
Representation Learning via Adversarially-Contrastive Optimal Transport
Supplementary Material

Anoop Cherian 1 Shuchin Aeron 2

1. Proof of Theorem 1
Proof. Here we will prove a slightly general form of Theo-
rem 1. We begin by noting that,

P2
k , max

U:S(d,k)
min

π∈Π(µX,νY)
Eπ‖U>x−U>y‖2,

= max
U:G(d,k)

min
π∈Π(µX,νY))

Eπ‖UU>x−UU>y‖2

and

S2
k , min

π∈Π(µX,νY)
max

U∈S(d,k)
Eπ‖U>x−U>y‖2.

= min
π∈Π(µX,νY)

max
U∈G(d,k)

Eπ‖UU>x−UU>y‖2.

Now,

C2
k = max

U∈G(d,k)
min

π∈Π(µX,νY)
Eπ‖UU>x− y‖2

= max
U∈G(d,k)

min
π∈Π(µX,νY)

Eπ{‖UU>x−UU>y‖2+

‖(Id −UU>)y‖2}
≥ max

U∈G(d,k)
min

π∈Π(µX,νY)
Eπ‖UU>x−UU>y‖2 (1)

= P2
k (2)

Now since max min ≤ min max,

max
U∈G(d,k)

min
π∈Π(µX,νY)

Eπ‖UU>x− y‖2

≤ min
π∈Π(µX,νY)

max
U∈G(d,k)

{Eπ‖UU>xi −UU>yj‖2+

Eπ‖(Id −UU>)y‖2}
≤ S2

k + max
U∈G(d,k)

EνY‖(Id −UU>)y‖2. (3)

The term maxU∈G(d,k) EνY‖(Id − UU>)y‖2 =∑d
`=k+1 e`(ΣY) where e1, e2, ..., ed are the eigenvalues of

the Gram matrix arranged in increasing order.

1Mitsubishi Electric Research Labs, Cambridge, MA. 2Tufts
University, Medford, MA. Correspondence to: Anoop Cherian
<cherian@merl.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2. Additional Experiments
In this section, we detail our neural architectures in our
COT framework and provide ablative studies of the various
choices in our setup.

Datasets and Features: As noted in the main paper, we
use two datasets, namely (i) the JHMDB dataset, and (ii)
the HMDB dataset. For the former, we explore our scheme
using two types of features: (i) vgg-16 features, and (ii) I3D
features. The vgg-16 features are 4096 dimensional each
for every frame in the sequence. That is, we have feature
matrices of size 4096 × n and 4096 × n − 1 for the RGB
and optical flow respectively, where n denotes the number
of frames in the sequence. As for the I3D features, they are
1024 dimensional each and are extracted from the average
pooling layer (after the “max 5c” layer) of the Inception
V3 network (Carreira & Zisserman, 2017). These features
are produced from short clips, in which the I3D network
takes clips consisting of 8 consecutive video frames, and
produces one 1024 dimensional feature for that short clip.
We use a sliding window with a temporal stride of 2 frames
to generate our feature matrix for the two streams. Thus, in
our setup, for a sequence with n frames, we will have feature
matrices of size 1024×bn2 c and 1024×bn−1

2 c for the RGB
and flow streams respectively. Note that the features (from
either network) are the outputs of ReLU activations and thus
are all non-negative. We also normalize these features to
have unit-norm.

Baseline Networks and Training: As alluded to in the
main paper, we have not trained the baseline networks our-
selves as our goal is to demonstrate the advantages of adver-
sarially constrastive optimal transport on features extracted
from off-the-shelf neural models. To this end, for the vgg-16
features on the JHMDB dataset, we directly use the features
provided to us by the authors of (Cherian et al., 2017). As is
mentioned in that paper, these features were infact produced
using a network that was fine-tuned on the JHMDB dataset.
For the I3D features, we used a ImageNet+Kinetics pre-
trained I3D network implemented in PyTorch from a public
git-hub repo1 to extract the features as described above.

