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Appendix
A. Proofs for Convergence under Gaussian Noise (Theorem 1)
A.1. Proof Overview
The main proof of Theorem 1 is contained in Appendix A.4.

Here, we outline the steps of our proof:

1. In Appendix A.2, we construct a coupling between (3) and (2) over a single step (i.e. for t ∈ [kδ, (k + 1)δ], for some k
and δ).

2. Appendix A.3, we prove Lemma 1, which shows that under the coupling constructed in Step 1, a Lyapunov function
f(xT − yT ) contracts exponentially with rate λ, plus a discretization error term. The function f is defined in Appendix
E, and sandwiches ‖xT − yT ‖2. In Corollary 2, we apply the results of Lemma 1 recursively over multiple steps to
give a bound on f(xkδ − ykδ) for all k, and for sufficiently small δ.

3. Finally, in Appendix A.4, we prove Theorem 1 by applying the results of Corollary 2, together with the fact that f(z)
upper bounds ‖z‖2 up to a constant factor.

A.2. A coupling construction
In this subsection, we will study the evolution of (3) and (2) over a small time interval. Specifically, we will study

dxt =−∇U(xt)dt+M(xt)dBt (20)
dyt =−∇U(y0)dt+M(y0)dBt (21)

One can verify that (20) is equivalent to (3), and (21) is equivalent to a single step of (2) (i.e. over an interval t ≤ δ).

We first give the explicit coupling between (20) and (21): ( A similar coupling in the continuous-time setting is first seen in
(Gorham et al., 2016) in their proof of contraction of (3).)

Given arbirary (x0, y0), define (xt, yt) using the following coupled SDE:

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs (22)

yt =y0 +

∫ t

0

−∇U(y0)dt+

∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs

Where dVt and dWt are two independent standard Brownian motion, and

γt :=
xt − yt
‖xt − y‖2

· 1 {‖xt − yt‖2 ∈ [2ε,Rq)} (23)

By Lemma 6, we show that (20) has the same distribution as xt in (22), and (21) has the same distribution as yt in (22).
Thus, for any t, the process (xt, yt) defined by (22) is a valid coupling for (20) and (21).

A.3. One step contraction
Lemma 1 Let f be as defined in Lemma 18 with parameters ε satisfying ε ≤ Rq

αqRq2+1
. Let xt and yt be as defined in (22).

If we assume that E
[
‖y0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ min

{
ε2

β2 ,
ε

6L
√
R2+β2/m

}
, then

E [f(xT − yT )] ≤ e−λTE [f(x0 − y0)] + 3T (L+ L2
N )ε

Remark 8 For ease of reference: m,L,LR, R are from Assumption A, cm, β are from Assumption B, αq,Rq, LN , λ are
defined in (7).

Proof of Lemma 1
For notational convenience, for the rest of this proof, let us define zt := xt − yt and ∇t := ∇U(xt) − ∇U(yt), ∆t :=
∇U(y0)−∇U(yt) Nt := N(xt)−N(yt).
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It follows from (22) that

dzt = −∇tdt+ ∆tdt+ 2cmγtγ
T
t dVt + (Nt +N(yt)−N(y0))dWt (24)

Using Ito’s Lemma, the dynamics of f(zt) is given by

df(zt)

=〈∇f(zt), dzt〉 + 2c2mtr
(
∇2f(zt)

(
γtγ

T
t

))
dt+

1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))

2
)
dt

=− 〈∇f(zt),∇t〉︸ ︷︷ ︸
1

dt+ 〈∇f(zt),∆t〉︸ ︷︷ ︸
2

dt+
〈
∇f(zt), 2cmγtγ

T
t dVt + (Nt +N(yt)−N(y0))dWt

〉︸ ︷︷ ︸
3

+ 2c2mtr
(
∇2f(zt)

(
γtγ

T
t

))︸ ︷︷ ︸
4

dt+
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))

2
)

︸ ︷︷ ︸
5

dt (25)

3 goes to 0 when we take expectation, so we will focus on 1 , 2 , 4 , 5 . We will consider 3 cases

Case 1: ‖zt‖2 ≤ 2ε
From item 1(c) of Lemma 18, ‖∇f(z)‖2 ≤ 1. Using Assumption A.1, ‖∇t‖ ≤ L‖zt‖2, so that

1 ≤ ‖∇t‖2 ≤ L‖zt‖2 ≤ 2Lε

Also by Cauchy Schwarz,

2 = 〈∇f(zt),∆t〉 ≤ ‖∆t‖2 ≤ L‖yt − y0‖2

Since γt = 0 in this case by definition in (23), 4 = 0.

Using Lemma 18.2.c.
∥∥∇2f(zt)

∥∥
2
≤ 2

ε , so that

5 ≤1

ε

(
tr
(
N2
t +N(yt)−N(y0)

)2)
≤2

ε

(
tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))

2
))

≤2L2
N

ε

(
‖zt‖22 + ‖yt − y0‖22

)
≤4L2

N ε+
2L2

N

ε
‖yt − y0‖22

Where the second inequality is by Young’s inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality is
by our assumption that ‖zt‖2 ≤ 2ε.

Summing these,

1 + 2 + 4 + 5 ≤ 4
(
L+ L2

N

)
ε+ L‖yt − y0‖2 +

2L2
N

ε
‖yt − y0‖22

Case 2: ‖zt‖2 ∈ (2ε,Rq)
In this case, γt = zt

‖zt‖2 . Let q be as defined in (39) and g be as defined in Lemma 20. By items 1(b) and 2(b) of Lemma 18
and items 1(b) and 2(b) of Lemma 20,

∇f(zt) =q′(g(zt))∇g(zt)

=q′(g(zt))
zt
‖zt‖2

∇2f(zt) =q′′(g(zt))∇g(zt)∇g(zt)
T + q′(g(zt))∇2g(zt)

=q′′(g(zt))
ztz

T
t

‖zt‖22
+ q′(g(zt))

1

‖zt‖2

(
I − ztz

T
t

‖zt‖22

)
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Once again, by Assumption A.3,

1 ≤ q′(g(zt))‖∇t‖2 ≤ q
′(g(zt)) · LR · ‖zt‖2 ≤L · q′(g(zt))g(zt) + 2Lε

Where the last inequality uses Lemma 20.4. We can also verify that

2 ≤ L‖yt − y0‖2

Using the expression for∇2f(zt),

4 = 2c2mtr
(
∇2f(zt)γtγ

T
t

)
= 2c2m · q′′(g(zt))

Finally,

5 =
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))

2
)

=
1

2
tr
((

q′′(g(zt))
ztz

T
t

‖zt‖22
+ q′(g(zt))

1

‖zt‖2

(
I − ztz

T
t

‖zt‖22

))
(Nt +N(yt)−N(y0))

2

)
≤1

2
tr
((

q′(g(zt))
1

‖zt‖2

(
I − ztz

T
t

‖zt‖22

))
(Nt +N(yt)−N(y0))

2

)
≤q
′(g(zt))

‖zt‖2
·
(

tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))

2
))

≤q′(g(zt)) · L2
N‖zt‖2 +

L2
N‖yt − y0‖22

2ε

≤q′(g(zt)) · L2
Ng(zt) +

L2
N‖yt − y0‖22

2ε
+ 2L2

N ε

The above uses multiples times the fact that 0 ≤ q′ ≤ 1 and q′′ ≤ 0 (proven in items 3 and 4 of Lemma 21). The second
inequality is by Young’s inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality uses item 4 of
Lemma 20.

Summing these,

1 + 2 + 4 + 5 ≤
(
LR + L2

N

)
q′(g(zt))g(zt) + 2c2mq

′′(g(zt)) +
L2
N‖yt − y0‖22

2ε
+ 2
(
L+ L2

N

)
ε

≤−
2c2m exp

(
− 7αqRq2

3

)
32Rq2 q(g(zt)) +

L2
N‖yt − y0‖22

2ε
+ 2
(
L+ L2

N

)
ε

≤− λq(g(zt)) +
L2
N‖yt − y0‖22

2ε
+ 2(L+ L2

N )ε

=− λf(zt) +
L2
N‖yt − y0‖22

2ε
+ 2(L+ L2

N )ε+ L‖yt − y0‖2

Where the last inequality follows from Lemma 21.1. and the definition of λ in (7).

Case 3: ‖zt‖2 ≥ Rq
In this case, γt = 0. Similar to case 2,

∇f(zt) = q′(g(zt))
zt
‖zt‖2

Thus by Assumption A.3,

1 =

〈
q′(g(zt))

zt
‖zt‖2

,−∇t
〉

≤−mq′(g(zt))‖zt‖2
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Where the inequality is by Assumption A.3.

For identical reasons as in Case 1, 2 ≤ LR‖yt − y0‖2, and 4 = 0. Finally,

5 =
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))

2
)

=
1

2
tr
((

q′′(g(zt))
ztz

T
t

‖zt‖22
+ q′(g(zt))

1

‖zt‖2

(
I − ztz

T
t

‖zt‖22

))
(Nt +N(yt)−N(y0))

2

)
≤1

2
tr
((

q′(g(zt))
1

‖zt‖2

(
I − ztz

T
t

‖zt‖22

))
(Nt +N(yt)−N(y0))

2

)
≤q
′(g(zt))

‖zt‖2
·
(

tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))

2
))

Where the first inequality is because q′′ ≤ 0 from item 4 of Lemma 21, the second inequality is by Young’s inequality.
(These steps are identical to Case 2). Continuing from above, and using item 2 and 3 of Lemma 16,

5 ≤q′(g(zt)) ·
(

8β2LN
cm

+
L2
N‖yt − y0‖22

ε

)
≤q′(g(zt)) ·

(m
2
‖zt‖2

)
+ q′(g(zt)) ·

(
L2
N‖yt − y0‖22

ε

)

Where the second inequality is by our definition of Rq in the Lemma statement, which ensures that 8β2LN
cm

≤ m
2 Rq ≤

m
2 ‖zt‖2.

Thus

1 + 2 + 4 + 5

≤−mq′(g(zt))‖zt‖2 + LR‖yt − y0‖2 +
m

2
q′(g(zt))‖zt‖2 + q′(g(zt)) ·

(
L2
N‖yt − y0‖22

ε

)
≤− m

2
q′(g(zt))‖zt‖2 +

L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2

≤− λf(zt) +
L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2

where the second inequality uses q′ ≤ 1 from item 3 of Lemma 21, the third inequality uses our definition of λ in (7).

Combining the three cases, (25) can be upper bounded with probability 1:

df(zt) ≤ −λf(zt) +
L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2 +

〈
∇f(zt), 2cmγtγ

T
t dVt + (Nt +N(yt)−N(y0))dWt

〉
To simplify notation, let us define Gt ∈ R1×2d as Gt :=

[
∇f(zt)

T 2cmγtγ
T
t ,∇f(zt)

T (Nt +N(yt)−N(y0))
]
, and let At

be a 2d-dimensional Brownian motion from concatenating At =

[
Vt
Wt

]
. Thus

df(zt) ≤ −λf(zt)dt+

(
L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2

)
+GtdAt.

