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Abstract

Variational inference is becoming more and more
popular for approximating intractable posterior
distributions in Bayesian statistics and machine
learning. Meanwhile, a few recent works have
provided theoretical justification and new insights
on deep neural networks for estimating smooth
functions in usual settings such as nonparamet-
ric regression. In this paper, we show that varia-
tional inference for sparse deep learning retains
precisely the same generalization properties than
exact Bayesian inference. In particular, we show
that a wise choice of the neural network architec-
ture leads to near-minimax rates of convergence
for Hölder smooth functions. Additionally, we
show that the model selection framework over the
architecture of the network via ELBO maximiza-
tion does not overfit and adaptively achieves the
optimal rate of convergence.

1. Introduction
The Bayesian approach to learning in neural networks has
a long history. Bayesian Neural Networks have been first
proposed in the 90s and widely studied since then (MacKay,
1992a; Neal, 1995). They offer a probabilistic interpretation
and a measure of uncertainty for deep learning models. They
are more robust to overfitting than classical neural networks
and still achieve great performance even on small datasets.
A prior distribution is put on the parameters of the network,
namely the weight matrices and the bias vectors, for instance
a Gaussian or a uniform distribution, and Bayesian inference
is done through the likelihood specification. Nevertheless,
state-of-the-art neural networks may contain millions of
parameters and the form of a neural network is not adapted
to exact integration, which makes the posterior distribution
be intractable in practice.
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Modern approximate inference mainly relies on variational
inference (VI), with sometimes a flavor of sampling tech-
niques. A lot of recent papers have investigated variational
inference for Deep Neural Networks (DNNs) (Hinton &
van Camp, 1993; Graves, 2011; Blundell et al., 2015) to
fit an approximate posterior that maximizes the Evidence
Lower Bound (ELBO). For instance, (Blundell et al., 2015)
introduced Bayes by Backprop, one of the most famous
techniques of VI applied to neural networks, which derives
a fully factorized Gaussian approximation to the posterior:
using the reparameterization trick (Opper & Archambeau,
2008), the gradients of ELBO towards parameters of the
Gaussian approximation can be computed by backpropaga-
tion, and then be used for updates. Another point of interest
in DNNs is the choice of the prior. (Blundell et al., 2015)
introduced a mixture of Gaussians prior on the weights, with
one component tightly concentrated around zero, imitating
the sparsity-inducing spike-and-slab prior. This offers a
Bayesian alternative to the dropout regularization proce-
dure (Srivastava et al., 2014) which injects sparsity in the
network by switching off randomly some of the weights
of the network. This idea goes back to David MacKay
who discussed in his thesis the possibility of choosing a
spike-and-slab prior over the weights of the neural net-
work (MacKay, 1992b). More recently, (Rockova & Polson,
2018) introduced Spike-and-Slab Deep Learning (SS-DL),
a fully Bayesian alternative to dropout for improving gener-
alizability of deep ReLU networks.

1.1. Related work

Although deep learning is extremely popular, the study of
generalization properties of DNNs is still an open problem.
Some works have been conducted in order to investigate
the theoretical properties of neural networks from differ-
ent points of view. The literature developed in the past
decades can be mainly shared in three parts. First, the ap-
proximation theory wonders how well a function can be
approximated by neural networks. The first studies were
mostly conducted to obtain approximation guarantees for
shallow neural nets with a single hidden layer (Cybenko,
1989; Barron, 1993). Since then, modern research has fo-
cused on the expressive power of depth and extended the
previous results to deep neural networks with a larger num-
ber of layers (Bengio & Delalleau, 2011; Yarotsky, 2016;
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Petersen & Voigtländer, 2017; Grohs et al., 2019). Indeed,
even though the universal approximation theorem (Cybenko,
1989) states that a shallow neural network containing a fi-
nite number of neurons can approximate any continuous
function on compact sets under mild assumptions on the
activation function, recent advances showed that a shallow
network requires exponentially many neurons in terms of
the dimension to represent a monomial function, whereas
linearly many neurons are sufficient for a deep network (Rol-
nick & Tegmark, 2018). Second, as the objective function
in deep learning is known to be nonconvex, the optimization
community has discussed the landscape of the objective as
well as the dynamics of some learning algorithms such as
Stochastic Gradient Descent (SGD) (Baldi & Hornik, 1989;
Stanford et al., 2000; Soudry & Carmon, 2016; Kawaguchi,
2016; Kawaguchi et al., 2019; Oymak & Soltanolkotabi,
2019; Nguyen et al., 2019; Allen-Zhu et al., 2019; Du
et al., 2019). Finally, the statistical learning community
has investigated generalization properties of DNNs, see
(Barron, 1994; Zhang et al., 2017; Schmidt-Hieber, 2017;
Suzuki, 2018; Imaizumi & Fukumizu, 2019; Suzuki, 2019).
In particular, (Schmidt-Hieber, 2017) and (Suzuki, 2019)
showed that estimators in nonparametric regression based
on sparsely connected DNNs with ReLU activation func-
tion and wisely chosen architecture achieve the minimax
estimation rates (up to logarithmic factors) under classical
smoothness assumptions on the regression function. In the
same time, (Bartlett et al., 2017) and (Neyshabur et al., 2018)
respectively used Rademacher complexity and PAC-Bayes
theory to get spectrally-normalized margin bounds for deep
ReLU networks, as well as (Dziugaite & Roy, 2017). More
recently, (Imaizumi & Fukumizu, 2019) and (Hayakawa
& Suzuki, 2019) showed the superiority of DNNs over lin-
ear operators in some situations when DNNs achieve the
minimax rate of convergence while alternative methods fail.
From a Bayesian point of view, (Rockova & Polson, 2018)
and (Suzuki, 2018) studied the concentration of the posterior
distribution while (Vladimirova et al., 2019) investigated
the regularization effect of prior distributions at the level of
the units.

