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The supplementary material is organized as follows:

• In Section S.1, we give the formulas for the penalty functions we have used.

• In Section S.2, we prove Theorem 2.1.

• In Section S.3, we prove Theorem 4.1.

• In Section S.4, we derive the bounds related to random matrices, which are needed in Section S.3.

• In Section S.5, we present the detailed derivation of the ADMM Algorithm 1.

• In Section S.6, we prove Proposition 3.1.

• In Section S.7, we prove Theorem 4.2.

• In Section S.8, we prove (ii) in Corollary 4.1.

• In Section S.9, we present technical lemmas.

• In Section S.10, we define the signal-to-noise ratio (SNR) for the proposed method.

• In Section S.11, we present additional simulation and real data results.

S.1. Penalty Functions
More specifically, for t > 0, the L1, MCP, SCAD and TLP are respectively given by

pL1(t;λ) = λt, (S.1)

pMCP
γ (t;λ) = λ

∫ t

0

(
1− x

λγ

)

+

dx, γ > 1, (S.2)

pSCAD
γ (t;λ) = λ

∫ t

0

min

{
1,

(γ − x
λ )+

γ − 1

}
dx, γ > 2, (S.3)

and

pTLP
γ (t;λ) = λmin (t, λγ) , γ > 0. (S.4)

S.2. Proof of Theorem 2.1
To prove QCD

N (β,Θ)−QN (β,Θ) is a constant, first note that

QCD
N (β,Θ)−QN (β,α) = LCD

N (β,α)− LN (β,Θ),

where

LCD
N (β,Θ) =

1

2N

M∑

i=1

(̂
βi − β̂
θi − θi

)>
(xi, zi)

>Wi(xi, zi)

(̂
βi − β̂
θi − θi

)
, (S.5)

LN (β,Θ) =
1

2N

M∑

i=1

(yi − xiβ − ziθi)>Wi(yi − xiβ − ziθi). (S.6)
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Define ri(β,θi) = (xi, zi)

(
β − β0

θi − θi0

)
, where β0 and θi0 are true values of β and θi, respectively. Then we can write

(xi, zi)

(̂
βi − β̂
θi − θi

)
= (xi, zi)

(̂
βi − β0̂
θi − θi0

)
− (xi, zi)

(
β − β0

θi − θi0

)

= (xi, zi)
[
(xi, zi)

>Wi(xi, zi)
]−1

(xi, zi)
>Wi(ziui + εi)− ri(β,θi)

= V −1i PVi(xi,zi)Vi(ziui + εi)− ri(β,θi)

where Vi denote the squared root matrix ofWi such thatWi = V 2
i . In addition, we can also write

yi − xiβ − ziθi = yi − (xi, zi)

(
β0

θi0

)
− (xi, zi)

(
β − β0

θi − θi0

)
= ziui + εi − ri(β,θi).

Consequently, we have

(xi, zi)

(̂
βi − β̂
θi − θi

)
− (yi − xiβ − ziθi) =

(
V −1i PVi(xi,zi)Vi − Ini

)
(ziui + εi)

= −V −1i P⊥Vi(xi,zi)
Vi(ziui + εi).

Note that P⊥Vi(xi,zi)
is the projection matrix onto the orthogonal complement of the column space of Vi(xi, zi) such that

P⊥Vi(xi,zi)
Vixi = 0 and P⊥Vi(xi,zi)

Vizi = 0. Hence we have

(xi, zi)

(̂
βi − β̂
θi − θi

)
− (yi − xiβ − ziθi) = −V −1i P⊥Vi(xi,zi)

Viεi.

and therefore we can write

LCD
N (β,Θ) =

1

2N

M∑

i=1

(yi − xiβ − ziθi − V −1i P⊥Vi(xi,zi)
Viεi)

>Wi(yi − xiβ − ziθi − V −1i P⊥Vi(xi,zi)
Viεi)

= LN (β,Θ)− 1

N

M∑

i=1

(yi − xiβ − ziθi)>ViP⊥Vi(xi,zi)
Viεi +

1

2N

M∑

i=1

ε>i ViP
⊥
Vi(xi,zi)

Viεi

= LN (β,Θ)− 1

N

M∑

i=1

y>i ViP
⊥
Vi(xi,zi)

Viεi +
1

2N

M∑

i=1

ε>i ViP
⊥
Vi(xi,zi)

Viεi,

where the last identity follows from x>i ViP
⊥
Vi(xi,zi)

= 0 and z>i ViP
⊥
Vi(xi,zi)

= 0. Hence we conclude QCD
N (β,Θ) −

QN (β,α) = LCD
N (β,α)− LN (β,Θ) is a constant.

