∥∥∥ ≤ 1/r

Next by applying matrix Bernstein theorem A.2 with appro-
priate r we get,

Pr(‖W‖ ≥ ε) ≤ d exp

(
−ε2/2

2/r + ε/(3r)

)
≤ 0.01

This implies that our algorithm preserves spectral approx-
imation with at least 0.99 probability by setting r as
O(log d/ε2).

Then the expected number of samples to preserve `2 sub-
space embedding is O(

∑n
i=1 l̃i(log d)/ε2). Now from

lemma 5.3 we know that for p = 2,
∑n
i=1 l̃i is O(d(1 +

log ‖A‖) − mini ‖ai‖). Finally to get Pr(‖W‖ ≥
ε) ≤ 0.01 the algorithm samples O(d log d

ε2 (1 + log ‖A‖ −
d−1 mini log ‖ai‖)) rows.

A.6. Latent Variable Modeling

Under the assumption that the data is generated by some
generative model such as Gaussian Mixture model, Topic
model, Hidden Markov model etc, one can represent the
data in terms of higher order (say 3) moments as T̃3 to
realize the latent variables (Anandkumar et al., 2014). The
tensor is reduced to an orthogonally decomposable tensor by

Streaming Coresets for Symmetric Tensor Factorization

multiplying a matrix called whitening matrix W ∈ Rd×k,
such that WTM2W = Ik. Here k is the number of latent
variables we are interested and M2 ∈ Rd×d is the 2nd order
moment. Now the reduced tensor T̃r = T̃3(W,W,W) is
a k × k × k sized orthogonally decomposable tensor. Next
by running robust tensor power iteration (RTPI) on T̃r we
get the eigenvalue/eigenvector pair on which upon applying
inverse whitening transformation we get the estimated latent
factors and its corresponding weights (Anandkumar et al.,
2014).

Note that we give guarantee over the d×d×d tensor where
as the main theorem 5.3 (Anandkumar et al., 2014) has
conditioned over the smaller orthogonally reducible tensor
T̃r ∈ Rk×k×k. Now rephrasing the main theorem 5.1 of
(Anandkumar et al., 2014) we get that the ‖M3 − T̃3‖ ≤
ε‖W‖−3 whereM3 is the true 3-order tensor with no noise
and T̃3 is the empirical tensor that we get from the dataset.
Now we state the guarantees that one gets by applying the
RTPI on our sampled data.
Corollary A.2. For a dataset A ∈ Rn×d with
rows coming in streaming fashion and the algorithm
LineFilter+KernelFilter returns a coreset C
which guarantees (1) such that if for all unit vector x ∈ Q,
it ensures ε

∑
i≤n |aTx|3 ≤ ε‖W‖−3. Then applying

the RTPI on the sampled coreset C returns k eigenpairs
{λi,vi} of the reduced (orthogonally decomposable) tensor,
such that it ensures ∀i ∈ [k],

‖vπ(i) − vi‖ ≤ 8ε/λi and |λπ(i) − λi| ≤ 5ε

Here precisely we have Q as the column space of the W†,
where W is the whitening matrix as defined above.

A.6.1. TENSOR CONTRACTION

Now we show empirically that how coreset from
LineFilter+KernelFilter preserves 4-order tensor
contraction. We compare our method with two other sam-
pling schemes, namely – uniform and LineFilter(2).
Here LineFilter(2) is the LineFilter with p = 2.

Dataset: We generate a dataset with 200K rows in R30.
Each coordinate of the row is set with a uniformly generated
scalar in [0, 1]. Further, each row were normalized to have
`2 norm as 1. So we get a matrix of size 200K × 30, but
we ensured that it had rank 12. Furthermore, 99.99% of
the rows in the matrix spanned only an 8-dimensional sub-
space in R30 and its orthogonal 4 dimensional subspace was
spanned by the remaining 0.01% of the rows. We simulated
these rows to come in the online fashion and applied the
three sampling strategies. From the coreset returned from
these sampling strategies we generated 4-order tensors T̂
and we also create the tensor T using the entire dataset.
Three sampling strategies are Uniform, LineFilter(2)
and LineFilter+KernelFilter.

Uniform: Here, we sample rows uniformly at random. It
means that every row has a chance of getting sampled with a
probability of 1/n. Intuitively it is highly unlikely to pick a
representative row from a subspace spanned by fewer rows.
Hence the coreset from this sampling method might not
preserve tensor contraction ∀x ∈ Q.

LineFilter(2): Here we sample rows based on on-
line leverage scores ci = aTi (AT

i Ai)
−1ai. We define

a sampling probability for an incoming row i as pi =
ci/(

∑i
j=1 cj). Rows with high leverage scores have higher

chance of getting sampled. Though leverage score sampling
preserved rank of the the data, but it is not known to preserve
higher order moments of the data.

LineFilter+KernelFilter: Here every incoming
row is first feed to LineFilter. If it samples the row
then it further passed to KernelFilter, which decides
whether to sample the row in the final coreset or not.

Now we compare the relative error approximation,
i.e., |T (x,x,x,x) − T̂ (x,x,x,x)|/T (x,x,x,x), be-
tween all three sampling schemes mentioned above.
Here we have T (x,x,x,x) =

∑n
i=1(aTi x)4 and

T̂ (x,x,x,x) =
∑

ci∈C(cTi x)4. In table (3), Q is
set of right singular vectors of A corresponding to
the 5 smallest singular values. This table reports the
relative error approximation |

∑
x∈[Q] T (x,x,x,x) −∑

x∈[Q] T̂ (x,x,x,x)|/
∑

x∈[Q] T (x,x,x,x). The table
(4) reports for x as the right singular vector of the smallest
singular value of A. Here we choose this x because this
direction captures the worst direction, as in the direction
which has the highest variance in the sampled data. For
each sampling technique and each sample size, we ran 5 ran-
dom experiments and reported the mean of the experiments.
Here, the sample size are in expectation.

Table 3. Error with x ∈ Q

SAMPLE UNIFORM LINEFILTER(2) LINEFILTER
+KERNELFILTER

200 1.1663 0.2286 0.1576
250 0.4187 0.1169 0.0855
300 0.6098 0.1195 0.0611
350 0.5704 0.0470 0.0436

Table 4. Error with x as right singular vector of the smallest singu-
lar value

SAMPLE UNIFORM LINEFILTER(2) LINEFILTER
+KERNELFILTER

100 1.3584 0.8842 0.6879
200 0.8886 0.5005 0.3952
300 0.8742 0.4195 0.3696
500 0.9187 0.3574 0.2000