We will study the Lyapunov function

Lt := f(zt)−
∫ t

0

e−λ(t−s)
(
L2
N

ε
‖ys − y0‖22 + L‖ys − y0‖2

)
ds−

∫ t

0

e−λ(t−s)GsdAs.



Stochastic Gradient and Langevin Processes

By taking derivatives, we see that

dLt ≤− λf(zt)dt+

(
L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2

)
dt+GtdAt

+ λ

(∫ t

0

e−λ(t−s)
(
L2
N

ε
‖ys − y0‖22 + L‖ys − y0‖2

)
ds

)
dt−

(
L2
N

ε
‖yt − y0‖22 + L‖yt − y0‖2

)
dt

+ λ

(∫ t

0

e−λ(t−s)GsdAs

)
dt−GtdAt

=− λLtdt

We can then apply Gronwall’s Lemma to Lt, so that

LT ≤ e−λTL0,

which is equivalent to

f(zT )−
∫ T

0

e−λ(T−s)
(
L2
N

ε
‖ys − y0‖22 + L‖ys − y0‖2

)
ds−

∫ T

0

e−λ(t−s)GsdAs ≤ e−λT f(z0).

Observe that Gs is measurable wrt the natural filtration generated by As, so that
∫ T

0
e−λ(T−s)GsdAs is a martingale. Thus

taking expectations,

E [f(zT )] ≤ e−λTE [f(z0)] +

∫ T

0

L2
N

ε
E
[
‖ys − y0‖22

]
+ LE [‖ys − y0‖2] ds

By Lemma 11, E
[
‖yt − y0‖22

]
≤ t2L2E

[
‖y0‖22

]
+ tβ2, so that∫ T

0

L2
N

ε
E
[
‖ys − y0‖22

]
ds ≤ T 3L2

NL
2

ε
E
[
‖y0‖22

]
+
T 2L2

N

ε
β2

LE [‖ys − y0‖2] ≤ T 2L2

√
E
[
‖y0‖22

]
+ T 3/2Lβ

Furthermore, using our assumption in the Lemma statement that T ≤ min

{
ε2

β2 ,
ε

6L
√
R2+β2/m

}
and E

[
‖y0‖22

]
≤

8
(
R2 + β2/m

)
, we can verify that ∫ T

0

L2
N

ε
E
[
‖ys − y0‖22

]
ds ≤ 1

4
TL2

N ε+ TL2
N ε

LE [‖ys − y0‖2] ≤ 1

2
TLε+ TLε

Combining the above gives

E [f(zT )] ≤ e−λTE [f(z0)] + 3T
(
L+ L2

N

)
ε

�

Corollary 2 Let f be as defined in Lemma 18 with parameter ε satisfying ε ≤ Rq
αqRq2+1

.

Let δ ≤ min

{
ε2

β2 ,
ε

8L
√
R2+β2/m

}
, and let x̄t and ȳt have dynamics as defined in (3) and (2) respectively, and suppose that

the initial conditions satisfy E
[
‖x̄0‖22

]
≤ R2 + β2/m and E

[
‖ȳ0‖22

]
≤ R2 + β2/m. Then there exists a coupling between

x̄t and ȳt such that

E [f(x̄iδ − ȳiδ)] ≤ e−λiδE [f(x̄0 − ȳ0)] +
6

λ

(
L+ L2

N

)
ε
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Proof of Corollary 2
From Lemma 7 and 8, our initial conditions imply that for all t, E

[
‖x̄t‖22

]
≤ 6
(
R2 + β2

m

)
and E

[
‖ȳkδ‖22

]
≤ 8
(
R2 + β2

m

)
.

Consider an arbitrary k, and for t ∈ [kδ, (k + 1)δ), define

xt := x̄kδ+t and yt := ȳkδ+t

Under this definition, xt and yt have dynamics described in (20) and (21). Thus the coupling in (22), which describes a
coupling between xt and yt, equivalently describes a coupling between x̄t and ȳt over t ∈ [kδ, (k + 1)δ).

We now apply Lemma 1. Given our assumed bound on δ and our proven bounds on E
[
‖x̄t‖22

]
and E

[
‖ȳt‖22

]
,

E
[
f(x̄(k+1)δ − ȳ(k+1)δ)

]
=E [f(xδ − yδ)]
≤e−λδE [f(x0 − y0)] + 6δ(L+ L2

N )ε

=e−λδE [f(x̄kδ − ȳkδ)] + 6δ(L+ L2
N )ε

Applying the above recursively gives, for any i

E [f(x̄iδ − ȳiδ)] ≤ e−λiδE [f(x̄0 − ȳ0)] +
6

λ

(
L+ L2

N

)
ε

�

A.4. Proof of Theorem 1
For ease of reference, we re-state Theorem 1 below as Theorem 3 below. We make a minor notational change: using the
letters x̄t and ȳt in Theorem 3, instead of the letters xt and yt in Theorem 1. This is to avoid some notation conflicts in the
proof.

Theorem 3 (Equivalent to Theorem 1) Let x̄t and ȳt have dynamics as defined in (3) and (2) respectively, and suppose
that the initial conditions satisfy E

[
‖x̄0‖22

]
≤ R2 + β2/m and E

[
‖ȳ0‖22

]
≤ R2 + β2/m. Let ε̂ be a target accuracy

satisfying ε̂ ≤
(

16(L+L2
N)

λ

)
· exp (7αqRq/3) · Rq

αqRq2+1
. Let δ be a step size satisfying

δ ≤ min


λ2 ε̂2

512β2(L2+L4
N) exp

(
14αqRq2

3

)
2λε̂

(L2+L4
N ) exp

(
7αqRq2

3

)√
R2+β2/m

.

If we assume that x̄0 = ȳ0, then there exists a coupling between x̄t and ȳt such that for any k,

E [‖x̄kδ − ȳkδ‖2] ≤ ε̂

Alternatively, if we assume k ≥ 3αqRq2
δ log R2+β2/m

ε̂ , then

W1(p∗, pykδ) ≤ 2ε̂

where pyt := Law(ȳt).

Proof of Theorem 3

Let ε := λ
16(L+L2

N )
exp

(
− 7αqRq2

3

)
ε̂. Let f be defined as in Lemma 18 with the parameter ε.
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E [‖x̄iδ − ȳiδ‖2]

≤2 exp

(
7αqRq2

3

)
E [f(x̄iδ − ȳiδ)] + 2 exp

(
7αqRq2

3

)
ε

≤2 exp

(
7αqRq2

3

)(
e−λiδE [f(x̄0 − ȳ0)] +

6

λ

(
L+ L2

N

)
ε

)
+ 2 exp

(
7αqRq2

3

)
ε

≤2 exp

(
7αqRq2

3

)
e−λiδE [f(x̄0 − ȳ0)] +

16
(
L+ L2

N

)
λ

exp

(
7αqRq2

3

)
· ε (26)

=2 exp

(
7αqRq2

3

)
e−λiδE [f(x̄0 − ȳ0)] + ε̂

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 2 (notice that δ satisfies the

requirement on T in Theorem 1, for the given ε). The third inequality uses the fact that 1 ≤ L/m ≤ (L+L2
N)

λ .

The first claim follows from substituting x̄0 = ȳ0 into (26), so that the first term is 0, and using the definition of ε, so that
the second term is 0.

For the second claim, let x̄0 ∼ p∗, the invariant distribution of (3). From Lemma 7, we know that x̄0 satisfies the required
initial conditions in this Lemma. Continuing from (26),

E [‖x̄iδ − ȳiδ‖2]

≤2 exp

(
7αqRq2

3

)(
2e−λiδE

[
‖x̄0‖22 + ‖ȳ0‖22

]
+

6

λ

(
L+ L2

N

)
ε

)
+ ε

≤2 exp

(
7αqRq2

3

)(
2e−λiδ

(
R2 + β2/m

))
+

16

λ
exp

(
2

7αqRq2

3

)(
L+ L2

N

)
ε

=4 exp

(
7αqRq2

3

)(
e−λiδ

(
R2 + β2/m

))
+ ε̂

By our assumption that i ≥ 1
δ · 3αqRq

2 log R2+β2/m
ε̂ , the first term is also bounded by ε̂, and this proves our second claim.

�

A.5. Simulating the SDE
One can verify that the SDE in (2) can be simulated (at discrete time intervals) as follows:

y(k+1)δ = ykδ − δ∇U(ykδ) +
√
δM(ykδ)θk

Where θk ∼ N (0, I). This however requires access to M(yk,δ), which may be difficult to compute.

If for any y, one is able to draw samples from some distribution py such that

1. Eξ∼py [ξ] = 0

2. Eξ∼py
[
ξξT

]
= M(y)

3. ‖ξ‖2 ≤ β almost surely, for some β.

then one might sample a noise that is δ close to M(ykδ)θk through Theorem 5.

Specifically, if one draws n samples ξ1...ξn
iid∼ py , and let Sn := 1√

n

∑n
i=1 ξi, Theorem 5 guarantees that

W2(Sn,M(y)θ) ≤ 6
√
dβ
√

logn√
n

. We remark that the proof of Theorem 1 can be modified to accommodate for this sampling
error. The number of samples needed to achieve ε accuracy will be on the order of n u O(δε)−2 = O(ε−6).

B. Proofs for Convergence under Non-Gaussian Noise (Theorem 2)
B.1. Proof Overview
The main proof of Theorem 2 is contained in Appendix B.4.
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Here, we outline the steps of our proof:

1. In Appendix B.2, we construct a coupling between (3) and (1) over an epoch which consists of an interval [kδ, (k+n)δ)
for some k. The coupling in (B.2) consists of four processes (xt, yt, vt, wt), where yt and vt are auxiliary processes
used in defining the coupling. Notably, the process (xt, yt) has the same distribution over the epoch as (22).

2. In Appendix B.3, we prove Lemma 3 and Lemma 4, which, combined with Lemma 1 from Appendix A.3, show that
under the coupling constructed in Step 1, a Lyapunov function f(xT − wT ) contracts exponentially with rate λ, plus a
discretization error term. In Corollary 5, we apply the results of Lemma 1, Lemma 3 and Lemma 4 recursively over
multiple steps to give a bound on f(xkδ − wkδ) for all k, and for sufficiently small δ.

3. Finally, in Appendix B.4, we prove Theorem 2 by applying the results of Corollary 5, together with the fact that f(z)
upper bounds ‖z‖2 up to a constant.

B.2. Constructing a Coupling
In this subsection, we construct a coupling between (1) and (3), given arbitrary initialization (x0, w0). We will consider a
finite time T = nδ, which we will refer to as an epoch.

1. Let Vt and Wt be two independent Brownian motion.

2. Using Vt and Wt, define

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(w0)dWs (27)

3. Using the same Vt and Wt in (27), we will define yt as

yt =w0 +

∫ t

0

−∇U(w0)ds+

∫ t

0

cm
(
I − 2γsγ

t
s

)
dVs +

∫ T

0

N(xs)dWs (28)

Where γt := xt−yt
‖xt−yt‖2 · 1 {‖xt − yt‖2 ∈ [2ε,Rq)}. The coupling (xt, yt) defined in (27) and (28) is identical to the

coupling in (22) (with y0 = w0).

