Stochastic Gradient and Langevin Processes

Appendix
A. Proofs for Convergence under Gaussian Noise (Theorem 1)

A.1. Proof Overview
The main proof of Theorem 1 is contained in Appendix A.4.

Here, we outline the steps of our proof:

1. In Appendix A.2, we construct a coupling between (3) and (2) over a single step (i.e. for ¢t € [k, (k + 1)d], for some k
and 9).

2. Appendix A.3, we prove Lemma 1, which shows that under the coupling constructed in Step 1, a Lyapunov function
f(xp — yr) contracts exponentially with rate A, plus a discretization error term. The function f is defined in Appendix
E, and sandwiches ||z — yr||,. In Corollary 2, we apply the results of Lemma 1 recursively over multiple steps to
give a bound on f(zrs — yrs) for all k, and for sufficiently small 6.

3. Finally, in Appendix A.4, we prove Theorem 1 by applying the results of Corollary 2, together with the fact that f(z)

upper bounds ||z||, up to a constant factor.

A.2. A coupling construction
In this subsection, we will study the evolution of (3) and (2) over a small time interval. Specifically, we will study

dys = — VU (yo)dt + M (yo)dB, 21)
One can verify that (20) is equivalent to (3), and (21) is equivalent to a single step of (2) (i.e. over an interval ¢ < §).

We first give the explicit coupling between (20) and (21): ( A similar coupling in the continuous-time setting is first seen in
(Gorham et al., 2016) in their proof of contraction of (3).)

Given arbirary (zo, yo), define (¢, y;) using the following coupled SDE:
¢ ¢ ¢
Ty =0 + / —VU(zs)ds + / cmdVy + / N(zs)dW, (22)
0 0 0

t t t
Y =yo+/ —VU(yo)dt+/ cm(1—2%vf)st+/ N (yo)dWs
0 0 0

Where dV; and dW, are two independent standard Brownian motion, and

Ty — Yt

LTI
2t — yll2

L{llze = will2 € [26,Rq)} (23)

By Lemma 6, we show that (20) has the same distribution as x; in (22), and (21) has the same distribution as y; in (22).
Thus, for any ¢, the process (¢, y;) defined by (22) is a valid coupling for (20) and (21).

A.3. One step contraction

Lemma 1 Let f be as defined in Lemma 18 with parameters € satisfying ¢ < Let x¢ and y; be as defined in (22).

Rq
g RqZF1"
e e
B’ 6L\/R2+B2/m

E[f(zr —yr)] < e ME[f(z0 — yo)] + 3T (L + LY )e

If we assume that E [Hyng} < 8(R*+p%*/m) and T < min{ } then

Remark 8 For ease of reference: m, L, Lr, R are from Assumption A, cy,, 3 are from Assumption B, ag,Rq, Ly, A are
defined in (7).

Proof of Lemma 1
For notational convenience, for the rest of this proof, let us define z; := z; — y; and V; := VU (x¢) — VU (y), Ay =
VU(yo) — VU (ys) Nt := N(z¢) — N(ys).
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It follows from (22) that
dzy = =Vdt 4+ Agdt + 2¢ ] dVi + (N + N(ye) — N(yo))dW; (24)

Using Ito’s Lemma, the dynamics of f(z;) is given by

df (z1)

=(Vf(z0),dze) + 260,00 (V2 f(2) (v ) )t + 5 (VQf(Zt)(Nt + N(ye) — N(yo))2)dt
—(Vf(z), Vi) dt + (Vf(z), A) dt + <Vf 2t), 2¢mYeYE dVi + (Ny + N(yz) — N(yo))dWy)
@ @ ®
+ 205, (V2f (20) () )) dt + 5 (v2f<zt)(Nt + Nly) = N(w0))*) d (25)
@ ®

@ goes to 0 when we take expectation, so we will focus on (1),(2),(4), @ We will consider 3 cases
Case 1: || z]]2 < 2¢

Vf(2)|ly < 1. Using Assumption A.1, | V| < L| 2
@ < IVelly < Lllzell, < 2Le

9» SO that

Also by Cauchy Schwarz,
@ =(Vf(z), Ar) < |1 A¢lly < Lllys = woll,

Since 7; = 0 in this case by definition in (23), @ =0.
Using Lemma 18.2.c. |[V2f(z)||, < 2, so that
2
®<= (tr(Nt2 + N(y:) = N(yo)) )

<2 (w(?) + e (¥ ar) - Nw))?))

2L2 )
< m%m+mtyﬂg

s4L2 —yoll3

Where the second inequality is by Young’s inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality is
by our assumption that ||z, < 2e.

Summing these,
2L3
O+@+@+@ <AL+ LR )e+ Lliye = volly + = llye = voll2

Case 2: ||z¢]]2 € (26 Ry)

In this case, v = B Let g be as defined in (39) and g be as defined in Lemma 20. By items 1(b) and 2(b) of Lemma 18
and items 1(b) anc{ élb) of Lemma 20,

Vf(z) =q'(9(2))Vg(zt)

=q(g(z1)) —
||Zt||2

V2 f(z) =4"(9(2)) V9 (26)Va(z)" + ¢ (9(2)) V29 ()
wzl 1 2zl
¢ ale0) ot o) o (1 758

2115 [P 2115
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Once again, by Assumption A.3,

D < (gE)IVelly < ¢ (9(2) - Lr - lzell2 <L - ' (9(2))g(2t) + 2Le

Where the last inequality uses Lemma 20.4. We can also verify that
@ < Ly — woll,
Using the expression for V2 f(z;),
@ = 2Cmtf(v2f(2t)%%T) = 2072n : q//(g(zt))

Finally,
S (VAN + Nl - Nw))?)
1 Y 1 _ mE B 2
‘2“(("“ QU t||2+Q(( ”nztu(I ztnz))(N”N(yt’ N@“”)
1
3
q

o (¢ (ot (1= 220 ) Y, + N ) — Nego))?
< ||Zt\|2

12113

(W) + (N (o) = N(wo))?))

= lzll

L llye — woll3
</ (g(a)) - Bl + L= 02

L3 Yt — Yo 2
<q/(g(e)) - Livgle) + X0l g2

The above uses multiples times the fact that 0 < ¢’ < 1 and ¢” < 0 (proven in items 3 and 4 of Lemma 21). The second

inequality is by Young’s inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality uses item 4 of
Lemma 20.

Summing these,

LQ _ 2
D+ @+ @+® <(Ln + L) (0())o(z0) + 262" (a(z)) + 200 4o 4 2
2¢;, exp (_77%373[,2)

Ladlye = wl
2
32R,

<
- 2e

a(g(z0)) + 2(L+ LY

L2 _ 2
< Mgz + DI o412

_ L?v”?/t —y0||§ 2
=—M(z) + — 9e +2(L + Ly)e+ Lllye — yoll,

Where the last inequality follows from Lemma 21.1. and the definition of A in (7).

Case 3: [|z¢]|2 > R,
In this case, 7, = 0. Similar to case 2,

2t

el

Vi(z) =q'(9(2))

Thus by Assumption A.3,

O = (¢ o) 22 -9

< —mq'(g(z0)ll2tl
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Where the inequality is by Assumption A.3.
For identical reasons as in Case 1, @ < Lg|ly+ — yoll5, and @ = 0. Finally,

® =5tr(V2 £z (N, + N() — N(wo))?)

=g ("ot iy + oo i (1= i ) e = )

<;tr(<q’<g<zt>> - (I - ﬁfé))(m NG - N<y0>>2)
<TVE)(e(n2) 4 (N () - Nw)?))

[EAP

Where the first inequality is because ¢ < 0 from item 4 of Lemma 21, the second inequality is by Young’s inequality.
(These steps are identical to Case 2). Continuing from above, and using item 2 and 3 of Lemma 16,

® <q'(9(=)) - <8ﬁ2LN n LR llye — y0||§>
€

Cm

<d'(9(z0)) - (G lztll2) + (g (0) - (LN'y‘y”)

Where the second inequality is by our definition of R, in the Lemma statement, which ensures that 85 Ly < TR <
S llzell2.

Thus

O+O0+@®+®

m L llye — woll3
< = (el + Ll = sl + 5 GGl + (o) - (L2002

2

m L 2
<= ozl + X~ ol + Ll - voll

L2 2
<= Af(z) + ?NHyt =yoll5 + Llly: — voll,

where the second inequality uses ¢’ < 1 from item 3 of Lemma 21, the third inequality uses our definition of X in (7).