S.3. Proof of Theorem 4.1
To prove (i), we write

(
β̂OR − β0

α̂OR −α0

)
=
(
F>WF

)−1
F>W (ZU + E) ,

where F = (X,ZA), and hence
∥∥∥∥
(
β̂OR − β0

α̂OR −α0

)∥∥∥∥ ≤
∥∥∥
(
F>WF

)−1∥∥∥
∥∥F>W (ZU + E)

∥∥

≤
√
p+ Sq

∥∥∥
(
F>WF

)−1∥∥∥
∥∥F>W (ZU + E)

∥∥
∞.
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We derive the upper bounds for
∥∥∥
(
F>WF

)−1∥∥∥ and
∥∥F>W (ZU + E)

∥∥
∞ under the events

ECB =
{

max
1≤i≤p

∥∥[X].j
∥∥ ≤

√
5cfN and max

1≤s≤S
max
1≤k≤q

∥∥[Z̃s].k
∥∥ ≤

√
5cfgmax

}

and

EEB =
{
Cf . λmin

(
f>i fi/ni

)
≤ λmax

(
f>i fi/ni

)
. Cf , i = 1, . . . ,M

}
,

where fi = (xi, zi) and nmin = min1≤i≤M ni. According to Sections S.4.1 and S.4.2, we have P
(
ECB

)
≥ 1 − (p +

Sq)e−gmax and P
(
EEB

)
≥ 1− 2Me−nmin .

We first look at
∥∥(F>WF )−1

∥∥. By definition, we can write

W =
[
σ2
εIN +Z(IM ⊗Ψ)Z>

]−1
= σ−2ε

[
IN − σ−2ε Z

(
IM ⊗Ψ−1 + σ−2ε Z>Z

)−1
Z>
]
,

where the second identity holds by applying the Woodbury identity (S.41). It then follows that
∥∥∥
(
F>WF

)−1∥∥∥ = λ−1min

(
F>WF

)

= σ2
ελ
−1
min

[
F>F − σ−2ε F>Z

(
IM ⊗Ψ−1 + σ−2ε Z>Z

)−1
Z>F

]

≤ σ2
ε

{
λmin

(
F>F

)
+ σ2

ελmin

[
F>Z

(
IM ⊗Ψ−1 + σ−2ε Z>Z

)−1
Z>F

]}−1

≤ σ2
ελ
−1
min

(
F>F

)

. C−1f σ2
εg
−1
min, (S.7)

where the last inequality holds from (S.14).

It remains to show the upper bound for
∥∥F>W (ZU + E)

∥∥. Recall that F = (X,ZA). Let Vi denote the square root
matrix of Wi such that Wi = V 2

i , and then define V = diag
[
(Vi)i=1,...,M

]
and Vs = diag

[
(Vi)i:Li=s

]
. It is easy

to see from (S.15) that ‖V ‖ = ‖W ‖1/2 = max1≤i≤M ‖Wi‖1/2 ≤ σ−1ε and ‖Vs‖ = maxi:Li=s ‖Wi‖1/2 ≤ σ−1ε . Let
Z̃s = (z>i )>i:Li=s

denote the stacked design matrix for the s-th subgroup. Under the events ECB and EEB , we have

‖V [X].j‖ ≤ ‖V ‖‖[X].j‖ ≤ σ−1ε
√

5cfN and ‖Vs[Z̃s].k‖ ≤ ‖Vs‖‖[Z̃s].k‖ ≤ σ−1ε
√

5cfgmax

for all j = 1, . . . , p, s = 1, . . . , S, k = 1, . . . , q. By union bound and the tail bounds in (S.18) and (S.20), it holds

P
(∥∥X>W (ZU + E)

∥∥
∞ > t

)
≤

p∑

j=1

P
(∣∣[X]>.jW (ZU + E)

∣∣ > t
)

≤ 4p exp

(
−ce

(
τ ∧ σ2

ε

)
σ2
εt

2

5cfN

)
, (S.8)

P
(∥∥(ZA)>W (ZU + E)

∥∥
∞ > t

)
≤

S∑

s=1

q∑

k=1

P
(∣∣[Z̃s]>.kWs(ZsUs + Es)

∣∣ > t
)

≤ 4Sq exp

(
−ce

(
τ ∧ σ2

ε

)
σ2
εt

2

5cfgmax

)
, (S.9)

where Zs = diag
[
(zi)i:Li=s

]
, Us = (u>i )>i:Li=s

, Ws = diag
[
(Wi)i:Li=s

]
, Es = (ε>i )>i:Li=s

, and τ = λmin(Ψ). Since
F = (X,ZA), it follows that

P
(∥∥F>W (ZU + E)