4. We now define a process vkδ for k = 0...n:

vkδ =w0 +

k−1∑
i=0

−δ∇U(w0) +
√
δ

k−1∑
i=0

ξ(w0, ηi) (29)

where marginally, the variables (η0...ηn−1) are drawn i.i.d from the same distribution as in (1).

Notice that yT − w0 − T∇U(w0) =
∫ T

0
cmdBt +

∫ T
0
N(w0)dWt, so that Law(yT − w0 − T∇U(w0)) =

N (0, TM(w0)2). Notice also that vT − w0 − T∇U(w0) =
√
δ
∑n−1
i=0 ξ(w0, ηi). By Corollary 24, W2(yT −

w0 − T∇U(w0), vT −w0 − T∇U(w0)) = 6
√
dδβ
√

log n. Let the joint distribution between (29) and (28) be the one
induced by the optimal coupling between yT − w0 − T∇U(w0) and vT − w0 − T∇U(w0), so that√

E
[
‖yT − vT ‖22

]
=

√
E
[
‖yT − T∇U(w0)− vT + T∇U(w0)‖22

]
=W2(yT − w0 − T∇U(w0), vT − w0 − T∇U(w0))

≤6
√
dδβ

√
log n (30)

where the last inequality is by Corollary 24.

5. Given the sequence (η0...ηn−1) from (29), we can define

wkδ =w0 +

k−1∑
i=0

−δ∇U(wiδ) +
√
δ

k−1∑
i=0

ξ(wiδ, ηi) (31)
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specifically, (w0...wnδ) in (31) and (v0...vnδ) in (29) are coupled through the shared (η0...ηn−1) variables.

For convenience, we will let vt := viδ and wt := wiδ , where i is the unique integer satisfying t ∈ [iδ, (i+ 1)δ).

We can verify that, marginally, the process xt in (27) has the same distribution as (3), using the proof as Lemma 6. It is also
straightforward to verify that wkδ , as defined in (31), has the same marginal distribution as (1), due to the definition of ηi in
(29).

B.3. One Epoch Contraction
In Lemma 3, we prove a discretization error bound between f(xT − yT ) and f(xT − vT ), for the coupling defined in (27),
(28) and (29).

In Lemma 4, we prove a discretization error bound between f(xT − vT ) and f(xT − wT ), for the coupling defined in (27),
(29) and (31).

Lemma 3 Let f be as defined in Lemma 18 with parameter ε satisfying ε ≤ Rq
αqRq2+1

. Let xt, yt and vt be as defined in
(27), (28), (29). Let n be any integer and δ be any step size, and let T := nδ.

If E
[
‖x0‖22

]
≤ 8
(
R2 + β2/m

)
, E
[
‖y0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ min

{
1

16L ,
β2

8L2(R2+β2/m)

}
and

δ ≤ min

 Tε2L

36dβ2 log
(

36dβ2

ε2L

) , T ε4L2

214dβ4 log
(

214dβ4

ε4L2

)


Then

E [f(xT − vT )]− E [f(xT − yT )] ≤ 4TLε

Proof
By Taylor’s Theorem,

E [f(xT − vT )]

=E
[
f(xT − yT ) + 〈∇f(xT − yT ), yT − vT 〉 +

∫ 1

0

∫ s

0

〈
∇2f(xT − yT + s(yT − vT )), (yT − vT )(yT − vT )T

〉
dsdt

]

=E

f(xT − yT ) + 〈∇f(x0 − y0), yT − vT 〉︸ ︷︷ ︸
1

+ 〈∇f(xT − yT )−∇f(x0 − y0), yT − vT 〉︸ ︷︷ ︸
2



+ E


∫ 1

0

∫ s

0

〈
∇2f(xT − yT + s(yT − vT )), (yT − vT )(yT − vT )T

〉
dsdt︸ ︷︷ ︸

3


We will bound each of the terms above separately.

E
[

1
]

=E [〈∇f(x0 − y0), yT − vT 〉]

=E

[〈
∇f(x0 − y0), nδ∇U(y0)− nδ∇U(v0) +

∫ T

0

−∇U(w0)dt+

∫ T

0

cmdVt +

∫ T

0

N(w0)dWt +

n−1∑
i=0

√
δξ(v0, ηi)

〉]
=E [〈∇f(x0 − y0), nδ∇U(y0)− nδ∇U(v0)〉]
=0
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where the third equality is because
∫ T

0
dBt,

∫ T
0
dWt and

∑T
k=1 ξ(v0, ηi) have zero mean conditioned on the information at

time 0, and the fourth equality is because y0 = v0 by definition in (28) and (29).

E
[

2
]

=E [〈∇f(xT − yT )−∇f(x0 − y0), yT − vT 〉]

≤
√
E
[
‖∇f(xT − yT )−∇f(x0 − y0)‖22

]√
E
[
‖yT − vT ‖22

]
≤2

ε

√
2E
[
‖xT − x0‖22 + ‖yT − y0‖22

]√
E
[
‖yT − vT ‖22

]
≤2

ε

√
(32Tβ2 + 4Tβ2) ·

(
6
√
dδβlog n

)
≤128

ε

√
Tβ2 ·

(√
dδlog n

)
Where the second inequality is by

∥∥∇2f
∥∥

2
≤ 2

ε from item 2(c) of Lemma 18 and Young’s inequality. The third inequality is
by Lemma 10 and Lemma 11 and (30).

Finally, we can bound

E
[

3
]

≤
∫ 1

0

∫ s

0

E
[∥∥∇2f(xT − yT + s(yT − vT ))

∥∥
2
‖yT − vT ‖22

]
dsdt

≤2

ε
E
[
‖yT − vT ‖22

]
≤72dδβ2 log2 n

ε

Where the second inequality is by
∥∥∇2f

∥∥
2
≤ 2

ε from item 2(c) of Lemma 18, the third inequality is by (30).

Summing these 3 terms,

E [f(xT − vT )− f(xT − yT )]

≤128

ε

√
Tβ2 ·

(√
dδ
√

log n
)

+
36dδβ2 log n

ε

=
128

ε

√
Tβ2 ·

(
√
dδ

√
log

T

δ

)
+

36dδβ2 log T
δ

ε

Let us bound the first term. We apply Lemma 25 (with x = T
δ and c = ε4

214dβ4 ), which shows that

T

δ
≥ 214dβ4

ε4
log

(
214dβ4

ε4L2

)
⇒ T

δ

1

log T
δ

≥ 214dβ4

ε4L2
⇔ 128

ε

√
Tβ2 ·

(√
dδlog

T

δ

)
≤ TLε

For the second term, we can again apply Lemma 25 (x = T
δ and c = ε2L

36dβ2 ), which shows that

T

δ
≥ 36dβ2

ε2L
log

(
36dβ2

ε2L

)
⇒ T

δ

1

log T
δ

≥ 36dβ2

ε2L
⇒

36dδβ2 log T
δ

ε
≤ TLε

The above imply that

E [f(xT − vT )− f(xT − yT )] ≤ 2TLε

�
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Lemma 4 Let f be as defined in Lemma 18 with parameter ε satisfying ε ≤ Rq
αqRq2+1

. Let xt, vt and wt be as defined in
(27), (29), (31). Let n be an integer and δ be a step size, and let T := nδ.

If we assume that E
[
‖x0‖22

]
, E
[
‖v0‖22

]
, and E

[
‖w0‖22

]
are each upper bounded by 8

(
R2 + β2/m

)
and that T ≤

min
{

1
16L ,

ε
32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
, then

E [f(xT − wT )]− E [f(xT − vT )] ≤ 4T (L+ L2
N )ε

Remark 9 For sufficiently small ε, our assumption on T boils down to T = o(ε4)

Proof
First, we can verify using Taylor’s theorem that for any x, y,

f(y) =f(x) + 〈∇f(x), y − x〉 +

∫ 1

0

∫ s

0

〈
∇2f(x+ s(y − x)), (y − x)(y − x)T

〉
dsdt (32)

∇f(y) =∇f(x) +
〈
∇2f(x), y − x

〉
+

∫ 1

0

∫ s

0

〈
∇3f(x+ s(y − x)), (y − x)(y − x)T

〉
dsdt (33)

Thus

E [f(xT − wT )]

=E
[
f(xT − vT ) + 〈∇f(xT − vT ), vT − wT 〉 +

∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt

]

=E

f(xT − vT ) + 〈∇f(x0 − v0), vT − wT 〉︸ ︷︷ ︸
1

+ 〈∇f(xT − vT )−∇f(x0 − v0), vT − wT 〉︸ ︷︷ ︸
2



+ E


∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt︸ ︷︷ ︸

3



Recall from (29) and (31) that

vnδ =w0 +

n−1∑
i=0

δ∇U(w0) +
√
δ

n−1∑
i=0

ξ(w0, ηi)

wnδ =w0 +

n−1∑
i=0

δ∇U(wiδ) +
√
δ

n−1∑
i=0

ξ(wiδ, ηi)
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Note that conditioned on the randomness up to time 0, E
[∑n−1

i=0 ξ(w0, ηi)
]

= E
[∑n−1

i=0 ξ(wiδ, ηi)
]

= 0, so that

E
[

1
]

=E [〈∇f(x0 − v0), vT − wT 〉]

=δE

[〈
∇f(x0 − v0),

n−1∑
i=0

∇U(w0)−∇U(wiδ)

〉]
+
√
δE

[〈
∇f(x0 − v0),

n−1∑
i=0

ξ(w0, ηi)−
n−1∑
i=0

ξ(wiδ, ηi)

〉]

=δE

[〈
∇f(x0 − v0),

n−1∑
i=0

∇U(w0)−∇U(wiδ)

〉]

≤δ
n−1∑
i=0

LE [‖w0 − wiδ‖2]

≤TL
√

32Tβ2 ≤ 8T 3/2Lβ

where the third equality is becayse ξ(·, ηi) has 0 mean conditioned on the randomness at time 0, and the second inequality is
by Lemma 13.

Next,

E
[

2
]

=E [〈∇f(xT − vT )−∇f(x0 − v0), vT − wT 〉]
≤E [‖∇f(xT − vT )−∇f(x0 − v0)‖2‖vT − wT ‖]

≤4

ε

√
E
[
‖xT − x0‖22 + ‖vT − v0‖22

]
·
√
E
[
‖vT − wT ‖22

]
≤4

ε

√
16Tβ2 + 2Tβ2 ·

√
32
(
T 2L2 + TL2

ξ

)
Tβ2

≤128

ε
Tβ2

(√
TLξ + TL

)
where the second inequality is because

∥∥∇2f
∥∥

2
≤ 2

ε from item 2(c) of Lemma 18 and by Young’s inequality. The third
inequality is by Lemma 10, Lemma 12 and Lemma 14.