Combining the three cases, (25) can be upper bounded with probability 1:

L2
df (ze) < —=Af(2) + ?N\Iyt —yolls + Llye — yolly + (V£ (2)s 2emrevd dVi + (Ny + N(ye) — N(yo))dWy )

To simplify notation, let us define Gy € R'*?® as Gy := [V f(2)T2emyvE, VF(2)T (N + N(y) — N(yo))]. and let 4,

be a 2d-dimensional Brownian motion from concatenating A; = [;{;} . Thus
t

L2
df (zt) < —=Af(z)dt + <€N||yt - yo||§ + Llly: — yo||2> + GidA;.

We will study the Lyapunov function

t B 2 t Mg
Lyo=f(z) - / e M- < N||yeyo||2+L||yeyo|2)d5 / e NG dA,.
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By taking derivatives, we see that

L2
dL; < — Mf(z)dt + <€N||Z/t —yoll3 + Llly: — yo||2>dt + GidA;

t 2 2
sy [ L L
+ A(/ e M )(EN lys — yoll3 + Lllys — yo||2>d8)dt - (EN e — volls + Llly: — yollz>dt
0

t
+ A( / e-W—s)GSdAS) dt — G,dA,
0

=— ALdt

We can then apply Gronwall’s Lemma to £;, so that
Ly < e MLy,

which is equivalent to
T L2 5 T
Fer) = [T (EX g = gl + Ll =l )ds = [ NG, < T )
0 0

. . T . .
Observe that G5 is measurable wrt the natural filtration generated by Ay, so that fo e MT=9)G dA, is a martingale. Thus
taking expectations,

T 12
B[f(er)] < B Gol + | 72E Iy —woll) + LBl — ol ) s

By Lemma 11, E {Hyt - y0||§] <t’L°’E {||y0||§} + 132, so that

T 52 3172 12 2712
L T° L5, L T-L
| Bl - wols] ds < T [ols] + T2
0

€

LE(llys = yoll,] < T?L? /E {Hyoug} LT3

Furthermore, using our assumption in the Lemma statement that 7' < min {Gz, 6L\/R:+T/m} and E [Ilyollﬁ} <
8(R? + 2/m), we can verify that

13 2 J )
/0 ?NE |:||ys — y0||2i| dS S ZTLNE +TLN€

1
LE [l = wolls} € 5TLe+TLe

Combining the above gives
E[f(er)] < e ME[f(20)] + 3T (L + L} )e
Corollary 2 Let f be as defined in Lemma 18 with parameter € satisfying € < %‘QH
q’rq
. 62 € — — . . e
Let § < min {132’ ST TR }, and let T, and y; have dynamics as defined in (3) and (2) respectively, and suppose that

the initial conditions satisfy E [||§70 Hg} < R*+f3?/mand E NQO ||§] < R? + 32 /m. Then there exists a coupling between
T and Yy such that

B [f(@ — 510)] < e [f(z0 — )] + (L -+ L3)e
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Proof of Corollary 2
From Lemma 7 and 8, our initial conditions imply that for all ¢, E [||z,[|3] < 6<R2 + %) and E [[|7ks]3] < S(R2 + %z)

Consider an arbitrary k, and for ¢t € [k9, (k + 1)0), define

Ty = Tps4e and Yy := Yrsat

Under this definition, x; and y; have dynamics described in (20) and (21). Thus the coupling in (22), which describes a
coupling between x; and y, equivalently describes a coupling between Z; and ; over t € [kd, (k + 1)d).

We now apply Lemma 1. Given our assumed bound on ¢ and our proven bounds on E {Hjt ||§] and E {Hﬂt ||§} ’
E [f(Z@t1)s — Ue+1)5)]
=E[f(zs — ys)]

<e MK [f(zo — yo)] + 66(L + L3 )e
= MK [f(Zrs — Jrs)| + 60(L + L% e

Applying the above recursively gives, for any ¢

E[f(Zis — Tis)] < e MR [f(Zo — 70)] + g(L +L%)e

A.4. Proof of Theorem 1

For ease of reference, we re-state Theorem 1 below as Theorem 3 below. We make a minor notational change: using the
letters Z; and y; in Theorem 3, instead of the letters x; and y; in Theorem 1. This is to avoid some notation conflicts in the
proof.

Theorem 3 (Equivalent to Theorem 1) Ler x; and yj; have dynamics as defined in (3) and (2) respectively, and suppose
that the initial conditions satisfy E [HJ’UOHE} < R?*+ f3%*/m and E [||§0H§} < R? + 8%2/m. Let ¢ be a target accuracy

2
satisfying é < (W) exp (TagRy/3) - — Ry LetSbea step size satisfying

agRZ+1"
A2€2
(a3 2
sz (e ) e (L2570 )
6 < min oxe

(L24L%;) exp (77(1(1;1‘12 ) \/m
If we assume that To = Y, then there exists a coupling between T, and Y, such that for any k,
E{l|Zrs — Yello] < €

3a,Ry> R24-8%/m

52 log Z , then

Alternatively, if we assume k >
Wi(p*, pis) < 2¢
where p} := Law (7).

Proof of Theorem 3

2
Lete := 16(L1L§V) exp (— M“;z“ )é. Let f be defined as in Lemma 18 with the parameter e.
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El|zis — yus|
Ta R,?
<2exp ( )IE (Zis — Uis)] + 2exp (qu3q>6
6 Ta R,>
<2exp< )( _’\15E xo—ﬂo)]+X(L+L2) >+2exp<aqsq)e
16(L + L3 Ta R,>
<2exp ( ) _’\“SIE fl@o— yo)] + % exp (ang> € (26)

=2exp (M?])G_MSE [f(Zo — 0)] + €

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 2 (notice that § satisfies the
(L+L3%)
y—

requirement on 7" in Theorem 1, for the given ). The third inequality uses the fact that 1 < L/m <

The first claim follows from substituting o = o into (26), so that the first term is 0, and using the definition of ¢, so that
the second term is 0.

For the second claim, let To ~ p*, the invariant distribution of (3). From Lemma 7, we know that Z satisfies the required
initial conditions in this Lemma. Continuing from (26),

E[|Zis — gislls)
Ta Ry Y _ _ 6
<zoxp (725 ) (2 [l + [l] + 5 (2 + L)) +

2 2
<2exp (7%1;3(1) (26_/\i6(R2 + 52/m)) + ? exp (2%46];3(1) (L + L?\,)e

2
=4 exp (70[‘1;3‘1> (e—/\ié (R2 + 52/m)) +é

2 2
By our assumption that ¢ > % . 3aqRq2 log w, the first term is also bounded by €, and this proves our second claim.
|

A.5. Simulating the SDE
One can verify that the SDE in (2) can be simulated (at discrete time intervals) as follows:

Yoor1)s = Yks — OV U (Yrs) + VM (Yo )0
Where ), ~ N (0, I). This however requires access to M (yx,5), which may be difficult to compute.
If for any y, one is able to draw samples from some distribution p,, such that
I By, [€] =0
2. Eeop, [667] = M(y)
3. ||€lly < B almost surely, for some f3.

then one might sample a noise that is ¢ close to M (yxs )6 through Theorem 3.

Specifically, if one draws n samples & .. fn u Dy, and let S, f >, &, Theorem 5 guarantees that
Wo(Sn, M(y)0) < % anog”. We remark that the proof of Theorem 1 can be modified to accommodate for this sampling

error. The number of samples needed to achieve € accuracy will be on the order of n & O(de) =2 = O(e~%).

B. Proofs for Convergence under Non-Gaussian Noise (Theorem 2)
B.1. Proof Overview
The main proof of Theorem 2 is contained in Appendix B.4.
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Here, we outline the steps of our proof:

1. In Appendix B.2, we construct a coupling between (3) and (1) over an epoch which consists of an interval [kd, (k+n)d)
for some k. The coupling in (B.2) consists of four processes (¢, ¥z, vt, w; ), where y; and v are auxiliary processes
used in defining the coupling. Notably, the process (x4, ;) has the same distribution over the epoch as (22).

2. In Appendix B.3, we prove Lemma 3 and Lemma 4, which, combined with Lemma 1 from Appendix A.3, show that
under the coupling constructed in Step 1, a Lyapunov function f(z7 — wr) contracts exponentially with rate A, plus a
discretization error term. In Corollary 5, we apply the results of Lemma 1, Lemma 3 and Lemma 4 recursively over
multiple steps to give a bound on f (s — wys) for all &, and for sufficiently small J.

3. Finally, in Appendix B.4, we prove Theorem 2 by applying the results of Corollary 5, together with the fact that f(z)

upper bounds || z||, up to a constant.