Such as for generalization properties of DNNs, only lit-
tle attention has been put in the literature towards the the-
oretical properties of VI until recently. (Alquier et al.,
2016) studied generalization properties of variational ap-
proximations of Gibbs distributions in machine learning
for bounded loss functions. (Alquier & Ridgway, 2017;
Zhang & Gao, 2017; Sheth & Khardon, 2017; Bhattacharya
et al., 2018; Chérief-Abdellatif & Alquier, 2018; Cherief-
Abdellatif, 2019; Jaiswal et al., 2019a) extended the pre-
vious guarantees to more general statistical models and
studied the concentration of variational approximations of
the posterior distribution, while (Wang & Blei, 2018) pro-
vided Bernstein-von-Mises’ theorems for variational ap-

proximations in parametric models. (Huggins et al., 2018;
Campbell & Li, 2019; Jaiswal et al., 2019b) discussed
theoretical properties of variational inference algorithms
based on various divergences (respectively Wasserstein and
Hellinger distances, and Rényi divergence). More recently,
(Chérief-Abdellatif et al., 2019) presented generalization
bounds for online variational inference. All these works
show that under mild conditions, the variational approxi-
mation is consistent and achieves the same rate of conver-
gence than the Bayesian posterior distribution it approxi-
mates. Note that (Alquier & Ridgway, 2017; Bhattacharya
et al., 2018; Chérief-Abdellatif & Alquier, 2018; Cherief-
Abdellatif, 2019) restricted their studies to tempered ver-
sions of the posterior distribution where the likelihood is
raised to an α-power (α < 1) as it is known to require less
stringent assumptions to obtain consistency and to be robust
to misspecification, see respectively (Bhattacharya et al.,
2016) and (Grünwald & Van Ommen, 2017). Nevertheless,
some questions remain unanswered, as the theoretical study
of generalization of variational inference for deep neural
networks.

2. Outline
This paper aims at filling the gap between theory and prac-
tice when using variational approximations for tempered
Bayesian Deep Neural Networks. To the best of our knowl-
edge, this is the first paper to present theoretical general-
ization error bounds of variational inference for Bayesian
deep learning. Inspired by the related literature, our work is
motivated by the following questions:

• Do consistency of Bayesian DNNs still hold when an
approximation is used instead of the exact posterior
distribution, and can we obtain the same rates of con-
vergence than those obtained for the regular posterior
distribution and frequentist estimators ?

• Is it possible to obtain a nonasymptotic generalization
error bound that holds for (almost) any generating dis-
tribution function and that gives a general formula ?

• What about the consistency of numerical algorithms
used to compute these variational approximations ?

• Can we obtain new insights on the structure of the
networks ?

It also raises the question of finding a relevant general defi-
nition of consistency that can be used to provide theoretical
properties for the exact Bayesian DNNs distribution and
their variational approximations. Indeed, a classical cri-
terion used to assess frequentist guarantees for Bayesian
estimators is the concentration of the posterior (to the true
distribution) (Ghosal et al., 2000). Nevertheless, posterior
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concentration to the true distribution only applies when the
model is well specified, or at least when the model contains
distributions in the neighborhood of the true distribution,
which is problematic for misspecified models e.g. when the
neural network does not sufficiently approximate the gener-
ating distribution. And although the posterior distribution
may concentrate to the best approximation of the true distri-
bution in KL divergence in such misspecified models, there
exists pathological cases where the regular Bayesian poste-
rior is not consistent at all, see (Grünwald & Van Ommen,
2017). This is the reason why we focus here on tempered
posteriors which are robust to such misspecification. There-
fore, we introduce in Section 3 a notion of consistency of
a Bayesian estimator which is closely related to the no-
tion of concentration - even stronger - and which enables a
more robust formulation of generalization error bounds for
variational approximations. See Appendix A in the supple-
mentary material for more details on the connection between
the notions of consistency and concentration.