Finally,

E
[

3
]

=E
[∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt

]
≤
∫ 1

0

∫ s

0

E
[∥∥∇2f(xT − vT + s(vT − wT ))

∥∥
2
‖vT − wT ‖22

]
ds

≤1

ε
E
[
‖vT − wT ‖22

]
≤32

ε

(
T 2L2 + TL2

ξ

)
Tβ2

wehere the second inequality is because
∥∥∇2f

∥∥
2
≤ 2

ε from item 2(c) of Lemma 18 and by Young’s inequality. The third
inequality is by Lemma 14.

Summing the above,

E [f(xT − wT )− f(xT − vT )]

≤8T 3/2Lβ +
128

ε
Tβ2

(√
TLξ + TL

)
+

32

ε

(
T 2L2 + TL2

ξ

)
Tβ2

≤T 3/2ε
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where the last inequality is by our assumption on T , specifically,

T ≤ ε2

128β2
⇒ T 3/2Lβ ≤ TLε

T ≤ ε2

128β2
⇒ 128

ε
T 2Lβ2 ≤ TLε

T ≤ ε

32
√
Lβ
⇒ 32

ε
(T 3L2β2) ≤ TLε

T ≤ ε4L2
N

214β2c2m
⇒ 128

ε
T 3/2β2Lξ ≤ TL2

N ε

T ≤ ε2

128β2
⇒ T ≤ ε2

128c2m
⇒ 32

ε
T 2L2

ξβ
2 ≤ TL2

N ε

where the last line uses the fact that β ≥ c2m.

�

Corollary 5 Let f be as defined in Lemma 18 with parameter ε satisfying ε ≤ Rq
αqRq2+1

.

Let T = min
{

1
16L ,

β2

8L2(R2+β2/m) ,
ε

32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
and let δ ≤ min

{
Tε2L

36dβ2 log
(

36dβ2

ε2L

) , Tε4L2

214dβ4 log
(

214dβ4

ε4L2

)},

assume additionally that n = T/δ is an integer.

Let x̄t and w̄t have dynamics as defined in (3) and (2) respectively, and suppose that the initial conditions satisfy E
[
‖x̄0‖22

]
≤

R2 + β2/m and E
[
‖w̄0‖22

]
≤ R2 + β2/m. Then there exists a coupling between x̄t and w̄t such that

E [f(x̄iδ − w̄iδ)] ≤ e−λiδE [f(x̄0 − w̄0)] +
6

λ

(
L+ L2

N

)
ε

Proof
From Lemma 7 and 9, our initial conditions imply that for all t, E

[
‖x̄t‖22

]
≤ 6
(
R2 + β2

m

)
and E

[
‖w̄kδ‖22

]
≤ 8
(
R2 + β2

m

)
.

Consider an arbitrary k, and for t ∈ [0, T ), define

xt := x̄kT+t and wt := w̄kT+t (34)

Notice that as described above, xt and wt have dynamics described in (3) and (1). Let xt, wt have joint distribution as
described in (27) and (31), and let (yt, vt) be the processes defined in (28) and (29). Notice that the joint distribution
between xt and wt equivalently describes a coupling between x̄t and w̄t over t ∈ [kT, (k + 1)T ).

First, notice that the processes (27) and (28) have the same distribution as (22). We can thus apply Lemma 1:

E [f(xT − yT )] ≤e−λTE [f(x0 − y0)] + 6T (L+ L2
N )ε

By Lemma 3,

E [f(xT − vT )]− E [f(xT − yT )] ≤ 4TLε

By Lemma 4,

E [f(xT − wT )]− E [f(xT − vT )] ≤ 4T (L+ L2
N )ε

Summing the above three equations,

E [f(xT − wT )] ≤ e−λδE [f(x0 − w0)] + 14T (L+ L2
N )

Where we use the fact that y0 = w0 by construction in (28).
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Recalling (34), this is equivalent to

E
[
f(x̄(k+1)T − w̄(k+1)T )

]
≤ e−λδE [f(x̄kT − w̄kT )] + 14T (L+ L2

N )

Applying the above recursively gives, for any i

E [f(x̄iT − w̄iT )] ≤ e−λiTE [f(x̄0 − w̄0)] +
14

λ

(
L+ L2

N

)
ε

�

B.4. Proof of Theorem 2
For ease of reference, we re-state Theorem 2 below as Theorem 4 below. We make a minor notational change: using the
letters x̄t and ȳt in Theorem 4, instead of the letters xt and yt in Theorem 2. This is to avoid some notation conflicts in the
proof.

Theorem 4 (Equivalent to Theorem 2) Let x̄t and wt have dynamics as defined in (3) and (1) respectively, and sup-
pose that the initial conditions satisfy E

[
‖x̄0‖22

]
≤ R2 + β2/m and E

[
‖w̄0‖22

]
≤ R2 + β2/m. Let ε̂ be a tar-

get accuracy satisfying ε̂ ≤
(

16(L+L2
N)

λ

)
· exp (7αqRq/3) · Rq

αqRq2+1
. Let ε := λ

16(L+L2
N )

exp
(
− 7αqRq2

3

)
ε̂. Let

T := min
{

1
16L ,

β2

8L2(R2+β2/m) ,
ε

32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
and let δ be a step size satisfying

δ ≤ min

 Tε2L

36dβ2 log
(

36dβ2

ε2L

) , T ε4L2

214dβ4 log
(

214dβ4

ε4L2

)
 .

If we assume that x̄0 = w̄0, then there exists a coupling between x̄t and w̄t such that for any k,

E [‖x̄kδ − w̄kδ‖2] ≤ ε̂.

Alternatively, if we assume that k ≥ 3αqRq2
δ · log R2+β2/m

ε̂ , then

W1(p∗, pwkδ) ≤ 2ε̂,

where pwt := Law(w̄t).

Proof of Theorem 4
Let f be defined as in Lemma 18 with parameter ε.

E [‖x̄iδ − w̄iδ‖2]

≤2 exp

(
7αqRq2

3

)
E [f(x̄iδ − w̄iδ)] + 2 exp

(
7αqRq2

3

)
ε

≤2 exp

(
7αqRq2

3

)(
e−λiδE [f(x̄0 − w̄0)] +

6

λ

(
L+ L2

N

)
ε

)
+ 2 exp

(
7αqRq2

3

)
ε

≤2 exp

(
7αqRq2

3

)
e−λiδE [f(x̄0 − w̄0)] +

16
(
L+ L2

N

)
λ

exp

(
7αqRq2

3

)
· ε (35)

=2 exp

(
7αqRq2

3

)
e−λiδE [f(x̄0 − w̄0)] + ε̂

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 5 (notice that δ satisfies the

requirement on T in Theorem 1, for the given ε). The third inequality uses the fact that 1 ≤ L/m ≤ (L+L2
N)

λ .
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The first claim follows from substituting x̄0 = w̄0 into (35), so that the first term is 0, and using the definition of ε, so that
the second term is 0.

For the second claim, let x̄0 ∼ p∗, the invariant distribution of (3). From Lemma 7, we know that x̄0 satisfies the required
initial conditions in this Lemma. Continuing from (35),

E [‖x̄iδ − w̄iδ‖2]

≤2 exp

(
7αqRq2

3

)(
2e−λiδE

[
‖x̄0‖22 + ‖w̄0‖22

]
+

6

λ

(
L+ L2

N

)
ε

)
+ ε

≤2 exp

(
7αqRq2

3

)(
2e−λiδ

(
R2 + β2/m

))
+

16

λ
exp

(
2

7αqRq2

3

)(
L+ L2

N

)
ε

=4 exp

(
7αqRq2

3

)(
e−λiδ

(
R2 + β2/m

))
+ ε̂

By our assumption that i ≥ 1
δ · 3αqRq

2 log R2+β2/m
ε̂ , the first term is also bounded by ε̂, and this proves our second claim.

�

C. Coupling Properties
Lemma 6 Consider the coupled (xt, yt) in (22). Let pt denote the distribution of xt, and qt denote the distribution of yt.
Let p′t and q′t denote the distributions of (20) and (21).

If p0 = p′0 and q0 = q′0, then pt = p′t and qt = q′t for all t.

Proof
Consider the coupling in (22), reproduced below for ease of reference:

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs

yt =y0 +

∫ t

0

−∇U(y0)dt+

∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs

Let us define the stochastic process At :=
∫ t

0
M(xs)

−1cmdVs +
∫ t

0
M(xs)

−1N(xs)dWs. We can verify using Levy’s
characterization that At is a standard Brownian motion: first, since Vt and Wt are Brownian motions, and N(x) is
differentiable with bounded derivatives, we know thatAt has continuous sample paths. We now verify thatAitA

j
t−1 {i = j}t

is a martingale.

Notice that dAt = cmdVt +M(xs)
−1N(xs)dWs. Then

dAitA
j
t =dATt

(
eie

T
j

)
At

=At
(
eie

T
j

)(
cmdVt +M(xs)

−1N(xs)dWs

)T
+
(
cmdVt +M(xs)

−1N(xs)dWs

)(
eje

T
i

)
aTt

+
1

2
tr
((
eie

T
j + eje

T
i

)(
c2mM(xs)

−2 +M(xs)
−1N(xs)

2M(xs)
−1
))
dt

where the second inequality is by Ito’s Lemma applied to f(At) = ATt eje
T
j At. Taking expectations,

dE
[
AitA

j
t

]
=E

[
1

2
tr
((
eie

T
j + eje

T
i

)(
c2mM(xs)

−2 +M(xs)
−1N(xs)N(xs)

T
(
M(xs)

−1
)T))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

)(
M(xs)

−1
(
c2mI +N(xs)

2
)
M(xs)

−1
))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

)(
M(xs)

−1
(
M(xs)

2
)
M(xs)

−1
))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

))]
dt

=1 {i = j}dt
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This verifies that AitA
j
t − 1 {i = j}t is a martingale, and hence by Levy’s characterization, At is a standard Brownian

motion. In turn, we verify that by definition of At,

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs

=x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

M(xs)
(
M(xs)

−1(cmdVs +N(xs)dWs)
)

=x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

M(xs)dAs

Since we showed that At is a standard Brownian motion, we verify that xt as defined in (22) has the same distribution as (3).

On the other hand, we can verify that A′t :=
∫ T

0
(I − 2γsγ

T
s )Vs is a standard Brownian motion by the reflection principle.

Thus ∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs ∼ N (0,
(
c2mI +N(y0)2

)
) = N (0,M(y0)2)

where the equality is by definition of N in (6).

It follows immediately that yt in (22) has the same distribution as yt in (2).