B.2. Constructing a Coupling
In this subsection, we construct a coupling between (1) and (3), given arbitrary initialization (zo, wo). We will consider a
finite time 7" = nd, which we will refer to as an epoch.

1. Let V; and W, be two independent Brownian motion.

2. Using V; and W, define
t t t
Ty =xo + / —VU(xs)ds + / cmdVy + / N (wg)dWy 27
0 0 0
3. Using the same V; and W, in (27), we will define y; as

t t T
Y =wWo +/ —VU (wg)ds +/ cm (I = 2757%L)dVs +/ N(zs)dWsy (28)
0 0 0

Where v, := —=2— - 1 {||z; — y|2 € [2¢, R4)}. The coupling (x, y;) defined in (27) and (28) is identical to the

|$t—yg| 2

coupling in (22) (with yo = wy).

4. We now define a process vgs for k = 0...n:

k—1 k-1
i=0 i=0

where marginally, the variables (7...7,—1) are drawn 4.i.d from the same distribution as in (1).

Notice that yp — wo — TVU (wp) = fOT cmdBy + fOT N (wo)dWy, so that Law(yr — wo — TVU (wp)) =

N (0, TM (wp)?). Notice also that vy — wy — TVU (wg) = V3 3.7 €(wo,m:). By Corollary 24, Wa(yr —
wo —TVU (wy), vr —wg — TVU (wy)) = 61/dd3+/Tog n. Let the joint distribution between (29) and (28) be the one
induced by the optimal coupling between yr — wo — TVU (wp) and vr — wg — TVU (wy), so that

E {HyT - 7JT||§]

\/IE (llyr = TVU (wo) = v + TV (o) ]
=Ws(yr — wg — TVU (wp),vr —we — TVU (wp))
<6VdoS/logn (30)
where the last inequality is by Corollary 24.
5. Given the sequence (7g...7,,—1) from (29), we can define

k-1 k-1
wis =wo+ 3 =0V (wis) + V3 3 E(wismi) D

=0 =0
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specifically, (wg...wps) in (31) and (vy...v,s) in (29) are coupled through the shared (7...7,,—1) variables.
For convenience, we will let vy := v;5 and w; := w;s, where 4 is the unique integer satisfying t € [id, (i + 1)9).

We can verify that, marginally, the process x; in (27) has the same distribution as (3), using the proof as Lemma 6. It is also
straightforward to verify that wys, as defined in (31), has the same marginal distribution as (1), due to the definition of 7; in
(29).

B.3. One Epoch Contraction

In Lemma 3, we prove a discretization error bound between f(z7 — yr) and f(xz7 — vr), for the coupling defined in (27),
(28) and (29).

In Lemma 4, we prove a discretization error bound between f(xr — vr) and f(xzp — wr), for the coupling defined in (27),
(29) and (31).

Lemma 3 Let f be as defined in Lemma 18 with parameter € satisfying € <
(27), (28), (29). Let n be any integer and § be any step size, and let T := nJ.

IfE [onﬂg} <8(R?*+p%*/m), E {Hyoﬂg} < 8(R?+ B%*/m) and T < min {16%, Wjﬂzﬂn)} and

R .
W:QH. Let x4, y; and vy be as defined in

Te’L Te* L2
36452 10g (247 ) 2111 1og (235" )

6 < min

Then

Elf(zr —vr)] = E[f(zr —yr)] <4TLe

Proof
By Taylor’s Theorem,

E[f(zr — vr)]

=E |f(zr —yr) + (Vf(zr — y7), y1 — v1) + /o /05 (V?f(xr —yr + s(yr —vr)), (yr —vr)(yr —vr)") dsdt

=E | f(xr —yr) + (Vf(xo — yo),yr — vr) +{Vf(xr —yr) — V(20 — %0), Y7 — V1)

I @ @

+E /O /Os (V2 f(zr —yr + s(yr — 1)), (yr — vr)(yr — vr)") dsdt

®

We will bound each of the terms above separately.

E|@)
=E[(Vf(zo — y0),yr — vr)]

T
=E

T T n—1
<Vf(x0 —40),n0VU (yo) — ndVU (vo) + /0 —VU (wp)dt + /0 cmdV; + /0 N (wp)dW; + ; \/gf(vo,m)>1
=E[(Vf(zo = y0),ndVU (yo) — ndVU (vo))]

=0
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where the third equality is because [ dB;, fOT dW; and Zfil &(vo, m;) have zero mean conditioned on the information at

time 0, and the fourth equality is because yy = v by definition in (28) and (29)

ge)
=E [(Vf(zr —yr) — Vf(zo — w0),yr — vr)]
VE 197G —vr) — 910~ w0)2] B [l — er]

2 [l =0l + e — w012] [ — orl]
(3218 + AT?) - (6\/%ﬁ10g n)

S
<128 /7 (V)

Where the second inequality is by HV2 f ||2 < = from item 2(c) of Lemma 18 and Young’s inequality. The third inequality is

by Lemma 10 and Lemma 11 and (30)

Finally, we can bound
IV er = yr + s(yr — vr))||yllyr — vrllF] dsdt

//

<2E lyr — orl]

< 72d55% log® n
€
2 from item 2(c) of Lemma 18, the third inequality is by (30)

Where the second inequality is by || V2|,
= fler —yr)]

Summing these 3 terms,
E[f(zr —vr)

128 \/»ﬂ2 (\ﬁm) 36d5ﬁ2 logn

36d(562 log £

128 7
and c = 2146254 ), which shows that
21444 T 128 9
il inielad vV ddl <TL
<€4L2) = Slogl = L2 \Fﬁ ( og < >_ €

Let us bound the first term. We apply Lemma 25 (with z =
1 214 d ﬁ4

914,34
— dp lo

5 et
2100 L
36d05" log 5 <TLe

For the second term, we can again apply Lemma 25 (x = 5 and ¢ = 3¢ ﬂg) which shows that
36d32
g =
€

T

1
g% €L

T _ 36dB? 36d2 T
> 1 -
5= &L °g< 2L ) 7 o

f(.Z‘T — yT)} S 2TL6

The above imply that
E[f(zr —vr)



Stochastic Gradient and Langevin Processes

Lemma 4 Let f be as defined in Lemma 18 with parameter € satisfying € <
(27), (29), (31). Let n be an integer and 6 be a step size, and let T := nd.

Ry .
TR Let x4, vy and wy be as defined in

If we assume that E [||1:0||§} E [||vo||§}, and E [||w0||3} are each upper bounded by 8(R?* + 3?/m) and that T <

: 1 € €? 64LN
Wi | 157, 557750 12867 21ig2ez, |» then

E[f(zr — wr)] — E[f(zr — vr)] <AT(L + LY)e

Remark 9 For sufficiently small e, our assumption on T boils down to T = o(e*)

Proof
First, we can verify using Taylor’s theorem that for any x, y,

1 s
) =F(@) + (VF(@)y — ) + / / (V2f(z + s(y — 2)), (y — 2)(y — 2)T) dsdt (32)
0 0
Vi) =V () + (V2 f(@)y - z) + / / (V3 + sy — 2)), (y — ) (y — 2)T) dsdt (33)
Thus

E[f(zr — wr)]

=E f(l'T - UT) + <Vf($T - UT),UT - U)T> + A /os <V2f($T — v + S(UT — ’U}T)), (UT — wT)(vT — U)T)T> dsdt
=E | f(xr —vr) + (Vf(xo — vo),vr — wr) + (Vf(xr —vr) — Vf(xo — v0),v7 — wr)

i @ @

+E /O /03 <V2f(x:r —or + s(vr —wr)), (vr — wr) (v — wT)T> dsdt

®

Recall from (29) and (31) that

n—1 n—1
Vns =wy + Y OVU (wo) + V3 Y €(wo, ;)
=0 i=0

n—1 n—1
wns =wo + »_ 6VU (wig) + V6 Y &(wis, ;)

=0 =0
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Note that conditioned on the randomness up to time 0, E {Z?:_Ol &(wo, 771)} =FE [22:01 &(wys, m)} =0, so that

Jel

=E [(Vf(% - Uo)ﬂfT - wT)]

<Vf(it() — 1}0), z_: VU(U)Q) — VU(U)Z‘;)>

i=0

) + VOE

<Vf(9€o — o), if(wovm) - iﬁ(wia,m)ﬂ

=0 =0

n—1
—=E <Vf(w0 — ), Z VU (wy) — VU(wi5)>]
i=0
n—1
<63 LE[Jwo — wisll,)
i=0
<TL+\/32T32 < 8T%/%*Lf

where the third equality is becayse £(-,n;) has 0 mean conditioned on the randomness at time 0, and the second inequality is
by Lemma 13.