The main contribution of this paper, a nonasymptotic gen-
eralization error bound for variational inference in sparse
DL in the nonparametric regression framework, answers the
first two motivating questions. This generalization result is
similar to theoretical inequalities in the seminal works of
(Suzuki, 2018; Imaizumi & Fukumizu, 2019; Rockova &
Polson, 2018) on generalization properties of deep neural
networks, and is inspired by the general literature on the
consistency of variational approximations (Alquier & Ridg-
way, 2017; Bhattacharya et al., 2018). In particular, it states
that under the same conditions, sparse variational approxi-
mations of posterior distributions of deep neural networks
are consistent at the same rate of convergence than the exact
posterior.

Then we focus on optimization aspects. We no longer as-
sume an ideal optimization, as done for instance in (Schmidt-
Hieber, 2017; Imaizumi & Fukumizu, 2019). We address
in this paper the question of the consistency of numerical
algorithms used to compute our ideal approximations. We
consider an optimization error given by any algorithm and
independent to the statistical error, and we show how it af-
fects our generalization result. Our upper bound highlights
the connection between the consistency of the variational
approximation and the convergence of the ELBO.

We also provide insights on the structure of the network
which leads to optimal rates of convergence, i.e. its depth,
its width and its sparsity. Indeed, in our first generalization
error bound, the structure of the network is ideally tuned for
some choice of the generating function. Nevertheless, the
characteristics of the regression function may be unknown,
e.g. we may know that the regression function is Hölder con-
tinuous but we ignore its level of smoothness. We propose
here an automated method for choosing the architecture

of the network. We introduce a classical model selection
framework based on the ELBO criterion (Cherief-Abdellatif,
2019), and we show that the variational approximation as-
sociated with the selected structure does not overfit and
adaptively achieves the optimal rate of convergence even
without any oracle information.

The rest of this paper is organized as follows. Section 3
introduces the notations and the framework that will be
considered in the paper, and presents sparse spike-and-slab
variational inference for deep neural networks. Section 4
provides theoretical generalization error bounds for varia-
tional approximations of DNNs and shows the optimality of
the method for estimating Hölder smooth functions. Finally,
insights on the choice of the architecture of the network are
given in Section 5 via the ELBO maximization framework.
All the technical proofs are deferred to the appendices in
the supplementary material.

3. Sparse deep variational inference
Let us introduce the notations and the statistical framework
we adopt in this paper. For any vector x = (x1, ..., xd) ∈
[−1, 1]d and any real-valued function f defined on [−1, 1]d,
d > 0, we denote ‖x‖∞ = max1≤i≤d |xi|, ‖f‖22 =

∫
f2

and ‖f‖∞ = supy∈[−1,1]d |f(y)|. We also introduce the
notion of β-Hölder continuity for β > 0 (Tsybakov, 2008)
which is rigorously defined in Appendix C in the supple-
mentary material.

3.1. Nonparametric regression

We consider the nonparametric regression framework. We
have a collection of random variables (Xi, Yi) ∈ [−1, 1]d×
R for i = 1, ..., n which are independent and identically
distributed (i.i.d.) with the generating process:{

Xi ∼ U([−1, 1]d),

Yi = f0(Xi) + ζi

where U([−1, 1]d) is the uniform distribution on the interval
[−1, 1]d, ζ1, ..., ζn are i.i.d. Gaussian random variables with
mean 0 and known variance σ2, and f0 : [−1, 1]d → R is
the true unknown function. For instance, the true regression
function f0 may belong to the set of Hölder functions with
level of smoothness β.

3.2. Deep neural networks

We call deep neural network any map fθ : Rd → R defined
recursively as follows:

x(0) := x,

x(`) := ρ(A`x
(`−1) + b`) for ` = 1, ..., L− 1,

fθ(x) := ALx
(L−1) + bL
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where a value L = 2 corresponds to a shallow network and
L ≥ 3 to a deep neural network. ρ is an activation function
acting componentwise. For instance, we can choose the
ReLU activation function ρ(u) = max(u, 0). Each A` ∈
RD`×D`−1 is a weight matrix such that its (i, j) coefficient,
called edge weight, connects the j-th neuron of the (`−1)-th
layer to the i-th neuron of the `-th layer, and each b` ∈ RD`
is a shift vector such that its i-th coefficient, called node
vector, represents the weight associated with the i-th node
of layer `. We set D0 = d the number of units in the input
layer, DL = 1 the number of units in the output layer and
D` = D the number of units in the hidden layers. The
architecture of the network is characterized by its number
of edges S, i.e. the total number of nonzero entries in
matrices A` and vectors b`, its number of layers L ≥ 2
(excluding the input layer), and its width D ≥ 1. We
have S ≤ T where T =