∥∥
∞ > t

)
≤ P

(∥∥X>W (ZU + E)
∥∥
∞ > t

)
+ P

(∥∥(ZA)>W (ZU + E)
∥∥
∞ > t

)

≤ 2p exp

(
−ce

(
τ ∧ σ2

ε

)
σ2
εt

2

5cfN

)
+ 2Sq exp

(
−ce

(
τ ∧ σ2

ε

)
σ2
εt

2

5cfgmax

)

≤ 4(p+ Sq) exp

(
−ce

(
τ ∧ σ2

ε

)
σ2
εt

2

5cfN

)
.
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Taking t =
√

5c
−1/2
e c

1/2
f

(
τ ∧ σ2

ε

)−1/2
σ−1ε
√
N logN hence yields

∥∥F>W (ZU + E)
∥∥
∞ ≤

√
5c−1/2e c

1/2
f

(
τ ∧ σ2

ε

)−1
σ−1/2ε

√
N logN (S.10)

with probability at least 1− (p+ Sq)(4N−1 + e−gmax)− 2Me−nmin .

In summary, combining the results in (S.7) and (S.10) leads to
∥∥∥∥
(
β̂OR − β0

α̂OR −α0

)∥∥∥∥ ≤
√
p+ Sq

∥∥∥
(
F>WF

)−1∥∥∥
∥∥F>W (ZU + E)

∥∥
∞

≤
√

5c−1/2e c
1/2
f C−1f

(
τ ∧ σ2

ε

)−1/2
σεg
−1
min

√
(p+ Sq)N logN,

with probability at least 1− (p+ Sq)(4N−1 + e−gmax)− 2Me−nmin .

To prove (ii), we show the oracle estimator satisfies the Lindeberg-Feller condition as follows. Note that for any aN ∈ Rp+Sq
with ‖aN‖ = 1,

a>N

(
β̂OR − β0

α̂OR −α0

)
= a>N (F>WF )−1F>W (ZU + E).

It is then clear that

E

[
a>N

(
β̂OR − β0

α̂OR −α0

)]
= 0

and

σ2
N (aN ) = Var

[
a>N

(
β̂OR − β0

α̂OR −α0

)]
= a>N (F>WF )−1aN

≥ λmin

[
(F>WF )−1

]
=
∥∥F>WF

∥∥−1 ≥ ‖F ‖−2 ‖W ‖−1 & Cfσ
2
εN
−1,

where the last inequality is due to (S.13) and (S.16). Let ξil = [Vi(ziui + εi)]l denote the l-th coordinate of Vi(ziui + εi),
and Fi the ni × (p+ Sq) submatrix of F that collects the corresponding rows of the i-th unit. Then for any ε > 0, we can
write

σ−2N (aN )

M∑

i=1

ni∑

l=1

E

{[
a>N (F>WF )−1[ViFi]

>
l. ξil

]2
1∣∣a>N (F>WF )−1[ViFi]>l. ξil

∣∣>εσN (aN )

}

≤ C−1f σ−2ε N

M∑

i=1

ni∑

l=1

{
E
[
a>N (F>WF )−1[ViFi]

>
l. ξil

]4}1/2

×
{
P
( ∣∣a>N (F>WF )−1[ViFi]

>
l. ξil

∣∣ > εσN (aN )
)}1/2

.

We are going to show the above quantity is o(1).

From (S.19) we can see that ξil has sub-Gaussian tails, and thus there exists an a constant c3 > 0 such that E
[
‖ξil‖4

]
≤ c3

and E
[
‖ξil‖2

]
≤ c3. By the definition of Fi and Lemma S.9.2, we have

∥∥[Fi]l.
∥∥2 ≤ 5c4(p+ Sq) with probability at least

1− e−(p+Sq) for some constant c4 > 0. It then follows that

{
E
[
a>N (F>WF )−1[ViFi]

>
l. ξil

]4 }1/2

≤ ‖aN‖2
∥∥(F>WF )−1

∥∥2 ‖Vi‖2 ‖[Fi]l.‖2
{
E
[
‖ξil‖4

]}1/2

≤ 5c
1/2
3 c4C

−2
f Cfσ

2
ε(p+ Sq)g−2min

= O
[
(p+ Sq)g−2min

]
,
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where the second inequality holds based on (S.7) and (S.15) under the event EEB . In addition, similar argument gives

E
[
a>N (F>WF )−1[ViFi]

>
l. ξil

]2 ≤ ‖aN‖2
∥∥(F>WF )−1

∥∥2 ‖Vi‖2 ‖[Fi]l.‖2 E
[
‖ξil‖2

]

= O
[
(p+ Sq)g−2min

]
.