Next,
E|@)]
=E[(Vf(zr —vr) — Vf(xo — v0),vr — wr)]
E[|Vf(xr —vr) = V(o — vo)l5[lvr — wr]

‘V [l = a0l + llor — eol] /& [lor — wr ]
f\/m. \/32 (T2L2 + TL’g’)Tﬂ2
128Tﬂ2(f Le+TL)

where the second inequality is because HV2 f ||2 < % from item 2(c) of Lemma 18 and by Young’s inequality. The third
inequality is by Lemma 10, Lemma 12 and Lemma 14.

/\

Finally,
E[®)
=E [/01 /OS (V2 f(zr —vr + s(vr — wr)), (v — wr) (vp — wT)T> dsdt]

1 s
S/o /0 E [HVQf(l'T —vr + s(vr — wT))HZHUT - wT||§:| ds

1
<-E [Jvr - wr}]
32 oo 2 2
<—(T?L*+TLE)TB
€
wehere the second inequality is because HV2 f H2 < % from item 2(c) of Lemma 18 and by Young’s inequality. The third
inequality is by Lemma 14.
Summing the above,
Elf(zr —wr) = f(zr — vr)]
3/2 128 . o 32 ar2 2 2
<8T*2L + =T (VTLe + TL) + = (TL* + TLY) T3
€ €
STB/QE
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where the last inequality is by our assumption on 7, specifically,

T < 126862 = T%/2LB < TLe

T < 126552 128T2L62 < TLe

T< m 362 (T3L23?) < TLe

Tgi:Tg ¢ % ETPL282 < TLe
12832 128¢2, e

where the last line uses the fact that 3 > c2,.

|
Ry
Corollary 5 Let f be as defined in Lemma 18 with parameter € satisfying € < m
_ : 1 32 € €2 € LN : T2 L Te* L2
Let 1= mm{lﬁL’ SR 77Tm) 32vEp) 127 Tptey, § and let 0 < min 36462 log (22427 ) " 214dp4 log (2125~ |’

assume additionally that n = T/ is an integer.

Let Ty and wy have dynamics as defined in (3) and (2) respectively, and suppose that the initial conditions satisfy E [Hio Hg} <

R% + 3%/m and E “Wo Hg} < R? + 82 /m. Then there exists a coupling between T, and W, such that

E [f(Zis — 0i5)] < e R [f(Zo — wo)] + g(L +LY)e

Proof
From Lemma 7 and 9, our initial conditions imply that for all ¢, E [||Z,]|3] < (R2 ) and E [[|wgs]3] <8 (R2 + %2)

Consider an arbitrary k, and for ¢ € [0,T'), define
Ty = Tpr4e and  wy = Wrr4e 34

Notice that as described above, z; and w; have dynamics described in (3) and (1). Let x4, w, have joint distribution as
described in (27) and (31), and let (y, v;) be the processes defined in (28) and (29). Notice that the joint distribution
between xz; and w; equivalently describes a coupling between Z; and w; over ¢ € [kT, (k + 1)T).

First, notice that the processes (27) and (28) have the same distribution as (22). We can thus apply Lemma 1:

E[f(zr — yr)] <e ME[f(xo — yo)] + 6T(L + L% )e

By Lemma 3,

Elf(zr —vr)] = E[f(zr —yr)] < 4TLe

By Lemma 4,

E[f(er — wr)] = E[f(zr —vr)] <AT(L + LY)e

Summing the above three equations,
E[f(zr —wr)] < e E[f(zo — wo)] + 14T (L + LY

Where we use the fact that yg = wq by construction in (28).
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Recalling (34), this is equivalent to

E [f(i‘(k+1)T — lf)(k+1)T)] < e ME [f(Zpr — wrr)] + 14T (L + L?V)
Applying the above recursively gives, for any ¢

14 L+L?V)€

E[f(@ir — wir)] < e M E[f(Zo — wo)] + 3 (

B.4. Proof of Theorem 2

For ease of reference, we re-state Theorem 2 below as Theorem 4 below. We make a minor notational change: using the
letters Z; and 7; in Theorem 4, instead of the letters x; and y; in Theorem 2. This is to avoid some notation conflicts in the
proof.

Theorem 4 (Equivalent to Theorem 2) Ler z; and w; have dynamics as defined in (3) and (1) respectively, and sup-
pose that the initial conditions satisfy E [||§:0||§] < R? + 32/m and E [||1I10||§} < R% 4+ B2/m. Let ¢ be a tar-

e 16(L+L3 R TagRe?\ »
get accuracy satisfying € < <(AN)) exp (TagR,/3) - TRy Let e = 16(L1L?V) exp (— L )e. Let
. . 1 2 2 412 . P
T := min {1TL7 8L2(R2B+ﬁ2/m) , 32\656’ 1268[?2 , 2164[32122", and let 0 be a step size satisfying

Te2L Tet 2
36432 log (3“/32) " 914484 log (Qijgff)

6 < min

If we assume that To = Wy, then there exists a coupling between T, and w; such that for any k,

E [k — wrslly] <€

2 2 2
Alternatively, if we assume that k > Saquq & 'Hg / =, then

-log
Wl (p*7p7k1:)6) S 2€7

where pi¥ := Law/(w;).

Proof of Theorem 4
Let f be defined as in Lemma 18 with parameter ¢.

E[||Zis — wis||5)

2
<2exp <7%§Q)E [f (Zis — wis)] + 2 exp < )
2 2
<2exp <7aq;€q ) < AR [f(Zo — wp)] g(L—i— L3 ) ) + 2exp (héq;zq>e
2 ) 16 L2 2
<2exp (qu)e*% [f (@0 — wo)] + (& j ) exp (%) X (395)

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 5 (notice that ¢ satisfies the
(L+L3%)
-

requirement on 7" in Theorem 1, for the given €). The third inequality uses the fact that 1 < L/m <
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The first claim follows from substituting oy = wy into (35), so that the first term is 0, and using the definition of ¢, so that
the second term is 0.

For the second claim, let £y ~ p*, the invariant distribution of (3). From Lemma 7, we know that Z satisfies the required
initial conditions in this Lemma. Continuing from (35),

E (|25 — wis]l,)
Ta Ry Y _ _ 6
<zexp (") (208 [Jmol? + 0ll2] + S+ 1R)e) +

2 2
<2exp (%) (26_/\i6 (R2 + BQ/m)) + ? exp (2%%1;3‘1) (L + L?V)e

2
:4exp (%) (6_)\i5 (R2 + 62/m>> +é

By our assumption that i > 1 - “3agRy %log M , the first term is also bounded by €, and this proves our second claim.

=
|

C. Coupling Properties
Lemma 6 Consider the coupled (x4, y;) in (22). Let p; denote the distribution of x4, and q; denote the distribution of y;.
Let p} and q; denote the distributions of (20) and (21).

If po = ppy and qo = qq, then py = p; and q; = q; for all t.

Proof
Consider the coupling in (22), reproduced below for ease of reference:

t t ¢
Ty =xo + / —VU(xs)ds + / cmdVy + / N(zs)dW,
0 0 0

t t t
Yt =yo+/ —VU(yo)dt+/ cm(I—2vsv;‘P)st+/ N (yo)dWs
0 0 0

Let us define the stochastic process A; := fg M(zs) e dVs + fo )"IN(xs)dW;. We can verify using Levy’s
characterization that A; is a standard Brownian motion: first, since V} and W, are Brownian motions, and N (z) is
differentiable with bounded derivatives, we know that A, has continuous sample paths. We now verify that A{ A7 —1 {i = j}¢
is a martingale.