∑L
`=1D`(D`−1 + 1) is the total

number of coefficients in a fully connected network. By now,
we consider that S, L and D are considered deterministic,
and d = O(1) as n → +∞. In particular, we assume
that d ≤ D, which implies that T ≤ LD(D + 1). We
also suppose that the absolute values of all coefficients are
upper bounded by some positive constant B ≥ 2. This
boundedness assumption will be relaxed in the appendix,
see Appendix G. Then, the parameter of a DNN is θ =
{(A1, b1), ..., (AL, bL)}, and we denote ΘS,L,D the set of
all possible parameters. We will also alternatively consider
the stacked coefficients parameter θ = (θ1, ..., θT ).

3.3. Bayesian modeling

We adopt a Bayesian approach, and we place a spike-and-
slab prior π (Castillo et al., 2015) over the parameter space
ΘS,L,D (equipped with some suited sigma-algebra) that is
defined hierarchically. The spike-and-slab prior is known
to be a relevant alternative to dropout for Bayesian deep
learning, see (Rockova & Polson, 2018). First, we sample
a vector of binary indicators γ = (γ1, ..., γT ) ∈ {0, 1}T
uniformly among the set SST of T -dimensional binary vec-
tors with exactly S nonzero entries, and then given γt for
each t = 1, ..., T , we put a spike-and-slab prior on θt that
returns 0 if γt = 0 and a random sample from a uniform
distribution on [−B,B] otherwise:{
γ ∼ U(SST ),

θt|γt ∼ γt U([−B,B]) + (1− γt)δ{0}, t = 1, ..., T

where δ{0} is a point mass at 0 and U([−B,B]) is a uniform
distribution on [−B,B]. We recall that the sparsity level
S is fixed here and that this assumption will be relaxed in
Section 5.

Remark 3.1. We consider uniform distributions for simplic-
ity as in similar works (Rockova & Polson, 2018; Suzuki,
2018), but Gaussian distributions can be used as well when

working on an unbounded parameter set ΘS,L,D, see Ap-
pendix G in the supplementary material.

Then we define the tempered posterior distribution πn,α on
parameter θ ∈ ΘS,L,D using prior π for any α ∈ (0, 1):

πn,α(dθ) ∝ exp

(
− α

2σ2

n∑
i=1

(Yi − fθ(Xi))
2

)
π(dθ),

which is a slight variant of the definition of the regular
Bayesian posterior (for which α = 1). This distribution is
known to be easier to sample from, to require less stringent
assumptions to obtain concentration, and to be robust to
misspecification, see respectively (Behrens et al., 2012),
(Bhattacharya et al., 2016) and (Grünwald & Van Ommen,
2017).

3.4. Sparse variational inference

The variational Bayes approximation π̃n,α of the tempered
posterior is defined as the projection (with respect to the
Kullback-Leibler divergence) of the tempered posterior onto
some set FS,L,D:

π̃n,α = arg min
q∈FS,L,D

KL(q‖πn,α).

which is equivalent to:

arg min
q∈FS,L,D

{
α

2σ2

n∑
i=1

∫
(Yi − fθ(Xi))

2q(dθ) + KL(q‖π)

}
(1)

where the function inside the argmin operator in (1) is the
opposite of the evidence lower bound Ln(q).

We choose a sparse spike-and-slab variational set FS,L,D -
see for instance (Tonolini et al., 2019) - which can be seen
as an extension of the popular mean-field variational set
with a dependence assumption specifying the number of
active neurons. The mean-field approximation is based on
a decomposition of the space of parameters ΘS,L,D as a
product θ = (θ1, ..., θT ) and consists in compatible product
distributions on each parameter θt, t = 1, ..., T . Here, we
fit a distribution in the family that matches the prior: we
first choose a distribution qγ on the set SST that selects a
T -dimensional binary vector γ with S nonzero entries, and
then we place a spike-and-slab variational approximation
on each θt given γt:{

γ ∼ qγ ,
θt|γt ∼ γt U([lt, ut]) + (1− γt)δ{0}, t = 1, ..., T

where −1 ≤ lt ≤ ut ≤ 1, with the distribution qγ and
the intervals [lt, ut], t = 1, ..., T as the hyperparameters
of the variational set FS,L,D. In particular, if we choose a
deterministic qγ = δ{γ′} with γ′ ∈ SST , then we will obtain
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a parametric mean-field approximation. See Section 6.6 of
the PhD thesis of (Gal, 2016) for a more detailed discussion
on the connection between Gaussian mean-field and sparse
spike-and-slab posterior approximations.