Then by Markov inequality, it holds

P
( ∣∣a>N (F>WF )−1[ViFi]

>
l. ξil

∣∣ > εσN (aN )
)
≤ E

[
a>N (F>WF )−1[ViFi]

>
l. ξil

]2

ε2σ2
N (aN )

= O
[
(p+ Sq)Ng−2min

]
.

It then can be concluded from the above results that

σ−2N (aN )

M∑

i=1

ni∑

l=1

E

{[
a>N (F>WF )−1[ViFi]

>
l. ξil

]2
1∣∣a>N (F>WF )−1[ViFi]>l. ξil

∣∣>εσN (aN )

}

= O
[
(p+ Sq)2N3g−4min

]
,

which is o(1) provided that gmin � (p+ Sq)1/2N3/4. Accordingly, the asymptotic normality assertion (12) follows from
the Lindeberg-Feller Central Limit Theorem.

S.4. Properties of Random Matrices
In this section, we derive the bounds for the L2 norms and eigenvalues of the random design matrices under Assumption 4.1.
In addition, we derive the non-asymptotic upper bound for V (ZU + E), where V denotes the square root matrix ofW
such thatW = V 2, under Assumption 4.2.

S.4.1. L2-norm Bounds for Columns of Design Matrices

By union bound and (S.42), there exists a constant c1 > 0 such that

P
(

max
1≤j≤p

∥∥[X].j
∥∥ >

√
5c1N

)
≤

p∑

j=1

P
(∥∥[X].j

∥∥ >
√

5c1N
)
≤ pe−N

and similarly

P
(

max
1≤s≤S

max
1≤k≤q

∥∥[Z̃s].k
∥∥ >

√
5c1gmax

)
≤ Sqe−gmax ,

where Zs = (z>i )>i:Li=s
.

We define an event

ECB =

{
max
1≤j≤p

∥∥[X].j
∥∥ ≤

√
5c1N and max

1≤s≤S
max
1≤k≤q

∥∥[Z̃s].k
∥∥ ≤

√
5c1gmax

}
(S.11)

with P (ECB) ≥ 1− (p+ Sq)e−gmax for later use. (The subscript “CB” stands for “column bounds.”)

S.4.2. Eigenvalue Bounds for Design Matrices

In this section, we first derive the eigenvalue bounds for x>i xi and z>i zi for i = 1, . . . ,M , and then those for
(X,AZ)>(X,AZ).

Let fi = (xi, zi). Since the rows of fi are independently drawn from F, then the rows of E
[
FF>

]−1/2
fi are isotropic, i.e.,

Cov
(
E
[
FF>

]−1/2
[fi]k.) = I . Following Theorem 5.39 of Vershynin (2012), it then can be shown that, on an event with

probability at least 1− 2 exp(−c2t2), we have
√
ni − C

√
p+ q − t ≤ λ1/2min

(
E
[
FF>

]−1/2
f>i fiE

[
FF>

]−1/2)

≤ λ1/2max

(
E
[
FF>

]−1/2
f>i fiE

[
FF>

]−1/2) ≤ √ni + C
√
p+ q + t,
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where C, c2 are some positive constants. By taking t = c
−1/2
2

√
ni, with probability at least 1− 2e−ni we have

λ
1/2
min

(
f>i fi/ni

)
= n

−1/2
i λ

1/2
min

(
E
[
FF>

]1/2
E
[
FF>

]−1/2
f>i fiE

[
FF>

]−1/2
E
[
FF>

]1/2)

≥ niλmin

(
E
[
FF>

]1/2)
λ
1/2
min

(
E
[
FF>

]−1/2
f>i fiE

[
FF>

]−1/2)

≥ C1/2
f

(
1− C

√
p+ q

ni
− c−1/22

)
& (1− c−1/22 )C

1/2
f

and similarly

λ1/2max

(
f>i fi/ni

)
≤ n−1/2i λmax

(
E
[
FF>

]1/2)
λ1/2max

(
E
[
FF>

]−1/2
f>i fiE

[
FF>

]−1/2)

≤ C−1/2f

(
1 + C

√
p+ q

ni
+ c
−1/2
2

)
. (1 + c

−1/2
2 )C

−1/2
f .