Notice that dA; = ¢,,dV; + M (x4) "' N(xs)dW,. Then
dAI AT =dAT (eiejT)At
= Ay (ese?) (emdVi + M(zy) " "N(ws)dW,)" + (cmdVi + M(wy) " N(z,)dW,) (e;el )al
1
+ itr((eie? + ejeZT) (c,an(xs)*2 + M(xs)*lN(:cs)QM(xs)*l))dt

where the second inequality is by Ito’s Lemma applied to f(4;) = Al'e; ejTAt. Taking expectations,
o 1
dE [A;Ag} —E 5&((616 +ejel) (c M(z,)"% + M(:z:s)lN(a:S)N(:cS)T(M(:cS)l)T))} dt
"1 )
=E itr((eiejr +ejef ) (M(zs) (2 I+ N(xg)?)M(zs) 1))} dt

=i | gr({ese] -+ epel) (M)~ (12 )02 ) |

=K %tr((eief + ejeiT))} dt

1 {i = j}dt
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This verifies that AiA{ — 1 {i = j}t is a martingale, and hence by Levy’s characterization, A, is a standard Brownian
motion. In turn, we verify that by definition of A,

t ¢ ¢
Ty =g —l—/ —VU(zs)ds +/ cmdVs —|—/ N(xg)dWs
0 0 0
t t
=x0 + / ~VU (z4)ds + / M () (M(zs) " (emdVs + N(zs)dWs))
0 0

t t
=z +/ —VU(a?s)ds+/ M (zs)dAs
0 0

Since we showed that A, is a standard Brownian motion, we verify that x; as defined in (22) has the same distribution as (3).

On the other hand, we can verify that A} := fOT (I — 2v,7T)V; is a standard Brownian motion by the reflection principle.
Thus

/O em (I = 2v7F)dV; + /O N(yo)dWs ~ N (0, (2,1 + N(yo)?)) = N (0, M (yo)?)

where the equality is by definition of NV in (6).

It follows immediately that y; in (22) has the same distribution as y; in (2).

C.1. Energy Bounds
Lemma 7 Consider x, as defined in (3). If zo satisfies E [||zo|3] < R* + %2 then Then for all t,

.
E (o) < o(+ 2

We can also show that

E,. [||x\|§} < 4<R2 + ij)

Proof
We consider the potential function a(x) = (||z||2 — R)i We verify that

X
Va(z) =(||z]l2 — R)+m
T (lzll2 — R)+ za’
V2a(z) =1 {||z]ls > R} = + (1_ )
thelle = B + 7=y, EE

Observe that
L ||V2a(@)|, < 21 {||z]2 > R} <2
2. (Va(z),—VU(z)) < —ma(z). This can be verified by considering 2 cases. If ||z||2 < R, then Va(z) = 0 and
a(z) = 0. If ||z||2 > R, then by Assumption A,

(Va(z),=VU(2)) < —=m(|lall2 = R),|Jw]lz < —m(|z]2 - R)’

= —m - a(x)

3. a(z) > 3||z[|3—2R>2. One can first verify that a(z) > (||z||, — R)? — R%. Next, by Young’s inequality, (||z||, — R)? =
2 2 2 2
lzlly + B2 = 2]zl > |zl + B® — ll=]l; — 2R® = 5]l — R
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Therefore,

%E [a(x)] = E[{(Va(a:), —=VU (z¢)dt)] + %JE [tr(M(xt)ZVQa(m))] < —mE [a(x;)] + B2

= (st~ 2) < -m(sla - 2)

= — (IE [a(z;)] — R? — ) < —m(E [a(z;)] — R? — 62)

m

Thusif E [[|z0||3] < R2+%2:, then E [a(z)] < sz’f—:, then (E [a(xo)] — R? — %2) <0, and (]E [a(xy)] — R? + %2) <
e~™t . (0 < 0 for all t. This implies that, for all ¢,

E [[lz]3] < E [2a(a) +4R?) < 6(R2 + /fn)

For our second claim that - [HzH;} <R*+ %?, we can use the fact that if o ~ p*, then E [a(z)] does not change as p*

is invariant, so that

d
0= —E [a(w)] < —mE [a(a,)] + 8°
Thus
2
E[a(z)] < %
Again,

Ep- [I213] = B [llze]3] < 28 [a(z) +4R? < 4<Rz . /;)
|

Lemma 8 Let the sequence yys be as defined in (1). Assuming that § < m/(16L*) and E [||yol|3] < 2 (R2 + %2) Then
for all k,

E 21 < 8( R? i
lyrsll3] < il

Proof
Let a(w) := (||lwl]]2 — R)i We can verify that
w

Va(w) =([lwlls = B) 7=

[[wll2

ww? 1 ww?
Va(w) =1 (Jwl > B} 2 + (fuwlle - B), —— (I - )
Tl Tl \L ™ Twl3

Observe that
L ||V2a(w)]|, < 21 {|lwll, > R} <2
2. (Va(w), ~VU(w)) < —ma(w).
3. a(w) > Lw|} — 2R%

The proofs are identical to the proof at the start of Lemma 9, so we omit them here.
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Using Taylor’s Theorem, and taking expectation of y;,,1)s conditioned on yxs,

E [a(y(kﬂys)]

=E [a(yks)] [<Va Yks ) Y(k+1)5 — Yis)]
{ <V2a (s + $(Wek+1)5 — Yra)s Wit 1)s — Yns) Wt )s — Yrs) ™) dtds}
[a(yrs)] + [<Va Yks): Y(h+1)s — Yrs )] +E [H Yik+1)5 — Yks Hst}
E [a(yxs)] + E [(Va(yrs), =5V (yrs))] + 26> [ VU (yis) |5 + 20E [tr(M (ys5)°)]
E [a(yxs)] — mIE [a(yrs)] + 26°E [llVU(yks)H;} + 20E [tr(M (yrs)*) |
E [a(yns)] — mIE [a(yks)] + 26°L°E [Hyka”g} + 263

<E [a(yrs)] — mOE [a(yrs)] + 462 LE [a(yxs)] + 862 L*R? + 265>
<(1 —mé/2)E [a(yrs)] + mOR? + 265>

Where the first inequality uses the upper bound on ||V2a(y) above, the second inequality uses the fact that y(;41)s ~

I
N (yrs — 6VU (ys), 6M (yrs)?), the third inequality uses claim 2. at the start of this proof, the fourth inequality uses item

2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our assumption that § < 1¢7.

Taking expectation wrt Y,

E [a(y(r+1)s)] < Elalyr)] — md(E [a(yrs)] — 2R® + 28%/m)
= Elalygs1ys)] — (2R?/24 25 /m) < (1 —md) (E [a(yks)] — (2R* 4 25° /m)

Thus, if E [||yo[|3] < 2R? + 242 /m, then E [a(yo)] — (2R? + 282 /m) < 0, then E [a(yxs)] — (2R? + 28?/m) < 0 for
all k£, which implies that

E |llyksll3] < 2 la(yns)] + 4R? < 8(R? + 82/m)
for all k. |

Lemma 9 Let the sequence wys be as defined in (1). Assuming that § < m/(16L?) and E [||wo 3] < 2(R2 + %2) Then

for all k,
2 2 B
E < R i
[Hwkéuz] > 8( + )

Proof
The proof is almost identical to that of Lemma 8. Let a(w) := (|jw||2 — R)i We can verify that

w
Tlwll2

Va(y) =1 {lwl > R} H2+<||wH2 +||1j”2([_ww2>

[[w [[wll3

Va(w) =([lwllz - R)

Observe that
L ||V2a(w)]|, < 21 {|lwll, > R} <2
2. (Va(w), ~VU(w)) < —ma(w).
3. a(w) > Lw||3 — 2R%

The proofs are identical to the proof at the start of Lemma 9, so we omit them here.
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Using Taylor’s Theorem, and taking expectation of wj41)5 conditioned on wys,

E [a(ww+1>6)]
=E [a(ws)] + E [(Va(wks), wik11)s — Wks )]

i [/ / (VZa(wrs + s(wer1)s = Ws): (Wier1)s — Wks) (Wkr1)s = W) ") dtds}
<E [a(wks)] + E [(Va(ws), Wiks1)s — wis)] + E {H W(kt1)5 — Wis szs]
<E [a(wps)] + E [(Va(wrs), —5VU (wis))] + 28% | VU (wys) 5 + 20 [Hf(wka, 77k)||ﬂ

<E [a(wss)] — mOE [a(wis)] + 20°E | [VU (wis) 3] + 268 | € wns, mo) 3]
<E [a(wys)] — mOE [a(wys)] + 26° LK [lugs 3] + 2667

<E [a(wps)] — mOE [a(wys)] 4+ 20% L2a(wys) + 26°L? R? + 263*

<(1 —md/2)a(wys) + mSR? + 263

Where the first inequality uses the upper bound on ||V2a(y) ||2 above, the second inequality uses the fact that w4 1)5s =
(yrs — OVU (yrs) = E(wis, k), and E [€(wgs, mi) |wis] = 0, the third inequality uses claim 2. at the start of this proof,
the fourth inequality uses item 2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our

assumption that § < 6 L2

Taking expectation wrt wys,

E [a(wiki1)s)] < Ela(wy)] — md(E [a(wys)] — 2R* + 262 /m)
= Ela(wgsns)] — (2R*/2428%/m) < (1 — mé) (E [a(wks)] — (2R* + 28%/m)