The generalization error of a Bayesian estimator ρ (either
the tempered posterior πn,α or its variational approximation
π̃n,α) is the expected average of the squared L2-distance to
the true generating function over ρ:

E
[ ∫
‖fθ − f0‖22ρ(dθ)

]
.

We say that a Bayesian estimator is consistent at rate rn → 0
if its generalization error is upper bounded by rn. Notice
that consistency of the Bayesian estimator implies concen-
tration to f0. Again, see Appendix A for the connection
between these two notions.

4. Generalization of variational inference for
neural networks

The first result of this section is a variant of the result of
(Rockova & Polson, 2018) on the Bayesian distribution for
Hölder regression functions. Indeed, we provide a concen-
tration result on the posterior distribution for the expected
L2-distance instead of the empirical L2-distance, which
enables generalization instead of reconstruction on the train-
ing datapoints. This result is then extended again to the
variational approximation for our definition of consistency:
we show that we can still achieve near-optimality using
an approximation of the posterior without any additional
assumption. Finally, we explain how we can incorporate
optimization error in our generalization results.

4.1. Concentration of the posterior

(Rockova & Polson, 2018) gives the first posterior concentra-
tion result for deep ReLU networks when estimating Hölder
smooth functions in nonparametric regression with empir-
ical L2-distance. The authors highlight the flexibility of
DNNs over other methods for estimating β-Hölder smooth
functions as there is a large range of values of the level of
smoothness β for which one can obtain concentration, e.g.
0 < β < d for a DNN against 0 < β < 1 for a Bayesian
tree.

The following theorem provides the concentration of the
tempered posterior distribution πn,α for deep ReLU neural
networks when using the expected L2-distance for some
suitable architecture of the network:

Theorem 1. Let us assume that α ∈ (0, 1), that f0 is β-
Hölder smooth with 0 < β < d and that the activation
function is ReLU. We consider the architecture of (Rockova
& Polson, 2018) for some positive constant CD independent

of n:

L = 8 + (blog2 nc+ 5)(1 + dlog2 de),

D = CDbn
d

2β+d / log nc,

S ≤ 94d2(β + 1)2dD(L+ dlog2 de).

Then the tempered posterior distribution πn,α concentrates

at the minimax rate rn = n
−2β
2β+d up to a (squared) log-

arithmic factor for the expected L2-distance in the sense
that:

πn,α

(
θ ∈ ΘS,L,D

/
‖fθ−f0‖22 > Mn·n

−2β
2β+d ·log2 n

)
→ 0

in probability as n→ +∞ for any Mn → +∞.

In order to prove Theorem 1, we actually have to check that
the so-called prior mass condition is satisfied:

π

(
θ ∈ ΘS,L,D

/
‖fθ − f0‖22 ≤ rn

)
≥ e−nrn . (2)

This assumption, introduced in (Ghosal et al., 2000) in or-
der to obtain the concentration of the regular posterior dis-
tribution states that the prior must give enough mass to
some neighborhood of the true parameter. As shown in
(Bhattacharya et al., 2016), this condition is even sufficient
for tempered posteriors. Actually, this inequality was first
stated using the KL divergence instead of the expected L2-
distance (see Condition 2.4 in Theorem 2.1 in (Ghosal et al.,
2000)), but the KL metric is equivalent to the squared L2-
metric in regression problems with Gaussian noise. This
prior mass condition gives us the rate of convergence of the
tempered posterior rn = n

−2β
2β+d (up to a squared logarith-

mic factor) which is known to be optimal when estimating
β-Hölder smooth functions (Tsybakov, 2008). Note that
the log2 n term is common in the theoretical deep learn-
ing literature (Imaizumi & Fukumizu, 2019; Suzuki, 2019;
Schmidt-Hieber, 2017).

Remark 4.1. The number of parameters of order
n

2d
2β+d / log n ∈ [n2/3/ log(n), n2/ log(n)] is high com-

pared to standard machine learning methods, which may
lead to overfitting and hence prevent the procedure from
achieving the minimax rate of convergence. The sparsity
parameter S which gives a network with a small number
of nonzero parameters along with the spike-and-slab prior
help us tackle this issue and obtain optimal rates of conver-
gence (up to logarithmic factors).

4.2. A generalization error bound

The result we state in this subsection applies to a wide
range of activation functions, including the popular ReLU
activation and the identity map:
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Assumption 4.1. In the following, we assume that the ac-
tivation function ρ is 1-Lispchitz continuous (with respect
to the aboluste value) and is such that for any x ∈ R,
|ρ(x)| ≤ |x|.