1https://github.com/piergiaj/pytorch-i3d

https://github.com/piergiaj/pytorch-i3d

Adversarially-Contrastive Optimal Transport

1 2 3 4 5 6 7 8 9 10 11 12 13 14

training iteration (x10 2)

0

20

40

60

80

100

F
oo

lin
g

ra
te

 (
%

)

RGB (=0.005)
RGB (=0.01)
RGB (=0.1)

(a) RGB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

training iteration (x10 2)

0

20

40

60

80

100

F
oo

lin
g

ra
te

 (
%

)

FLOW (=0.005)
FLOW (=0.01)
FLOW (=0.1)

(b) FLOW

0.5 1 2 3 4 5

training iteration (x10 3)

68

69

70

71

72

73

74

A
cc

ur
ac

y
(%

) RGB (=0.005)
RGB (=0.01)
RGB (=0.1)
FLOW (=0.005)
FLOW (=0.01)
FLOW (=0.1)

(c) ACOT Accuracy

Figure 1. Fooling rates for RGB stream (Figure 1(a)) and FLOW stream (Figure 1(b)) using I3D network on the HMDB dataset against
the number of WGAN training iterations. We plot for three different variances of the Normal distribution, i.e., σ = 0.005, 0.01, 0.1. Note
that standard deviation of the features is about 0.008. As we see from the two plots, with a lower σ = 0.005, 0.01, the WGAN learns
to generate adverarial pertubations with 100% fooling rate in about 1000 iterations, however with a larger σ = 0.1, the network could
achieve about 50% fooling rate on average. On the right 1(c), we plot the validation accuracy (of ACOT) against the respective training
iterations on the left. For RGB, higher-fooling rates seem to affect performances, however, the effect is reversed on the FLOW stream.
This is perhaps because the RGB stream of I3D does not capture any useful temporal cues.

2.1. Neural architectures

Apart from the baseline feature-generating neural networks
as described above, our framework has two other neural
sub-modules, namely (i) the Wasserstein GAN (WGAN)
framework for generating the adversarial samples, and (ii)
the classifier to ensure the samples are adversarial.

Generator and Discriminator: Our generator g has the
following neural composition:

g := [FCN(d, d),ReLU(),FCN(d, d),ReLU(),FCN(d, d)]

where d is the input feature dimensionality (4096 for vgg-16
and 1024 for I3D), where this input is a noise sample from
a multivariate normal distribution. Our discriminator has a
similar structure, except that the final layer uses FCN(d, 1).

Classifier: As our representations for the sequences are lin-
ear subspaces, we decided to have the adversarial classifier
also be limited in capacity, and thus we used a linear classi-
fier for ζ in (10). Specifically, our classifier consists of a sin-
gle FCN(d, c), where c denotes the number of data classes.
We attempted adding more layers and non-linearities to this
classifier, however we found that such attempts made it diffi-
cult for the generator to learn the perturbations, and also the
learned perturbations were difficult to be separated using
the linear subspaces U in our ACOT scheme.

2.2. Adversarial Training

We used RMSprop for training our models. We used a learn-
ing rate of 1e− 4 for the generator and discriminator, and
for the classifier. We trained the classifier for 500 iterations
and it achieves roughly 80% accuracy on the input features
(on the training set). More training resulted in overfitting,

and thus posed difficulties when training the subsequent
adversarial network. For WGAN, we adapted the public
implementation from the authors of (Arjovsky et al., 2017).
This code uses 5 discriminative updates for every genera-
tor updates, which we also found to be useful in our setup.
We measured the quality of the generated perturbations via
the fooling rates on the positive samples. Specifically, the
generated random perturbations are added to the original
data samples (positives), passed through a ReLU(), and
then normalized to unit norm (note that all our data is unit-
normalized) to produce the negative samples. Thus, if c is
the correct class label that a classifier ζ produces on an in-
put x, then y = ReLU(x+g(z))

‖ReLU(x+g(z))‖ , where z ∼ N (X, σ2I) is
classified as c̄ by ζ , where c̄ means the class c has the lowest
likelihood of being predicted, i.e., c = softmin(ζ(y)). We
define fooling rate as the performance of the generator to
produce a y that fools ζ as described. Figure 1 show the
trend in training the WGAN for various choices of σ and
its impact on the ACOT performance. Please see the text
accompanying Figure 1 for the empirical analysis. Going
by that analysis, we use σ = 0.01 in our experiments.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In CVPR,
2017.

Cherian, A., Fernando, B., Harandi, M., and Gould, S. Gen-
eralized rank pooling for activity recognition. In CVPR,
2017.