�

C.1. Energy Bounds
Lemma 7 Consider xt as defined in (3). If x0 satisfies E

[
‖x0‖22

]
≤ R2 + β2

m , then Then for all t,

E
[
‖xt‖22

]
≤ 6

(
R2 +

β2

m

)

We can also show that

Ep∗
[
‖x‖22

]
≤ 4

(
R2 +

β2

m

)
Proof
We consider the potential function a(x) = (‖x‖2 −R)

2
+ We verify that

∇a(x) =(‖x‖2 −R)+
x

‖x‖2

∇2a(x) =1 {‖x‖2 ≥ R}
xxT

‖x‖22
+

(‖x‖2 −R)+

‖x‖2

(
I − xxT

‖x‖22

)
Observe that

1.
∥∥∇2a(x)

∥∥
2
≤ 21 {‖x‖2 ≥ R} ≤ 2

2. 〈∇a(x),−∇U(x)〉 ≤ −ma(x). This can be verified by considering 2 cases. If ‖x‖2 ≤ R, then ∇a(x) = 0 and
a(x) = 0. If ‖x‖2 ≥ R, then by Assumption A,

〈∇a(x),−∇U(x)〉 ≤ −m(‖x‖2 −R)+‖w‖2 ≤ −m(‖x‖2 −R)
2
+ = −m · a(x)

3. a(x) ≥ 1
2‖x‖

2
2−2R2. One can first verify that a(x) ≥ (‖x‖2−R)2−R2. Next, by Young’s inequality, (‖x‖2−R)2 =

‖x‖22 +R2 − 2‖x‖2R ≥ ‖x‖
2
2 +R2 − 1

2‖x‖
2
2 − 2R2 = 1

2‖x‖
2
2 −R2.
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Therefore,

d

dt
E [a(xt)] = E [〈∇a(xt),−∇U(xt)dt〉] +

1

2
E
[
tr
(
M(xt)

2∇2a(x)
)]
≤ −mE [a(xt)] + β2

⇒ d

dt

(
E [a(xt)]−

β2

m

)
≤ −m

(
E [a(xt)]−

β2

m

)
⇒ d

dt

(
E [a(xt)]−R2 − β2

m

)
≤ −m

(
E [a(xt)]−R2 − β2

m

)

Thus if E
[
‖x0‖22

]
≤ R2+ β2

m , then E [a(x0)] ≤ R2− β2

m , then
(
E [a(x0)]−R2 − β2

m

)
≤ 0, and

(
E [a(xt)]−R2 + β2

m

)
≤

e−mt · 0 ≤ 0 for all t. This implies that, for all t,

E
[
‖xt‖22

]
≤ E

[
2a(xt) + 4R2

]
≤ 6

(
R2 +

β2

m

)

For our second claim that Ep∗
[
‖x‖22

]
≤ R2 + β2

m , we can use the fact that if x0 ∼ p∗, then E [a(xt)] does not change as p∗

is invariant, so that

0 =
d

dt
E [a(xt)] ≤ −mE [a(xt)] + β2

Thus

E [a(xt)] ≤
β2

m

Again,

Ep∗
[
‖x‖22

]
= E

[
‖xt‖22

]
≤ 2E [a(xt)] + 4R2 ≤ 4

(
R2 +

β2

m

)
�

Lemma 8 Let the sequence ykδ be as defined in (1). Assuming that δ ≤ m/(16L2) and E
[
‖y0‖22

]
≤ 2
(
R2 + β2

m

)
Then

for all k,

E
[
‖ykδ‖22

]
≤ 8

(
R2 +

β2

m

)
Proof
Let a(w) := (‖w‖2 −R)

2
+. We can verify that

∇a(w) =(‖w‖2 −R)+

w

‖w‖2

∇2a(w) =1 {‖w‖2 ≥ R}
wwT

‖w‖22
+ (‖w‖2 −R)+

1

‖w‖2

(
I − wwT

‖w‖22

)
Observe that

1.
∥∥∇2a(w)

∥∥
2
≤ 21 {‖w‖2 ≥ R} ≤ 2

2. 〈∇a(w),−∇U(w)〉 ≤ −ma(w).

3. a(w) ≥ 1
2‖w‖

2
2 − 2R2.

The proofs are identical to the proof at the start of Lemma 9, so we omit them here.
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Using Taylor’s Theorem, and taking expectation of y(k+1)δ conditioned on ykδ ,

E
[
a(y(k+1)δ)

]
=E [a(ykδ)] + E

[〈
∇a(ykδ), y(k+1)δ − ykδ

〉]
+ E

[∫ 1

0

∫ t

0

〈
∇2a(ykδ + s(y(k+1)δ − ykδ), (y(k+1)δ − ykδ)(y(k+1)δ − ykδ)T

〉
dtds

]
≤E [a(ykδ)] + E

[〈
∇a(ykδ), y(k+1)δ − ykδ

〉]
+ E

[∥∥(y(k+1)δ − ykδ)
∥∥2

2
ds
]

≤E [a(ykδ)] + E [〈∇a(ykδ),−δ∇U(ykδ)〉] + 2δ2‖∇U(ykδ)‖22 + 2δE
[
tr
(
M(ykδ)

2
)]

≤E [a(ykδ)]−mδE [a(ykδ)] + 2δ2E
[
‖∇U(ykδ)‖22

]
+ 2δE

[
tr
(
M(ykδ)

2
)]

≤E [a(ykδ)]−mδE [a(ykδ)] + 2δ2L2E
[
‖ykδ‖22

]
+ 2δβ2

≤E [a(ykδ)]−mδE [a(ykδ)] + 4δ2L2E [a(ykδ)] + 8δ2L2R2 + 2δβ2

≤(1−mδ/2)E [a(ykδ)] +mδR2 + 2δβ2

Where the first inequality uses the upper bound on
∥∥∇2a(y)

∥∥
2

above, the second inequality uses the fact that y(k+1)δ ∼
N
(
ykδ − δ∇U(ykδ), δM(ykδ)

2
)
, the third inequality uses claim 2. at the start of this proof, the fourth inequality uses item

2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our assumption that δ ≤ m
16L2 .

Taking expectation wrt ykδ ,

E
[
a(y(k+1)δ)

]
≤ E [a(yk)]−mδ

(
E [a(ykδ)]− 2R2 + 2β2/m

)
⇒ E

[
a(y(k+1)δ)

]
− (2R2/2 + 2β2/m) ≤ (1−mδ)

(
E [a(ykδ)]− (2R2 + 2β2/m

)
Thus, if E

[
‖y0‖22

]
≤ 2R2 + 2β2/m, then E [a(y0)]−

(
2R2 + 2β2/m

)
≤ 0, then E [a(ykδ)]−

(
2R2 + 2β2/m

)
≤ 0 for

all k, which implies that

E
[
‖ykδ‖22

]
≤ 2E [a(ykδ)] + 4R2 ≤ 8

(
R2 + β2/m

)
for all k. �

Lemma 9 Let the sequence wkδ be as defined in (1). Assuming that δ ≤ m/(16L2) and E
[
‖w0‖22

]
≤ 2
(
R2 + β2

m

)
Then

for all k,

E
[
‖wkδ‖22

]
≤ 8

(
R2 +

β2

m

)
Proof
The proof is almost identical to that of Lemma 8. Let a(w) := (‖w‖2 −R)

2
+. We can verify that

∇a(w) =(‖w‖2 −R)+

w

‖w‖2

∇2a(y) =1 {‖w‖2 ≥ R}
wwT

‖w‖22
+ (‖w‖2 −R)+

1

‖w‖2

(
I − wwT

‖w‖22

)
Observe that

1.
∥∥∇2a(w)

∥∥
2
≤ 21 {‖w‖2 ≥ R} ≤ 2

2. 〈∇a(w),−∇U(w)〉 ≤ −ma(w).

3. a(w) ≥ 1
2‖w‖

2
2 − 2R2.

The proofs are identical to the proof at the start of Lemma 9, so we omit them here.
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Using Taylor’s Theorem, and taking expectation of w(k+1)δ conditioned on wkδ ,

E
[
a(w(k+1)δ)

]
=E [a(wkδ)] + E

[〈
∇a(wkδ), w(k+1)δ − wkδ

〉]
+ E

[∫ 1

0

∫ t

0

〈
∇2a(wkδ + s(w(k+1)δ − wkδ), (w(k+1)δ − wkδ)(w(k+1)δ − wkδ)T

〉
dtds

]
≤E [a(wkδ)] + E

[〈
∇a(wkδ), w(k+1)δ − wkδ

〉]
+ E

[∥∥(w(k+1)δ − wkδ)
∥∥2

2
ds
]

≤E [a(wkδ)] + E [〈∇a(wkδ),−δ∇U(wkδ)〉] + 2δ2‖∇U(wkδ)‖22 + 2δE
[
‖ξ(wkδ, ηk)‖22

]
≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2E

[
‖∇U(wkδ)‖22

]
+ 2δE

[
‖ξ(wkδ, ηk)‖22

]
≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2L2E

[
‖wkδ‖22

]
+ 2δβ2

≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2L2a(wkδ) + 2δ2L2R2 + 2δβ2

≤(1−mδ/2)a(wkδ) +mδR2 + 2δβ2

Where the first inequality uses the upper bound on
∥∥∇2a(y)

∥∥
2

above, the second inequality uses the fact that w(k+1)δ =
(ykδ − δ∇U(ykδ) = ξ(wkδ, ηk)), and E [ξ(wkδ, ηk)|wkδ] = 0, the third inequality uses claim 2. at the start of this proof,
the fourth inequality uses item 2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our
assumption that δ ≤ m

16L2 .

Taking expectation wrt wkδ ,

E
[
a(w(k+1)δ)

]
≤ E [a(wk)]−mδ

(
E [a(wkδ)]− 2R2 + 2β2/m

)
⇒ E

[
a(w(k+1)δ)

]
− (2R2/2 + 2β2/m) ≤ (1−mδ)

(
E [a(wkδ)]− (2R2 + 2β2/m

)
Thus, if E

[
‖w0‖22

]
≤ 2R2 + 2β2/m, then E [a(w0)]−

(
2R2 + 2β2/m

)
≤ 0, then E [a(wkδ)]−

(
2R2 + 2β2/m

)
≤ 0 for

all k, which implies that

E
[
‖wkδ‖22

]
≤ 2E [a(wkδ)] + 4R2 ≤ 8

(
R2 + β2/m

)
for all k. �

C.2. Divergence Bounds

Lemma 10 Let xt be as defined in (20) (or equivalently (22) or (27)), initialized at x0. Then for any T ≤ 1
16L ,

E
[
‖xT − x0‖22

]
≤ 8
(
Tβ2 + T 2L2E

[
‖x0‖22

])
If we additionally assume that E

[
‖x0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ β2

8L2(R2+β2/m) , then

E
[
‖xT − x0‖22

]
≤ 16Tβ2

Proof
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By Ito’s Lemma,

d

dt
E
[
‖xt‖22

]
=2E [〈∇U(xt), xt − x0〉] + E

[
tr
(
M(xt)

2
)]

≤2LE [‖xt‖2‖xt − x0‖2] + β2

≤2LE
[
‖xt − x0‖22

]
+ 2LE [‖x0‖2‖xt − x0‖2] + β2

≤2LE
[
‖xt − x0‖22

]
+ L2TE

[
‖x0‖22

]
+

1

T
E
[
‖xt − x0‖22

]
+ β2

≤ 2

T
E
[
‖xt − x0‖22

]
+
(
L2TE

[
‖x0‖22

]
+ β2

)
where the first inequality is by item 1 of Assumption A and item 2 of Assumption B, the second inequality is by triangle
inequality, the third inequality is by Young’s inequality, the last inequality is by our assumption on T .