We do not assume any longer that the regression function
is β-Hölder and we consider any structure (S,L,D). The
following theorem gives a generalization error bound when
using variational approximations instead of exact tempered
posteriors for DNNs. The proof is given in Appendix B and
is based on PAC-Bayes theory (Catoni, 2007; Guedj, 2019):

Theorem 2. For any α ∈ (0, 1),

E
[ ∫
‖fθ − f0‖22π̃n,α(dθ)

]
(3)

≤ 2

1− α
inf

θ∗∈ΘS,L,D
‖fθ∗ − f0‖22 +

2

1− α

(
1 +

σ2

α

)
rS,L,Dn

with

rS,L,Dn =
LS

n
log(BD) +

2S

n
log(BLD)

+
S

n
log

(
7dLmax

(n
S
, 1
))
.

The oracle inequality (3) ensures consistency of variational
Bayes for estimating neural networks and provides the as-
sociated rate of convergence given the structure (S,L,D).
Indeed, if f0 is a neural network with structure (S,L,D),
then the infimum term on the right hand side of the inequal-
ity vanishes and we obtain a rate of convergence of order

rS,L,Dn ∼ max

(
S log(nL/S)

n
,
LS logD

n

)
,

which underlines a linear dependence on the number of
layers and the sparsity. In fact, this rate of convergence is
determined by the extended prior mass condition (Alquier
& Ridgway, 2017; Chérief-Abdellatif & Alquier, 2018;
Cherief-Abdellatif, 2019), which requires that in addition
to the previous prior mass condition of (Ghosal et al., 2000)
and (Bhattacharya et al., 2016), the variational set FS,L,D
must contain probability distributions q that are concen-
trated enough around the true generating function f0. One
of the main findings of Theorem 2 is that our choice of the
sparse spike-and-slab variational set FS,L,D is rich enough
and that both conditions are actually similar and lead to
the same rate of convergence. Hence, the rate of conver-
gence is the one that satisfies the prior mass condition (2).
In particular, as the prior distribution is uniform over the
parameter space, the negative logarithm of the prior mass of
the neighborhood of the true regression function in Equation
(2) is a local covering entropy, that is the logarithm of the
number of rS,L,Dn -balls needed to cover a neighborhood of
the true regression function. Especially, it has been shown

in previous studies that this local covering entropy fully
characterizes the rate of convergence of the empirical risk
minimizer for DNNs (Schmidt-Hieber, 2017; Suzuki, 2019).
The rate rS,L,Dn we obtain in this work is exactly of the
same order than the upper bound on the covering entropy
number given in Lemma 5 in (Schmidt-Hieber, 2017) and
in Lemma 3 in (Suzuki, 2019) which derive rates of conver-
gence for the empirical risk minimizer using different proof
techniques. Note that replacing a uniform by a Gaussian in
the prior and variational distributions leads to the same rate
of convergence, see Appendix G.

Nevertheless, deep neural networks are mainly used for
their computational efficiency and their ability to approach
complex functions, which makes the task of estimating a
neural network not so popular in machine learning. As
said earlier, (Imaizumi & Fukumizu, 2019) used neural
networks for estimating non-smooth functions. In such a
context where the neural network model is misspecified,
our generalization error bound is robust and still holds, and
satisfies the best possible balance between bias and variance.

Indeed, the upper bound on the generalization error on the
right-hand-side of (3) is mainly divided in two parts: the
approximation error of f0 by a DNN fθ∗ in ΘS,L,D (i.e. the
bias) and the estimation error rS,L,Dn of a neural network
fθ∗ in ΘS,L,D (i.e. the variance). For instance, even if the
generalization power is decreasing linearly with respect to
the number of layers compared to the logarithmic depen-
dence on the width due to the variance term, this effect is
compensated by the benefits of depth in the approximation
theory of deep learning. Then, as there exists relationships
between the bias/the variance and the architecture of a neural
network (respectively due to the approximation theory/the
form of rS,L,Dn ), Theorem 2 gives both a general formula
for deriving rates of convergence for variational approxima-
tions and insight on the way to choose the architecture. We
choose the architecture that minimizes the right-hand-side
of (3), which can lead to minimax estimators for smooth
functions. It also connects the approximation and estimation
theories following previous studies. This was done for in-
stance by (Schmidt-Hieber, 2017; Suzuki, 2019; Imaizumi &
Fukumizu, 2019) who exploited the effectiveness of ReLU
activation function in terms of approximation ability (Yarot-
sky, 2016; Petersen & Voigtländer, 2017) for Hölder/Besov
smooth and piecewise smooth generating functions.

Now we illustrate Theorem 2 on Hölder smooth functions.
The following result shows that the variational approxima-
tion achieves the same rate of convergence than the posterior
distribution it approximates, and even the minimax rate of
convergence if the architecture is well chosen. We present
both consistency and concentration results.