Thus, if E [[lwol|3] < 2R? + 242 /m, then E [a(wo)] — (2R? 4 23%/m) < 0, then E [a(wys)] — (2R? + 28%/m) < 0 for
all k£, which implies that

E [llwisll3] < 2E [a(wis)] + 4R? < 8(R? + 52/m)

for all k. n

C.2. Divergence Bounds

Lemma 10 Let x, be as defined in (20) (or equivalently (22) or (27)), initialized at x¢. Then for any T < 16 16T

E[ller - woll3] < 8(T8% + T2L2E [|2o13])

If we additionally assume that E [||xo||§} <8(R?+B%/m)and T < then

ﬁQ
SLZ(RZ+B7/m)’

E llar - woll3] < 16752

Proof
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By Ito’s Lemma,

LB [el]

=2E (VU (2¢), 2 — 20)] + E [tr(M (24)?)]
<2LE ([l l|ze — woll,] + 5

<2LE |2 — woll3) + 2LE [|lzo]lylle: — o) + 57
1
<2LE [|lo; — woll3] + L°TE [lao 3] + B [l — oll3] + 42
2 2 2 2 2
<ZE | lloe — woll3] + (L2TE [Jlwoll3] + 52)

where the first inequality is by item 1 of Assumption A and item 2 of Assumption B, the second inequality is by triangle
inequality, the third inequality is by Young’s inequality, the last inequality is by our assumption on 7.

Applying Gronwall’s inequality for ¢ € [0, T,
(E [llee = woll3] + £2TE | o |3] +T6?)
<e(E 2o — woll] + L*T°E [[laoll3] +T5?)
<SL*T?E [||zoll}] + 767
This concludes our proof. n

Lemma 11 Let y; be as defined in (21) (or equivalently (22) or (27)), initialized at yy. Then for any T,
E{llyr - yoll3) < T2L2E [|lyoll3] + 76

If we additionally assume that E [||y0|\g} <8(R*+B%/m)and T < then

62
8L2(R%245%2/m)’
E [”yT - y0||§] <2rp?

Proof
Notice from the definition in (21) that y7 — yo ~ N (—TVU (yo), TM (yo)Q), the conclusion immediately follows from
where the inequality is by item 1 of Assumption A and item 2 of Assumption B, and the fact that

w(M(2)?) = u(E [¢(, mé@n)")) = E [Je@n)3]

Lemma 12 Let v; be as defined in (29), initialized at vg. Then for any T = nd,

E|llor — wl3] < T*L%E [lvol13] +T5°

then

If we additionally assume that E [||v0||§} <8(R*+%/m) and T < Wj_ﬁz/m),

E llvr - volly] < 2782

Proof
From (29),

n—1

vr —vo = =TVU(vo) + V6 Y _ &(vo, mi)

=0
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Conditioned on the randomness up to time ¢, E [{(vg, 7;+1)] = 0. Thus
E [llor — voll3]
n—1
2 2
=T°E [|[VU(wo)|l3] +8 > E [l€(vo, ) 3]
i=0
<T*LE [||uo 3] +T5°
where the inequality is by item 1 of Assumption A and item 2 of Assumption B. |

Lemma 13 Let w; be as defined in (31), initialized at wg. Then for any T' = nd such that T < ﬁ,

E [[lwr — woll3] < 16(TL°E [woll3] +75°)

If we additionally assume that E [||w0||§} <8(R*+p%/m) and T < WM, then
2 2
E [||wT - w0||2} < 3278
Proof
2
E [[[wgesnys — woll3]
2
=E [Hwk6 — VU (wys) + V& (wis, i) — U}OHQ]
=E ||ws — 3VU (wis) = woll3| + IE [ ll€(wrs. me)l3] (36)

We can bound §E {Hf(wkg, 771«)”3} < 632 by item 2 of Assumption B.

E [ s — VU (wis) — wol}]
<E [(llwgs — wo — 8(VU (wis) = VU (w)) | + 3 VU (wo),)’]
<(14 2 B [l - w0~ 87U wns) ~ VU]
+ (L4 n)d%E [| VU (wo) 3]
< (1 + ;) (1+6L)°E [||wk5 - wo||§} +2n6*L°E [Ilwolli}

<V [|lwgs — wol3] + 206> L2 [ [woll3]
where the first inequality is by triangle inequality, the second inequality is by Young’s inequality, the third inequality is by
item 1 of Assumption A.

Inserting the above into (36) gives

2
E [[lwgesnys — woll}] < €/ VE [[lwgs — woll2] + 2002 L7 [ o 2] + 652
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Applying the above recursively for £ = 1...n, we see that
E [ wns — woll3]

n—1
< Z e(n=k)-(1/n+25L) (2n52L2E [”wong} + 562>
k=0

<16(n?6* L7 [Junl3] +no5?)

—=16(T2L2E [Jwo 3] +T5%)

C.3. Discretization Bounds

Lemma 14 Let vi5 and wys be as defined in (29) and (31). Then for any §,n, such that T := nd < ﬁ,

E |llor —wrll3] < 8(27222(T2L?E [luol3] + T8) + TLE (16(T2L2E [|lwoll3| +T5%)))
If we additionally assume that E [||vo||§} <8(R*+p%*/m),E [||w0||§} <8(R*+%/m)and T < Wj_@/m), then
E [Jlor — wrllf] < 32(T21% + TL2) T4
Proof
Using the fact that conditioned on the randomness up to step &, E [€(vo, Nk+1) — E(wks, Nk+1)] = 0, we can show that for
any k < n,
2
E | [[vg1s = wisrnslly]
2
=E |:H’Uk5 — (SVU(’U()) — Wgs + (5VU(U)M) + \/gf(tl)o,nk) - \/Sf(wk(;,nk)H2:|
=E [[|ogs — 0VU (vo) — whs + VU (wis) 3] + O | (w0, m) = &Cwns, me) 3] 37)

where the first inequality is by (Assumption on smoothness of U and xi).

Using (smoothness of xi), and Lemma 12, we can bound
2
OF [[1€(wo, me) — &Cuwns, i) 3]
<SLZE [”wké - wo||§}
gaLg(m(T?L?E {Hwo\lﬂ +Tﬁ2))
‘We can also bound
E [||vk5 — VU (vg) — wis + WU(wka)lli]
1
< <1 + n>E {H'Uké —0VU (vrs) — wrs + 5VU(wk6)”§} + (1+n)s°E [”VU(UM) - VU(UO)HS}
1 2 2 272 2
< (1 + n) (1+06L)°E [||wﬂS - wMHQ} + 2n6%L2E [Hv,ﬂ; - vouz}
<eV" 2L Bugs — wsll; + 2082 LK [ lors — voll3]

<eV/" LB vy — wyll} + 2002 L (T2L2E [|luo 3] + T5?)
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where the first inequality is by Young’s inequality and the second inequality is by item 1 of Assumption A, the fourth
inequality uses Lemma 12.

Substituting the above two equation blocks into (37), and applying recursively for k = 0...n — 1 gives
E [llor — wrll}]
=K |:||Un6 - wn5||§}
<el 2008 (2026212 (T2 L2E [|jooll3] + 762 + noLE (16 (T2L2E [Juwo 3] + T52)))
§8(2T2L2 (TQLQIE {Hvollﬂ + TBQ) + TL§(16(T2L2E {||wo||§} + TﬁQ)»

the last inequality is by noting that T' = nd < ﬁ. |

D. Regularity of M/ and N

Lemma 15

IN
1)

Ltr(M(z)?) < B
2.1r((M(2)* = M(y)*)?) < 165°L¢[lx — yl3
3.0r((M(2)? = M(y)*)?) < 328°Le|z — yll»
Proof
In this proof, we will use the fact that {(-, n) is L¢-Lipschitz from Assumption B.