Applying Gronwall’s inequality for t ∈ [0, T ],(
E
[
‖xt − x0‖22

]
+ L2T 2E

[
‖x0‖22

]
+ Tβ2

)
≤e2

(
E [‖x0 − x0‖] + L2T 2E

[
‖x0‖22

]
+ Tβ2

)
≤8L2T 2E

[
‖x0‖22

]
+ Tβ2

This concludes our proof. �

Lemma 11 Let yt be as defined in (21) (or equivalently (22) or (27)), initialized at y0. Then for any T ,

E
[
‖yT − y0‖22

]
≤ T 2L2E

[
‖y0‖22

]
+ Tβ2

If we additionally assume that E
[
‖y0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ β2

8L2(R2+β2/m) , then

E
[
‖yT − y0‖22

]
≤ 2Tβ2

Proof
Notice from the definition in (21) that yT − y0 ∼ N

(
−T∇U(y0), TM(y0)2

)
, the conclusion immediately follows from

where the inequality is by item 1 of Assumption A and item 2 of Assumption B, and the fact that

tr
(
M(x)2

)
= tr

(
E
[
ξ(x, η)ξ(x, η)T

])
= E

[
‖ξ(x, η)‖22

]
�

Lemma 12 Let vt be as defined in (29), initialized at v0. Then for any T = nδ,

E
[
‖vT − v0‖22

]
≤ T 2L2E

[
‖v0‖22

]
+ Tβ2

If we additionally assume that E
[
‖v0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ β2

8L2(R2+β2/m) , then

E
[
‖vT − v0‖22

]
≤ 2Tβ2

Proof
From (29),

vT − v0 = −T∇U(v0) +
√
δ

n−1∑
i=0

ξ(v0, ηi)
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Conditioned on the randomness up to time i, E [ξ(v0, ηi+1)] = 0. Thus

E
[
‖vT − v0‖22

]
=T 2E

[
‖∇U(v0)‖22

]
+ δ

n−1∑
i=0

E
[
‖ξ(v0, ηi)‖22

]
≤T 2L2E

[
‖v0‖22

]
+ Tβ2

where the inequality is by item 1 of Assumption A and item 2 of Assumption B. �

Lemma 13 Let wt be as defined in (31), initialized at w0. Then for any T = nδ such that T ≤ 1
2L ,

E
[
‖wT − w0‖22

]
≤ 16

(
T 2L2E

[
‖w0‖22

]
+ Tβ2

)
If we additionally assume that E

[
‖w0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ β2

8L2(R2+β2/m) , then

E
[
‖wT − w0‖22

]
≤ 32Tβ2

Proof

E
[∥∥w(k+1)δ − w0

∥∥2

2

]
=E

[∥∥∥wkδ − δ∇U(wkδ) +
√
δξ(wkδ, ηk)− w0

∥∥∥2

2

]
=E

[
‖wkδ − δ∇U(wkδ)− w0‖22

]
+ δE

[
‖ξ(wkδ, ηk)‖22

]
(36)

We can bound δE
[
‖ξ(wkδ, ηk)‖22

]
≤ δβ2 by item 2 of Assumption B.

E
[
‖wkδ − δ∇U(wkδ)− w0‖22

]
≤E

[
(‖wkδ − w0 − δ(∇U(wkδ)−∇U(w0))‖2 + δ‖∇U(w0)‖2)

2
]

≤
(

1 +
1

n

)
E
[
‖wkδ − w0 − δ(∇U(wkδ)−∇U(w0))‖22

]
+ (1 + n)δ2E

[
‖∇U(w0)‖22

]
≤
(

1 +
1

n

)
(1 + δL)

2E
[
‖wkδ − w0‖22

]
+ 2nδ2L2E

[
‖w0‖22

]
≤e1/n+2δLE

[
‖wkδ − w0‖22

]
+ 2nδ2L2E

[
‖w0‖22

]
where the first inequality is by triangle inequality, the second inequality is by Young’s inequality, the third inequality is by
item 1 of Assumption A.

Inserting the above into (36) gives

E
[∥∥w(k+1)δ − w0

∥∥2

2

]
≤ e1/n+2δLE

[
‖wkδ − w0‖22

]
+ 2nδ2L2E

[
‖w0‖22

]
+ δβ2
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Applying the above recursively for k = 1...n, we see that

E
[
‖wnδ − w0‖22

]
≤
n−1∑
k=0

e(n−k)·(1/n+2δL) ·
(

2nδ2L2E
[
‖w0‖22

]
+ δβ2

)
≤16

(
n2δ2L2E

[
‖w0‖22

]
+ nδβ2

)
=16

(
T 2L2E

[
‖w0‖22

]
+ Tβ2

)
�

C.3. Discretization Bounds
Lemma 14 Let vkδ and wkδ be as defined in (29) and (31). Then for any δ, n, such that T := nδ ≤ 1

16L ,

E
[
‖vT − wT ‖22

]
≤ 8
(

2T 2L2
(
T 2L2E

[
‖v0‖22

]
+ Tβ2

)
+ TL2

ξ

(
16
(
T 2L2E

[
‖w0‖22

]
+ Tβ2

)))
If we additionally assume that E

[
‖v0‖22

]
≤ 8
(
R2 + β2/m

)
, E
[
‖w0‖22

]
≤ 8
(
R2 + β2/m

)
and T ≤ β2

8L2(R2+β2/m) , then

E
[
‖vT − wT ‖22

]
≤ 32

(
T 2L2 + TL2

ξ

)
Tβ2

Proof
Using the fact that conditioned on the randomness up to step k, E [ξ(v0, ηk+1)− ξ(wkδ, ηk+1)] = 0, we can show that for
any k ≤ n,

E
[∥∥v(k+1)δ − w(k+1)δ

∥∥2

2

]
=E

[∥∥∥vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ) +
√
δξ(w0, ηk)−

√
δξ(wkδ, ηk)

∥∥∥2

2

]
=E

[
‖vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ)‖22

]
+ δE

[
‖ξ(w0, ηk)− ξ(wkδ, ηk)‖22

]
(37)

where the first inequality is by (Assumption on smoothness of U and xi).

Using (smoothness of xi), and Lemma 12, we can bound

δE
[
‖ξ(w0, ηk)− ξ(wkδ, ηk)‖22

]
≤δL2

ξE
[
‖wkδ − w0‖22

]
≤δL2

ξ

(
16
(
T 2L2E

[
‖w0‖22

]
+ Tβ2

))
We can also bound

E
[
‖vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ)‖22

]
≤
(

1 +
1

n

)
E
[
‖vkδ − δ∇U(vkδ)− wkδ + δ∇U(wkδ)‖22

]
+ (1 + n)δ2E

[
‖∇U(vkδ)−∇U(v0)‖22

]
≤
(

1 +
1

n

)
(1 + δL)

2E
[
‖vkδ − wkδ‖22

]
+ 2nδ2L2E

[
‖vkδ − v0‖22

]
≤e1/n+2δLE‖vkδ − wkδ‖22 + 2nδ2L2E

[
‖vkδ − v0‖22

]
≤e1/n+2δLE‖vkδ − wkδ‖22 + 2nδ2L2

(
T 2L2E

[
‖v0‖22

]
+ Tβ2

)
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where the first inequality is by Young’s inequality and the second inequality is by item 1 of Assumption A, the fourth
inequality uses Lemma 12.

Substituting the above two equation blocks into (37), and applying recursively for k = 0...n− 1 gives

E
[
‖vT − wT ‖22

]
=E

[
‖vnδ − wnδ‖22

]
≤e1+2nδL

(
2n2δ2L2

(
T 2L2E

[
‖v0‖22

]
+ Tβ2

)
+ nδL2

ξ

(
16
(
T 2L2E

[
‖w0‖22

]
+ Tβ2

)))
≤8
(

2T 2L2
(
T 2L2E

[
‖v0‖22

]
+ Tβ2

)
+ TL2

ξ

(
16
(
T 2L2E

[
‖w0‖22

]
+ Tβ2

)))
the last inequality is by noting that T = nδ ≤ 1

4L . �

D. Regularity of M and N
Lemma 15

1. tr
(
M(x)2

)
≤ β2

2. tr
(
(M(x)2 −M(y)2)2

)
≤ 16β2L2

ξ‖x− y‖22
3. tr

(
(M(x)2 −M(y)2)2

)
≤ 32β3Lξ‖x− y‖2

Proof
In this proof, we will use the fact that ξ(·, η) is Lξ-Lipschitz from Assumption B.

The first property is easy to see:

tr
(
M(x)2

)
=tr
(
Eη
[
ξ(x, η)ξ(x, η)T

])
=Eη

[
tr
(
ξ(x, η)ξ(x, η)T

)]
=Eη

[
‖ξ(x, η)‖22

]
≤β2

We now prove the second and third claims. Consider a fixed x and fixed y, let uη := ξ(x, η), vη := ξ(y, η). Then

tr
((
M(x)2 −M(y)2

)2)
=tr
((

Eη
[
uηu

T
η − vηvTη

])2)
=tr
(
Eη,η′

[(
uηu

T
η − vηvTη

)(
uη′u

T
η′ − vη′vTη′

)])
=Eη,η′

[
tr
((
uηu

T
η − vηvTη

)(
uη′u

T
η′ − vη′vTη′

))]
For any fixed η and η′, let’s further simplify notation by letting u, u′, v, v′ denote uη, uη′ , vη, vη′ . Thus

tr
((
uuT − vvT

)(
u′u′T − v′v′T

))
=tr
((

(u− v)vT + v(u− v)T + (u− v)(u− v)T
)(

(u′ − v′)v′T + v′(u′ − v′)T + (u′ − v′)(u′ − v′)T
))

=tr
(
(u− v)vT (u′ − v′)v′T

)
+ tr

(
(u− v)vT v′(u′ − v′)T

)
+ tr

(
(u− v)vT (u′ − v′)(u′ − v′)T

)
+ tr

(
v(u− v)T (u′ − v′)v′T

)
+ tr

(
v(u− v)T v′(u′ − v′)T

)
+ tr

(
v(u− v)T (u′ − v′)(u′ − v′)T

)
+ tr

(
(u− v)(u− v)T (u′ − v′)v′T

)
+ tr

(
(u− v)(u− v)T v′(u′ − v′)T

)
+ tr

(
(u− v)(u− v)T (u′ − v′)(u′ − v′)T

)
≤min

{
16β2L2

ξ‖x− y‖
2
2, 32β3Lξ‖x− y‖2

}
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Where the last inequality uses Assumption B.2 and B.3; in particular, ‖v‖2 ≤ β and ‖u− v‖2 ≤ min {2β, Lξ‖x− y‖2}.
This proves 2. and 3. of the Lemma statement. �

Lemma 16 Let N(x) be as defined in (6) and LN be as defined in (7). Then

1. tr
(
N(x)2

)
≤ β2

2. tr
(

(N(x)−N(y))
2
)
≤ L2

N‖x− y‖
2
2

3. tr
(

(N(x)−N(y))
2
)
≤ 8β2

cm
· LN‖x− y‖2.