Corollary 3. Let us fix α ∈ (0, 1). We consider the ReLU
activation function. Assume that f0 is β-Hölder smooth with
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0 < β < d. Then with L, D and S defined as in Theorem
1, the variational approximation of the tempered posterior
distribution π̃n,α is consistent and hence concentrates at

the minimax rate rn = n
−2β
2β+d (up to a squared logarithmic

factor):

π̃n,α

(
θ ∈ ΘS,L,D

/
‖fθ−f0‖22 > Mn·n

−2β
2β+d ·log2 n

)
→ 0

in probability as n→ +∞ for any Mn → +∞.

4.3. Optimization error

In this subsection, we discuss the effect of an optimization
error that is independent on the previous statistical error.
Indeed, in the variational Bayes community, people use ap-
proximate algorithms in practice to solve the optimization
problem (1) when the model is non-conjugate, i.e. the VB
solution is not available in closed-form. This is the case
here when considering a sparse spike-and-slab variational
approximation in FS,L,D for DNNs with hyperparameters
φ = (qγ , (φt)1≤t≤T ) and an algorithm that gives a sequence
of hyperparameters (φk)k≥1 and associated variational ap-
proximations (π̃kn,α)k≥1. The following theorem gives a
statistical guarantee for any approximation π̃kn,α, k ≥ 1:

Theorem 4. For any α ∈ (0, 1),

E
[ ∫
‖fθ − f0‖22π̃kn,α(dθ)

]
≤ 2

1− α
inf
θ∗
‖fθ∗ − f0‖22 +

2

1− α

(
1 +

σ2

α

)
rS,L,Dn

+
2σ2

α(1− α)
· E[L∗n − Lkn]

n
,

where L∗n is the maximum of the evidence lower bound
i.e. the ELBO evaluated at π̃n,α, while Lkn is the ELBO
evaluated at π̃kn,α.

We establish a clear connection between the convergence
(in mean) of the ELBO Lkn to L∗n and the consistency of
our algorithm π̃kn,α. Indeed, as soon as the ELBO Lkn con-
verges at rate ck,n, then our variational approximation π̃kn,α
is consistent at rate:

max

(
ck,n
n
,
S log(nL/S)

n
,
SL logD

n

)
.

In particular, as soon as k is such that ck,n ≤
max(S log n, S logD), then we obtain consistency of π̃kn,α
at rate rS,L,Dn , i.e. π̃kn,α and π̃n,α have the same rate of
convergence.

However, deriving the convergence of the ELBO is a hard
task. For instance, when considering a simple Gaussian
mean-field approximation without sparsity, the variational

objective Ln can be maximized using either stochastic
(Graves, 2011; Blundell et al., 2015) or natural gradient
methods (Khan et al., 2018) on the parameters of the Gaus-
sian approximation. The convergence of the ELBO is often
met in practice (Buchholz et al., 2018; Mishkin et al., 2018)
and the recent work of (Osawa et al., 2019) even showed
that Bayesian deep learning enables practical deep learning
and matches the performance of standard methods while
preserving benefits of Bayesian principles. Nevertheless,
the objective is nonconvex and hence it is difficult to prove
the convergence to a global maximum in theory. Some
recent papers studied global convergence properties of gra-
dient descent algorithms for frequentist classification and
regression losses (Du et al., 2019; Allen-Zhu et al., 2019)
that we may extend to gradient descent algorithms for the
ELBO objective such as Variational Online Gauss Newton
or Vadam (Khan et al., 2018; Osawa et al., 2019).

Another point is to develop and study more complex algo-
rithms than simple gradient descent that deal with spike-and-
slab sparsity-inducing variational inference, as for instance
(Titsias & Lázaro-Gredilla, 2011) did for multi-task and mul-
tiple kernel learning. Also, (Louizos et al., 2018) connected
sparse spike-and-slab variational inference with L0-norm
regularization for neural networks and proposed a solution
to the intractability of the L0-penalty term through the use
of non-negative stochastic gates, while (Bellec et al., 2018)
proposed an algorithm preserving sparsity during training.
Nevertheless, these optimization concerns fall beyond the
scope of this paper and are left for further research.

5. Architecture design via ELBO
maximization

We saw in Section 4 that the choice of the architecture of the
neural network is crucial and can lead to faster convergence
and better approximation. In this section, we formulate the
architecture design of DNNs as a model selection problem
and we investigate the ELBO maximization strategy which
is very popular in the variational Bayes community. This
approach is different from (Rockova & Polson, 2018) which
is fully Bayesian and treats the parameters of the network
architecture, namely the depth, the width and the sparsity,
as random variables. We show that the ELBO criterion does
not overfit and is adaptive: it provides a variational approxi-
mation with the optimal rate of convergence, and it does not
require the knowledge of the unknown aspects of the regres-
sion function f0 (e.g. the level of smoothness for smooth
functions) to select the optimal variational approximation.