The first property is easy to see:

We now prove the second and third claims. Consider a fixed x and fixed y, let u,, := &£(x,n), vy, := &(y,n). Then

:tr(En n’ [(unUf UnUp ) (e
=By [tr((untey — vy ) (g — vyrvy))]
For any fixed 7 and 7/, let’s further simplify notation by letting u, v’, v, v’ denote w,, w,, vy, v,/. Thus
tr((uu” — ov”) (T —0"0'T))
:tr(((ufv)v +o(u—v)T (ufv)(ufv)T) (v - o' ! (W )TJr
=tr((u—v)v” (0 — )W) + o ((u—v)o v (W — "))+ ((u—v)o" (' =0
+ tr(v(u — U)T(u’ 0 )o'T) + tr(v(u —v) "V (W' — ")) + tr(v(u — U)T(U
+tr((u—v)(u—v)" (v — ")) +tr((u—v)(u— )" (' —0")T)
+tr((u—v)(u—v) (W =)W —")T)

<min {1662 12|z — y|3,328° Lelz — 1>}

\\-//\
/—\
sl
@
\\
—
N
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Where the last inequality uses Assumption B.2 and B.3; in particular, ||v||, < £ and ||u — v||, < min {28, L¢||z — y||2}-
This proves 2. and 3. of the Lemma statement. ]

Lemma 16 Let N (z) be as defined in (6) and Ly be as defined in (7). Then
1.1r(N(z)%) < B2
2 2 2
2.1r((N(2) = NW)*) < Liflle ~ o3

2
<8

™m

3. tr((N(l‘) fN(y))Q) Lylz —ylly

Proof of Lemma 16
The first inequality holds because N(z)? := M(z)? — ¢2,I, and then applying Lemma 15.1, and the fact that
tr(M(z)? — ¢2,I) < tr(M(z)?) by Assumption B.4.

The second inequality is a immediate consequence of Lemma 17, Lemma 15.2, and the fact that \,,;, (N (x)Q) =
Amin (M (2)? = ¢%,) > ¢2, by Assumption B.4.

The proof for the third inequality is similar to the second inequality, and follows from Lemma 15 and Lemma 17.

Lemma 17 (Simplified version of Lemma 1 from (Eldan et al., 2018)) Ler A, B be positive definite matrices. Then

tr((\/z - \/§)2> <tr((A— B)?A7Y)

E. Defining f and related inequalities

In this section, we define the Lyapunov function f which is central to the proof of our main results. Here, we give an
overview of the various functions defined in this section:

1. g(z) : R? — R*: A smoothed version of ||z||,, with bounded derivatives up to third order.

2. q(r) : R+ — R*: A concave potential function, similar to the one defined in (Eberle, 2016), which has bounded
derivatives up to third order everywhere except at r = 0.

3. f(z) = q(g(2)) : R* — R¥, a concave function which upper and lower bounds ||z||,, within a constant factor, has

bounded derivatives up to third order everywhere.

Lemma 18 (Properties of f) Let € satisfy e < We define the function

Rq
agRqZ+1"
f(2) = a(g(2))
Where q is as defined in (39) Appendix E.1, and g is as defined in Lemma 20 (with parameter €). Then

1. (a) Vf(z) =4 (9(2)) - Vg(2)
(8) For lzlly > 26 V£(2) = ¢ (9(2)) 2
(c) Forall z, |V f(2)]l, < 1.

2. (a) V2f(2) = ¢"(9(2))Vg(2)Vg(2)" + ¢'(9(2))V?9(2)
(b) Forr > 26, V2 (2) = ¢"(9(2)) 2 + ¢ (9()) i2; (1 - )
(c) Forall z, |V2f(z)||2 <2
(d) Forall z,v, vIV2f(2)v < a(9(2))

2

3. Forany z,

Vi, < &

TR Y g (2], g(12]2)] € [$exp (=20 ) (zll> — 2€), 21l

4. Forany z, f(z) € [% exp

/N
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Proof of Lemma 18

1. (a) chain rule
(b) Use definition of Vg(z) from Lemma 20.
(c) By definition, V f(2) = ¢'(9(2))Vg(z). From Lemma 21, |¢’(g(z))| < 1. By definition, Vg(z) = h'(||2]|,) HZZH2
Our conclusion follows from 4’ < 1 using item 2 of Lemma 19.

2. (a) chainrule
(b) by item 2 b) of Lemma 20
(c) by item 1 c) and item 2 d) of Lemma 20, and item 3 and item 4 of Lemma 21, and our assumption that
e <

S GFRAH
(d) by item 4 of Lemma 21), and items 2 c¢) and 2 d) of Lemma 20, and our expression for V2 f (z) established in item
2 a).
3. It can be verified that
Vi f(2) =<J’”(g(2)) V(2 )® S+4q"(g ® Vg( (9(2))V%9(2) Q) V(=)
+4q"( = V2 (9(= ))V3 (2)
Thus
V22|, <l (9DIIIVa(2)]l5 + 34" (9(2)IVa(2)5[|V2a(2) ||, + ¢ (9(2) [ VP9 (2)]]
1 9 50q Ry 4 1 1
§5(Oéq+72q2)<aq7€q +1)+3( Z +’Rq).€ 2

%] ©

Where the first inequality uses Lemma 21 and Lemma 20, and the second inequality assumes that ¢ < #‘IQH
q q

e € [ o (~T0 Yot gttt € [5 o (<7 ) (1l - 20, el

The first containment is by Lemma 21.2.: 1 exp (—%) -g(2) < q(g9(2)) < g(z). THe second containment is by

Lemma 20.4: g(||z]|2) € [[|2[l2 — 2¢, [|z[l2 }
]

Lemma 19 (Properties of h) Given a parameter ¢, define

52 Sforr €]0,¢
2 3
h(r) :== I+ 7(’”;) - —“”6;? , forr € e, 2¢]
T, forr > 2e
1. The derivatives of h are as follows:
%22, forr €0,€
2
W(r) = % + = - (TQ_EZ) , forr € [e,2¢€
1, forr > 2e
5, Sforr €10,€]
' (r) = % — =5, forr € [e, 2¢]
0, forr > 2
}2, forr €0,€]
" (r) = &, forr € [e, 2]

0, forr > 2¢
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A

5.

(a) K is positive, motonically increasing.
(b) K'(0) =0, h'(r)=1forr>¢
(c) w < min {%, %}forallr
(a) h"(r) is positive
(b) W' (r)=0forr =0andr > 2¢
(C) h”(’l“) < 1
h”(’l")
(d) M)

| (r)] <
r—2e<h

= IA
"‘N‘H o

[N

~—~ o

r)<r

Proof of Lemma 19
The claims can all be verified with simple algebra.

Lemma 20 (Properties of g) Given a parameter €, let us define

9(2) = h(|l=]]2)

Where h is as defined in Lemma 19 (using parameter €). Then

1.

3.
4.

(a) Vg(z) = K (llzl2) 17
(b) For ||z|l2 > 2¢, Vg(z) = =

Izll2"
(c) Forany ||z||2, |[Vg(2)], <1
ZZT ZZT
(a) V2g(z) = h//(”ZHZ) =12 + h/(”ZHQ) Hzl\lz (I N Hz\l%)
ZZT
(b) For||z||l, > 2¢, V3g(z) = ||z1||2 <I N IzH%)'
(¢) For||z]l, > 2¢ ||V29(2)||, = 12

(d) Forall z,

Vi), < 2
IV, < &
lzllz2 — 2€ < (=) < [l2]}2

Proof of Lemma 20

All the properties can be verified with algebra. We provide a proof for 3. since it is a bit involved.

Let us define the functions x'(2) = V(||z]]2), s%(2) = V2(||z]|2), &3(2) = V3(]|z||2). Specifically,

1 z
K (z) =—r—
©) =1

1 T
2(z) = (1_ 222)
[[2l2 12113

T

0= s ® (- )+ 7 (7 @0+ 0 ®

1113 112]l2 12113

It can be verified that

H"€2(Z)H2 = H21H2
O -

z

[12]]2

)
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It can be verified that V2g(z) has the following form:

Vig(2) = k" (ll2]2) (s ())®3+h” (II=12) ®I’~ )+ 1 (|lz]12)5% () Q) w' ()
+ 1 (|l2ll2)8% () + 2" (ll2]l2) ®f€

Thus

. h'(]|z W (||z 5

12112 1213~ e

Where we use properties of h from Lemma 19.

The last claim follows immediately from Lemma 19.4. |

E.1. Defining g
In this section, we define the function ¢ that is used in Lemma 18. Our construction is a slight modification to the original
construction in (Eberle, 2011).

Let o, and R, be as defined in (7). We begin by defining auxiliary functions ¢ (r), ¥(r) and v(r), all from R* to R:

r 1 fT u(z(‘ll(s
. o qT(T) — - s)
U(r) 1= e, )= [ wds, v aro ol
¥(s)
Where 7(r) and z(r) are as defined in Lemma 22 and Lemma 23 with R = R,,.
Finally we define ¢ as
1= [ uems)s (9)
0

We now state some useful properties of the distance function q.

Lemma 21 The function q defined in (39) has the following properties.