Proof of Lemma 16
The first inequality holds because N(x)2 := M(x)2 − c2mI , and then applying Lemma 15.1, and the fact that
tr
(
M(x)2 − c2mI

)
≤ tr

(
M(x)2

)
by Assumption B.4.

The second inequality is a immediate consequence of Lemma 17, Lemma 15.2, and the fact that λmin
(
N(x)2

)
=

λmin
(
M(x)2 − c2m

)
≥ c2m by Assumption B.4.

The proof for the third inequality is similar to the second inequality, and follows from Lemma 15 and Lemma 17.

�

Lemma 17 (Simplified version of Lemma 1 from (Eldan et al., 2018)) Let A, B be positive definite matrices. Then

tr
((√

A−
√
B
)2
)
≤ tr

(
(A−B)2A−1

)
E. Defining f and related inequalities
In this section, we define the Lyapunov function f which is central to the proof of our main results. Here, we give an
overview of the various functions defined in this section:

1. g(z) : Rd → R+: A smoothed version of ‖z‖2, with bounded derivatives up to third order.

2. q(r) : R+ → R+: A concave potential function, similar to the one defined in (Eberle, 2016), which has bounded
derivatives up to third order everywhere except at r = 0.

3. f(z) = q(g(z)) : Rd → R+, a concave function which upper and lower bounds ‖z‖2 within a constant factor, has
bounded derivatives up to third order everywhere.

Lemma 18 (Properties of f ) Let ε satisfy ε ≤ Rq
αqRq2+1

. We define the function

f(z) := q(g(z))

Where q is as defined in (39) Appendix E.1, and g is as defined in Lemma 20 (with parameter ε). Then

1. (a) ∇f(z) = q′(g(z)) · ∇g(z)

(b) For ‖z‖2 ≥ 2ε,∇f(z) = q′(g(z)) z
‖z‖2

(c) For all z, ‖∇f(z)‖2 ≤ 1.

2. (a) ∇2f(z) = q′′(g(z))∇g(z)∇g(z)T + q′(g(z))∇2g(z)

(b) For r ≥ 2ε,∇2f(z) = q′′(g(z)) zz
T

‖z‖22
+ q′(g(z)) 1

‖z‖2

(
I − zzT

‖z‖22

)
(c) For all z,

∥∥∇2f(z)
∥∥

2
≤ 2

ε

(d) For all z, v, vT∇2f(z)v ≤ q′(g(z))
‖z‖2

3. For any z,
∥∥∇3f(z)

∥∥
2
≤ 9

ε2

4. For any z, f(z) ∈
[

1
2 exp

(
− 7αqRq2

3

)
g(‖z‖2), g(‖z‖2)

]
∈
[

1
2 exp

(
− 7αqRq2

3

)
(‖z‖2 − 2ε), ‖z‖2

]
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Proof of Lemma 18

1. (a) chain rule
(b) Use definition of ∇g(z) from Lemma 20.
(c) By definition,∇f(z) = q′(g(z))∇g(z). From Lemma 21, |q′(g(z))| ≤ 1. By definition,∇g(z) = h′(‖z‖2) z

‖z‖2
.

Our conclusion follows from h′ ≤ 1 using item 2 of Lemma 19.

2. (a) chain rule
(b) by item 2 b) of Lemma 20
(c) by item 1 c) and item 2 d) of Lemma 20, and item 3 and item 4 of Lemma 21, and our assumption that

ε ≤ Rq
αq+Rq2+1

.

(d) by item 4 of Lemma 21), and items 2 c) and 2 d) of Lemma 20, and our expression for∇2f(z) established in item
2 a).

3. It can be verified that

∇3f(z) =q′′′(g(z)) · ∇g(z)
⊗

3 + q′′(g(z))∇g(z)
⊗
∇2g(z) + q′′(g(z))∇2g(z)

⊗
∇g(z)

+ q′′(g(z))∇g(z)
⊗
∇2g(z) + q′(g(z))∇3g(z)

Thus ∥∥∇3f(z)
∥∥

2
≤|q′′′(g(z))|‖∇g(z)‖32 + 3q′′(g(z))‖∇g(z)‖2

∥∥∇2g(z)
∥∥

2
+ q′(g(z))

∥∥∇3g(z)
∥∥

≤5

(
αq +

1

Rq2

)(
αqRq2 + 1

)
+ 3

(
5αqRq

4
+

4

Rq

)
· 1

ε
+

1

ε2

≤ 9

ε2

Where the first inequality uses Lemma 21 and Lemma 20, and the second inequality assumes that ε ≤ Rq
αqRq2+1

4.

f(z) ∈
[

1

2
exp

(
−7αqRq2

3

)
g(‖z‖2), g(‖z‖2)

]
∈
[

1

2
exp

(
−7αqRq2

3

)
(‖z‖2 − 2ε), ‖z‖2

]
The first containment is by Lemma 21.2.: 1

2 exp
(
− 7αqRq2

3

)
· g(z) ≤ q(g(z)) ≤ g(z). THe second containment is by

Lemma 20.4: g(‖z‖2) ∈ [‖z‖2 − 2ε, ‖z‖2].

�

Lemma 19 (Properties of h) Given a parameter ε, define

h(r) :=


r3

6ε2 , for r ∈ [0, ε]
ε
6 + r−ε

2 + (r−ε)2
2ε − (r−ε)3

6ε2 , for r ∈ [ε, 2ε]
r, for r ≥ 2ε

1. The derivatives of h are as follows:

h′(r) =


r2

2ε2 , for r ∈ [0, ε]
1
2 + r−ε

ε −
(r−ε)2

2ε2 , for r ∈ [ε, 2ε]
1, for r ≥ 2ε

h′′(r) =


r
ε2 , for r ∈ [0, ε]
1
ε −

r−ε
ε2 , for r ∈ [ε, 2ε]

0, for r ≥ 2ε

h′′′(r) =


1
ε2 , for r ∈ [0, ε]
− 1
ε2 , for r ∈ [ε, 2ε]

0, for r ≥ 2ε
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2. (a) h′ is positive, motonically increasing.
(b) h′(0) = 0, h′(r) = 1 for r ≥ ε
(c) h′(r)

r ≤ min
{

1
ε ,

1
r

}
for all r

3. (a) h′′(r) is positive
(b) h′′(r) = 0 for r = 0 and r ≥ 2ε

(c) h′′(r) ≤ 1
ε

(d) h′′(r)
r ≤ 1

ε2

4. |h′′′(r)| ≤ 1
ε2

5. r − 2ε ≤ h(r) ≤ r

Proof of Lemma 19
The claims can all be verified with simple algebra. �

Lemma 20 (Properties of g) Given a parameter ε, let us define

g(z) := h(‖z‖2)

Where h is as defined in Lemma 19 (using parameter ε). Then

1. (a) ∇g(z) = h′(‖z‖2) z
‖z‖2

(b) For ‖z‖2 ≥ 2ε,∇g(z) = z
‖z‖2 .

(c) For any ‖z‖2, ‖∇g(z)‖2 ≤ 1

2. (a) ∇2g(z) = h′′(‖z‖2) zz
T

‖z‖22
+ h′(‖z‖2) 1

‖z‖2

(
I − zzT

‖z‖22

)
(b) For ‖z‖2 ≥ 2ε,∇2g(z) = 1

‖z‖2

(
I − zzT

‖z‖22

)
.

(c) For ‖z‖2 ≥ 2ε,
∥∥∇2g(z)

∥∥
2

= 1
‖z‖2

(d) For all z,
∥∥∇2g(z)

∥∥
2
≤ 1

ε

3.
∥∥∇3g(z)

∥∥
2
≤ 5

ε2

4. ‖z‖2 − 2ε ≤ g(z) ≤ ‖z‖2.

Proof of Lemma 20
All the properties can be verified with algebra. We provide a proof for 3. since it is a bit involved.

Let us define the functions κ1(z) = ∇(‖z‖2), κ2(z) = ∇2(‖z‖2), κ3(z) = ∇3(‖z‖2). Specifically,

κ1(z) =
z

‖z‖2

κ2(z) =
1

‖z‖2

(
I − zzT

‖z‖22

)
κ3(z) =− 1

‖z‖22
z

‖z‖2

⊗(
I − zzT

‖z‖22

)
+

1

‖z‖2

(
z

‖z‖2

⊗
κ2(z) + κ2(z)

⊗ z

‖z‖2

)

It can be verified that ∥∥κ2(z)
∥∥

2
=

1

‖z‖2∥∥κ3(z)
∥∥

2
=

1

‖z‖22
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It can be verified that∇2g(z) has the following form:

∇3g(z) = h′′′(‖z‖2)
(
κ1(z)

)⊗ 3
+ h′′(‖z‖2)κ1(z)

⊗
κ2(z) + h′′(‖z‖2)κ2(z)

⊗
κ1(z)

+ h′(‖z‖2)κ3(z) + h′′(‖z‖2)κ1(z)
⊗

κ2(z)

Thus ∥∥∇3g(z)
∥∥

2
≤ |h′′′(‖z‖2)|+ 3

h′′(‖z‖2)

‖z‖2
+
h′(‖z‖2)

‖z‖22
≤ 5

ε2

Where we use properties of h from Lemma 19.

The last claim follows immediately from Lemma 19.4. �

E.1. Defining q
In this section, we define the function q that is used in Lemma 18. Our construction is a slight modification to the original
construction in (Eberle, 2011).

Let αq andRq be as defined in (7). We begin by defining auxiliary functions ψ(r), Ψ(r) and ν(r), all from R+ to R:

ψ(r) := e−αqτ(r) , Ψ(r) :=

∫ r

0

ψ(s)ds , ν(r) := 1− 1

2

∫ r
0
µ(s)Ψ(s)
ψ(s) ds∫ 4Rq

0
µ(s)Ψ(s)
ψ(s) ds

, (38)

Where τ(r) and µ(r) are as defined in Lemma 22 and Lemma 23 withR = Rq .

Finally we define q as

q(r) :=

∫ r

0

ψ(s)ν(s)ds. (39)

We now state some useful properties of the distance function q.

Lemma 21 The function q defined in (39) has the following properties.