We denote MS,L,D the statistical model associated with
the parameter set ΘS,L,D. We consider a countable num-
ber of models, and we introduce prior beliefs πS,L,D over
the sparsity, the depth and the width of the network, that
can be defined hierarchically and that are known before-



Convergence Rates of Variational Inference in Sparse Deep Learning

hand. For instance, the prior beliefs can be chosen such
that πL = 2−L, πD|L follows a uniform distribution over
{d, ...,max(eL, d)} given L, and πS|L,D a uniform distri-
bution over {1, ..., T} given L and D (we recall that T is
the number of coefficients in a fully connected network).
This particular choice is sensible as it allows to consider
any number of hidden layers and (at most) an exponentially
large width with respect to the depth of the network. We still
consider spike-and-slab priors on θS,L,D ∈ ΘS,L,D given
modelMS,L,D.

Each tempered posterior associated with modelMS,L,D is
denoted πS,L,Dn,α . We recall that the variational approxima-
tion π̃S,L,Dn,α associated with modelMS,L,D is defined as the
distribution into the variational set FS,L,D that maximizes
the Evidence Lower Bound:

π̃S,L,Dn,α = arg max
qS,L,D∈FS,L,D

Ln(qS,L,D).

We will simply denote in the following L∗n(S,L,D) the
closest approximation to the log-evidence i.e., the value of
the ELBO evaluated at its maximum:

L∗n(S,L,D) = Ln(π̃S,L,Dn,α ).

The model selection criterion we use here to select the ar-
chitecture of the network is a slight penalized variant of
the classical ELBO criterion (Blei et al., 2017) with strong
theoretical guarantees (Cherief-Abdellatif, 2019) :

(Ŝ, L̂, D̂) = arg max
S,L,D

{
L∗n(S,L,D)− log

(
1

πS,L,D

)}
.

For any choice of the prior beliefs πS,L,D, compute the
ELBO for each modelMS,L,D using an algorithm that will
converge to L∗n(S,L,D) and choose the architecture that
maximizes the penalized ELBO criterion. It is possible to
restrict to a finite number of layers in practice (for instance,
a factor of n or log n).

The following theorem shows that this ELBO criterion leads
to a variational approximation with the optimal rate of con-
vergence:

Theorem 5. For any α ∈ (0, 1), for any S,L,D,

E
[ ∫
‖fθ − f0‖22π̃Ŝ,L̂,D̂n,α (dθ)

]
≤ 2

1− α
inf

θ∗∈ΘS,L,D
‖fθ∗ − f0‖22 +

2

1− α

(
1 +

σ2

α

)
rS,L,Dn

+
2σ2

α(1− α)

log( 1
πS,L,D

)

n
.

This inequality shows that as soon as the complexity term
log(1/πS,L,D)/n that reflects the prior beliefs is lower than

the effective rate of convergence that balances the accu-
racy and the estimation error rS,L,Dn , the selected varia-
tional approximation adaptively achieves the best possi-
ble rate. For instance, it leads to (near-)minimax rates for
Hölder smooth functions and selects the optimal architec-
ture even without the knowledge of β, which was required
in the previous section. Note that for the previous choice of
prior beliefs πL = 2−L, πD|L = 1/(max(eL, d)− d+ 1),
πS|L,D = 1/T , we get:

log( 1
πS,L,D

)

n
≤2 log(D + 1) + logL

n

+
max(L, log d) + L log 2

n

that is lower than rS,L,Dn (up to a factor) and hence the
ELBO criterion does not overfit.

6. Discussion
In this paper, we provided theoretical justifications for neu-
ral networks from a Bayesian point of view using sparse
variational inference. We derived new generalization error
bounds and we showed that sparse variational approxima-
tions of DNNs achieve (near-)minimax optimality when
the regression function is Hölder smooth. All our results
directly imply concentration of the approximation of the pos-
terior distribution. We also proposed an automated method
for selecting an architecture of the network with optimal
consistency guarantees via the ELBO maximization frame-
work.

We think that one of the main challenges here is the de-
sign of new computational algorithms for spike-and-slab
deep learning in the wake of the work of (Titsias & Lázaro-
Gredilla, 2011) for multi-task and multiple kernel learning,
or those of (Louizos et al., 2018) and (Bellec et al., 2018).
In the latter paper, the authors designed an algorithm for
training deep networks while simultaneously learning their
sparse connectivity allowing for fast and computationally
efficient learning, whereas most approaches have focused
on compressing already trained neural networks.

In the same time, a future point of interest is the study of
the global convergence of these approximate algorithms in
nonconvex settings i.e. study of the theoretical convergence
of the ELBO. This work was conducted for frequentist gra-
dient descent algorithms (Allen-Zhu et al., 2019; Du et al.,
2019). Such studies should be investigated for Bayesian
gradient descents, as well as for algorithms that preserve the
sparsity of the network during training.
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