2
TagR
exp (—12aRa”

1. Forallr <Ry ¢"(r) +aqq'(r) - r < *WCI(T)

*gRq
eXP( f)
2. Forallr, ———-r<q(r)<vr
exp( %)
3. Forallr, ——— <¢'(r) <1
4. Forallr, ¢"(r) < 0and|q"(r)| < (5(1 aRa | )

(r)] < Bag + 204 (agRy* + 1) + 2(aqRe*+1)

5. Forallr, |q oy
q

Proof of Lemma 21

Proof of 1. It can be verified that

¥ () =) (g™ (1) + a7 (1)
1 u(;)(‘l’)(T)
V() == 5w
q s)W(s
2 [ Re wTGC) g
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Forr € [0, R,|, 7'(r) = r, so that ¢’ (r) = 9(r)(—aqr). Thus

q'(r) =y (r)v(r)

T 9 ARy p(s)¥(s)
2fo Hw(s) ds

1 U(r)
2 ARy p(s)¥(s)
2 ot E o) ds
Where the last equality is by definition of £(r) in Lemma 23 and the fact that r < R,.

We can upper bound

Ry ()T (s) WRq p(s) JiRasds  16R,2 ) <7aqRq2)
[ad SVl SV d = . 4
[ e < e < Sy <R e (7

Where the first inequality is by Lemma 23, the second inequality is by the fact that ¢)(s) is monotonically decreasing, the
third inequality is by Lemma 22.

Thus
1 / 1 eXp <_7aqT7an)
q'(r) +agrg'(r) < — 5 W (r)
oo (- 125)
< - W(](T)

Where the last inequality is by ¥(r) > ¢(r).
Proof of 2. Notice first that #(r) > 1 for all 7. Thus

1
>_ P(s)ds
2 Jo
TagR,
exp | —— “)
( y
- 2

Where the last inequality is by Lemma 22.
Proof of 3. By definition of f, ¢'(r) = ¢ (r)v(r), and

Where we use Lemma 22 and the fact that v(r) € [1/2,1]
Proof of 4. Recall that

q"(r) = ' (r)v(r) + ¢ (r)(r)
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That ¢ < 0 can immediately be verified from the definitions of ) and v.
Thus

lq" ()| <[¢' (r)v ()| + [ (r)v' ()]
<agt'(r) + [(r)v'(r)|

From Lemma 22, we can upperbound 7/(r) < " . In addition, ¥ (r) = [ 9(s) > r¢(r), so that

(r)
e(r)

(Recall again that () is monotonically decreasing). Thus W(r)/r > r for all r. In addition, using the fact that ¢)(r) < 1,

=]

>r 40)

r) = / P(s)ds <r 41)
0
Combining the previous expressions,

L u(r)¥(r)

9 (ARq p(s)U(s)
Qfo /w(s) ds

[ (r)v/ ()] =

(

IN

L plr)r
2f0 )ds

Where the first inequality are by definition of 1(r) and (41), and the second inequality is by (40) and the fact that p(r) = 0
for r > 4R,. Combining with our bound on ¢’(r)v(r) gives the desired bound.

Proof of 5.
q"(r) =" (r)v(r) + 20" (r)v' (r) + o (r)v" (r)
‘We first bound the middle term:

@' (') =l (r) (g7’ (r))'r))|

Where the second last line follows form Lemma 22 and our proof of 4..

Next,

V(1) = o(r) (agr' (r)? — agr"(r))
Thus applying Lemma 22.1 and Lemma 22.3,

[0 (r)v(r)] §2a§Rq2 +aq



Stochastic Gradient and Langevin Processes

Finally,
"(r) = 1 i r)U(r T
v (’I") _2fO4Rq M(:b)(lg)(s)ds dTM( )\IJ( )/¢( )
Expanding the numerator,
A V) ()
R 1 ( )w(r) + pu(r) — p(r) o(r)?
sy 2(7) Y(r)y(r)agt'(r)
1 (7“)1/)( ) + pu(r) + p(r) E
Thus
YW (1) = g - () U() + p()0(r) + () ()7 ()
2f0 st

Using the same argument as from the proof of 4., we can bound

1 1

AR g u(s)¥(s - R
2, "%ds 2 [, sds

<1

s
6R,

Finally, from Lemma 23, |p/(r)] < , SO

7/6 + 14 5a,R,*/4

()" (r)] <

Ry
2(a,Ry> +1)
Lemma 22 Let 7(r) : [0,00) — R be defined as
g, forr <R
2 3
R L R(r—R) 4 =R R forr € [R,2R]
T(r) = 53%2 (3—273)2 37(2r—2R)3

5 +R(r —2R) — 5 + “gr— Jforr € 2R, 4R]
77; , forr > 4R)]

Then
1. 7'(r) € [0, %], with maxima at r = 3%. 7/(r) = 0 forr € {0} J[4R, 00)
2. As a consequence of 1, T(r) is monotonically increasing
3. 7" (r) € [-1,1]

Proof of Lemma 22
We provide the derivatives of 7 below. The claims in the Lemma can then be immediately verified.

T forr <R

R+ (r—R)— (7"_73)2, forr € [R,2R]

R—(r—2R)+ 2R forr € 2R, 4R]
0, forr > 4R]

T'(r) =
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1, forr <R
iy =) 1= 2R, forr € [R,2R]
—1+4 2%, forr € 2R, 4R]
0, forr > 4R]
Lemma 23 Let
1, forr <R
p(r) =14 2+ 1cos (W(S%R)), forr € [R,4R]
0, forr > 4R
Then
0, forr <R
p(r) =4 —gsin (W(%R)), forr € [R,4R]
0, forr > 4R

Furthermore, /(1) € [~ g%, 0]

This Lemma can be easily verified by algebra.

F. Miscellaneous
The following Theorem, taken from (Eldan et al., 2018), establishes a quantitative CLT.

Theorem 5 Let X...X,, be random vectors with mean 0, covariance ¥, and || X;|| < B almost surely for each i. Let
S, = ﬁ S, X, and let Z be a Gaussian with covariance %, then

NG

Corollary 24 Ler X1...X,, be random vectors with mean 0, covariance %S, and || X;|| < 8 almost surely for each i. let Y be
a Gaussian with covariance n¥.. Then

Wa(Sn, Z) < 6v/dS/Togn
B n

W (Z X;, Y) < 6VdB+/logn

This is simply taking the result of Theorem 5 and scaling the inequality by 1/n on both sides.

The following Lemma is taken from (Cheng et al., 2019) and included here for completeness.

Lemma 25 For any c > 0, x > 3max {% log %, 0}, the inequality

1

-1 <

- og(x) <=z
holds.

Proof
‘We will consider two cases:

Case 1: If ¢ > 1, then the inequality
log(z) < cx
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is true for all x.
Case2: c < 1.

In this case, we consider the Lambert W function, defined as the inverse of f(x) = xe®. We will particularly pay attention
to W_4 which is the lower branch of W. (See Wikipedia for a description of W and W_5).

We can lower bound W_1 (—c) using Theorem 1 from (Chatzigeorgiou, 2013):

Yu >0, W_i(—e > -—u—v2u-1

1 1
equivalently Ve e (0,1/e), —W_1(—c) <log (c) +1+ \/2 <log <c> - 1) -1

SIORECIORD

1
< 3log—
c

Thus by our assumption,

then W_1(—c) is defined, so

1
x> -max{—W_;i(—c), 1}
c
=(—cx)e” > —c
=zre " <1
=log(x) < cx

The first implication is justified as follows: WZ : [-%,00) — (—o0o,—1) is monotonically decreasing. Thus its
inverse W:ll(y) = yeY, defined over the domain (—oo, —1) is also monotonically decreasing. By our assumption,
—cx < —3log % < =3, thus —cx € (—o0, —1], thus applying I/V__l1 to both sides gives us the first implication. |

G. Experiment Details

In this section, we provide additional details of our experiments. In particular, we explain the CNN architecture that we use
in our experiments. Denote a convolutional layer with p input filters and ¢ output filters by conv(p, ¢), a fully connected
layer with q outputs by fully_connect(q), and a max pooling operation with stride 2 as pool2. Let ReLU(z) = max{x, 0}.
Then the CNN architecture in our paper is the following:

conv(3,32) = RelLU = conv(32,64) = ReLU = pool2 = conv(64,128) = ReLU = conv(128, 128)
= ReLU = pool2 = conv(128,256) = ReLU = conv(256,256) = ReLU = pool2 = fully_connect(1024)
= ReLU = fully_connect(512) = ReLU = fully_connect(10).