1. For all r ≤ Rq , q′′(r) + αqq
′(r) · r ≤ −

exp

(
− 7αqRq2

3

)
32Rq2 q(r)

2. For all r,
exp

(
− 7αqRq2

3

)
2 · r ≤ q(r) ≤ r

3. For all r,
exp

(
− 7αqRq2

3

)
2 ≤ q′(r) ≤ 1

4. For all r, q′′(r) ≤ 0 and |q′′(r)| ≤
(

5αqRq
4 + 4

Rq

)
5. For all r, |q′′′(r)| ≤ 5αq + 2αq

(
αqRq2 + 1

)
+

2(αqRq2+1)
Rq2

Proof of Lemma 21

Proof of 1. It can be verified that

ψ′(r) =ψ(r)(−αqτ ′(r))

ψ′′(r) =ψ(r)
(

(αqτ
′(r))

2
+ αqτ

′′(r)
)

ν′(r) =− 1

2

µ(r)Ψ(r)
ψ(r)∫ 4Rq

0
µ(s)Ψ(s)
ψ(s) ds
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For r ∈ [0,Rq], τ ′(r) = r, so that ψ′(r) = ψ(r)(−αqr). Thus

q′(r) =ψ(r)ν(r)

q′′(r) =ψ′(r)ν(r) + ψ(r)ν′(r)

=ψ(r)ν(r)(−αqr) + ψ(r)ν′(r)

=− αqrν′(r) + ψ(r)ν′(r)

q′′(r) + αqrq
′(r) =ψ(r)ν′(r)

=− 1

2

µ(r)Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s) ds

=− 1

2

Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s) ds

Where the last equality is by definition of µ(r) in Lemma 23 and the fact that r ≤ Rq .

We can upper bound∫ 4Rq

0

µ(s)Ψ(s)

ψ(s)
ds ≤

∫ 4Rq

0

Ψ(s)

ψ(s)
ds ≤

∫ 4Rq
0

sds

ψ(4Rq)
=

16Rq2

ψ(4Rq)
≤16Rq2 · exp

(
7αqRq2

3

)
Where the first inequality is by Lemma 23, the second inequality is by the fact that ψ(s) is monotonically decreasing, the
third inequality is by Lemma 22.

Thus

q′′(r) + αqrq
′(r) ≤− 1

2

exp
(
− 7αqRq2

3

)
16Rq2

Ψ(r)

≤−
exp

(
− 7αqRq2

3

)
32Rq2 q(r)

Where the last inequality is by Ψ(r) ≥ q(r).

Proof of 2. Notice first that ν(r) ≥ 1
2 for all r. Thus

q(r) :=

∫ r

0

ψ(s)ν(s)ds

≥1

2

∫ r

0

ψ(s)ds

≥
exp

(
− 7αqRq2

3

)
2

· r

Where the last inequality is by Lemma 22.

Proof of 3. By definition of f , q′(r) = ψ(r)ν(r), and

exp
(
− 7αqRq2

3

)
2

≤ ψ(r)ν(r) ≤ 1

Where we use Lemma 22 and the fact that ν(r) ∈ [1/2, 1]

Proof of 4. Recall that

q′′(r) = ψ′(r)ν(r) + ψ(r)ν′(r)
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That q′′ ≤ 0 can immediately be verified from the definitions of ψ and ν.

Thus

|q′′(r)| ≤|ψ′(r)ν(r)|+ |ψ(r)ν′(r)|
≤αqτ ′(r) + |ψ(r)ν′(r)|

From Lemma 22, we can upperbound τ ′(r) ≤ 5Rq
4 . In addition, Ψ(r) =

∫ r
0
ψ(s) ≥ rψ(r), so that

Ψ(r)

ψ(r)
≥ r (40)

(Recall again that ψ(s) is monotonically decreasing). Thus Ψ(r)/r ≥ r for all r. In addition, using the fact that ψ(r) ≤ 1,

Ψ(r) =

∫ r

0

ψ(s)ds ≤ r (41)

Combining the previous expressions,

|ψ(r)ν′(r)| =

∣∣∣∣∣∣12 µ(r)Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s) ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣12 µ(r)r∫Rq
0

Ψ(s)
ψ(s)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣12 4Rq∫Rq
0

sds

∣∣∣∣∣
≤ 4

Rq

Where the first inequality are by definition of µ(r) and (41), and the second inequality is by (40) and the fact that µ(r) = 0
for r ≥ 4Rq . Combining with our bound on ψ′(r)ν(r) gives the desired bound.

Proof of 5.

q′′′(r) = ψ′′(r)ν(r) + 2ψ′(r)ν′(r) + ψ(r)ν′′(r)

We first bound the middle term:

|ψ′(r)ν′r)| =|ψ(r)(αqτ
′(r))ν′r)|

≤αq|τ ′(r)||ψ(r)ν′r)|

≤5αqRq
4

· 4

Rq
≤5αq

Where the second last line follows form Lemma 22 and our proof of 4..

Next,

ψ′′(r) = ψ(r)
(
α2
qτ
′(r)2 − αqτ ′′(r)

)
Thus applying Lemma 22.1 and Lemma 22.3,

|ψ′′(r)ν(r)| ≤2α2
qRq

2 + αq
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Finally,

ν′′(r) =
1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s) ds

· d
dr
µ(r)Ψ(r)/ψ(r)

Expanding the numerator,

d

dr

µ(r)Ψ(r)

ψ(r)
=µ′(r)

Ψ(r)

ψ(r)
+ µ(r)− µ(r)

Ψ(r)ψ′(r)

ψ(r)2

=µ′(r)
Ψ(r)

ψ(r)
+ µ(r) + µ(r)

Ψ(r)ψ(r)αqτ
′(r)

ψ(r)2

Thus

ψ(r)ν′′(r) =
1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s) ds

· (µ′(r)Ψ(r) + µ(r)ψ(r) + µ(r)Ψ(r)αqτ
′(r))

Using the same argument as from the proof of 4., we can bound

1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s) ds

≤ 1

2
∫Rq

0
sds

≤ 1

Rq2

Finally, from Lemma 23, |µ′(r)| ≤ π
6Rq , so

|ψ(r)ν′′(r)| ≤π/6 + 1 + 5αqRq2/4

Rq2

≤2(αqRq2 + 1)

Rq2

�

Lemma 22 Let τ(r) : [0,∞)→ R be defined as

τ(r) =


r2

2 , for r ≤ R
R2

2 +R(r −R) + (r−R)2

2 − (r−R)3

3R , for r ∈ [R, 2R]
5R2

3 +R(r − 2R)− (r−2R)2

2 + (r−2R)3

12R , for r ∈ [2R, 4R]
7R2

3 , for r ≥ 4R]

Then

1. τ ′(r) ∈ [0, 5R
4 ], with maxima at r = 3R

2 . τ ′(r) = 0 for r ∈ {0}
⋃

[4R,∞)

2. As a consequence of 1, τ(r) is monotonically increasing

3. τ ′′(r) ∈ [−1, 1]

Proof of Lemma 22
We provide the derivatives of τ below. The claims in the Lemma can then be immediately verified.

τ ′(r) =


r, for r ≤ R
R+ (r −R)− (r−R)2

R , for r ∈ [R, 2R]

R− (r − 2R) + (r−2R)2

4R , for r ∈ [2R, 4R]
0, for r ≥ 4R]
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τ ′′(r) =


1, for r ≤ R
1− 2(r−R)

R , for r ∈ [R, 2R]
−1 + r−2R

2R , for r ∈ [2R, 4R]
0, for r ≥ 4R]

�

Lemma 23 Let

µ(r) :=


1, for r ≤ R
1
2 + 1

2 cos
(
π(r−R)

3R

)
, for r ∈ [R, 4R]

0, for r ≥ 4R

Then

µ′(r) :=


0, for r ≤ R
− π

6R sin
(
π(r−R)
R

)
, for r ∈ [R, 4R]

0, for r ≥ 4R

Furthermore, µ′(r) ∈ [− π
6R , 0]

This Lemma can be easily verified by algebra.

F. Miscellaneous
The following Theorem, taken from (Eldan et al., 2018), establishes a quantitative CLT.

Theorem 5 Let X1...Xn be random vectors with mean 0, covariance Σ, and ‖Xi‖ ≤ β almost surely for each i. Let
Sn = 1√

n

∑n
i=1Xi, and let Z be a Gaussian with covariance Σ, then

W2(Sn, Z) ≤ 6
√
dβ
√

log n√
n

Corollary 24 Let X1...Xn be random vectors with mean 0, covariance Σ, and ‖Xi‖ ≤ β almost surely for each i. let Y be
a Gaussian with covariance nΣ. Then

W2

(∑
i

Xi, Y

)
≤ 6
√
dβ
√

log n

This is simply taking the result of Theorem 5 and scaling the inequality by
√
n on both sides.

The following Lemma is taken from (Cheng et al., 2019) and included here for completeness.

Lemma 25 For any c > 0, x > 3 max
{

1
c log 1

c , 0
}

, the inequality

1

c
log(x) ≤ x

holds.

Proof
We will consider two cases:

Case 1: If c ≥ 1
e , then the inequality

log(x) ≤ cx
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is true for all x.

Case 2: c ≤ 1
e .

In this case, we consider the Lambert W function, defined as the inverse of f(x) = xex. We will particularly pay attention
to W−1 which is the lower branch of W . (See Wikipedia for a description of W and W−1).

We can lower bound W−1(−c) using Theorem 1 from (Chatzigeorgiou, 2013):

∀u > 0, W−1(−e−u−1) > −u−
√

2u− 1

equivalently ∀c ∈ (0, 1/e), −W−1(−c) < log

(
1

c

)
+ 1 +

√
2

(
log

(
1

c

)
− 1

)
− 1

= log

(
1

c

)
+

√
2

(
log

(
1

c

)
− 1

)
≤ 3 log

1

c

Thus by our assumption,

x ≥ 3 · 1

c
log

(
1

c

)
⇒x ≥ 1

c
(−W−1(−c))

then W−1(−c) is defined, so

x ≥ 1

c
max {−W−1(−c), 1}

⇒(−cx)e−cx ≥ −c
⇒xe−cx ≤ 1

⇒ log(x) ≤ cx

The first implication is justified as follows: W−1
−1 : [− 1

ε ,∞) → (−∞,−1) is monotonically decreasing. Thus its
inverse W−1

−1 (y) = yey, defined over the domain (−∞,−1) is also monotonically decreasing. By our assumption,
−cx ≤ −3 log 1

c ≤ −3, thus −cx ∈ (−∞,−1], thus applying W−1
−1 to both sides gives us the first implication. �

G. Experiment Details
In this section, we provide additional details of our experiments. In particular, we explain the CNN architecture that we use
in our experiments. Denote a convolutional layer with p input filters and q output filters by conv(p, q), a fully connected
layer with q outputs by fully_connect(q), and a max pooling operation with stride 2 as pool2. Let ReLU(x) = max{x, 0}.
Then the CNN architecture in our paper is the following:

conv(3, 32)⇒ ReLU⇒ conv(32, 64)⇒ ReLU⇒ pool2⇒ conv(64, 128)⇒ ReLU⇒ conv(128, 128)

⇒ ReLU⇒ pool2⇒ conv(128, 256)⇒ ReLU⇒ conv(256, 256)⇒ ReLU⇒ pool2⇒ fully_connect(1024)

⇒ ReLU⇒ fully_connect(512)⇒ ReLU⇒ fully_connect(10).