In summary, it holds

(1− c−1/22 )Cf . λmin

(
f>i fi/ni

)
≤ λmax

(
f>i fi/ni

)
. (1 + c

−1/2
2 )C−1f ,

with probability at least 1− 2e−ni for i = 1, . . . ,M .

By the fact that the largest (smallest) eigenvalue of an submatrix with fewer columns is bounded above (below) from the
largest (smallest) eigenvalue of the full matrix, we have

(1− c−1/22 )Cf . λmin

(
x>i xi/ni

)
≤ λmax

(
x>i xi/ni

)
. (1 + c

−1/2
2 )C−1f ,

(1− c−1/22 )Cf . λmin

(
z>i zi/ni

)
≤ λmax

(
z>i zi/ni

)
. (1 + c

−1/2
2 )C−1f ,

with probability at least 1− 2e−ni for each i = 1, . . . ,M .

Define the event

EEB =
{
Cf . λmin

(
f>i fi/ni

)
≤ λmax

(
f>i fi/ni

)
. Cf , i = 1, . . . ,M

}
(S.12)

with P (EEB) ≥ 1− 2Me−nmin , where Cf = (1− c−1/22 )Cf , Cf = (1 + c
−1/2
2 )C−1f and nmin = min1≤i≤M ni. Then,

on the event EEB , it follows that

λmax

(
F>F

)
≤ max

{
λmax

(
X>X

)
, λmax

[
(ZA)>(ZA)

]}

≤ max

{
M∑

i=1

λmax

(
x>i xi

)
, max
1≤s≤S

∑

i:Li=s

λmax

(
z>i zi

)
}

. max
{
CfN,Cfgmax

}
= CfN (S.13)

and

λmin

(
F>F

)
≥ min

{
λmin

(
X>X

)
, λmin

[
(ZA)>(ZA)

]}

≥ min

{
M∑

i=1

λmin

(
x>i xi

)
, min
1≤s≤S

∑

i:Li=s

λmin

(
z>i zi

)
}

& min
{
CfN,Cfgmin

}
= Cfgmin. (S.14)

S.4.3. Weight Matrix

It is easy to see that

λmax(Wi) = λ−1min

(
σ2
εIni

+ ziΨz
>
i

)
≤ 1

σ2
ε + λmin(ziΨz>i )

= σ−2ε , (S.15)
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where λmin(ziΨz
>
i ) = 0 since q < ni. Note that this is an exact result without any probabilistic nor asymptotic statement.

Moreover, sinceW = diag
[
(Wi)i=1,...,M

]
, we can also conclude

λmax(W ) = max
1≤i≤M

λmax(Wi) ≤ σ−2ε . (S.16)

S.4.4. Tail bounds of Weighted Random Effects and Noises

On the event EEB , we show the non-asymptotic tail bounds for V (ZU + E). For V ZU , we first check
∥∥Z>V

∥∥ as
follows. By definition, we can write

Wi =
(
σ2
εIni

+ ziΨz
>
i

)−1
= σ−2ε

[
Ini
− σ−2ε zi(Ψ

−1 + σ−2ε z>i zi)
−1z>i

]
,

where the second identity holds by applying the Woodbury identity (S.41). It then follows that

(z>i Wizi)
−1 = σ2

ε

[
z>i zi − σ−2ε z>i zi(Ψ

−1 + σ−2ε z>i zi)
−1z>i zi

]−1

= σ2
ε(z>i zi)

−1 + Ψ−1,

where the second and identity holds by applying Woodbury identity (S.41) on the inverse term. It then holds

λmax

(
z>i Wizi

)
= λ−1min

[
(z>i Wizi)

−1]

= σ−2ε λ−1min

[
(z>i zi)

−1 + σ−2ε Ψ−1
]

≤ σ−2ε
{
λmin

[
(z>i zi)

−1]+ σ−2ε λmin(Ψ−1)
}−1

≤ τ−1.
Accordingly, we have

∥∥Z>V
∥∥ ≤ ‖V Z‖ = λ1/2max

(
Z>WZ

)
= max

1≤i≤M
λ1/2max

(
z>i Wizi

)
≤ τ−1/2. (S.17)

Under events ECB and EEB , it follows for any a ∈ RN that

P
(∣∣a>V ZU

∣∣ > ‖a‖t
∣∣Z
)
≤ P

(∣∣a>V ZU
∣∣ > ‖Z>V a‖ t

‖V Z‖

∣∣∣∣Z
)

≤ 2 exp

(
− cet

2

‖V Z‖2
)
≤ 2 exp

(
−ceτt2

)
.

By law of iterated expectations, we have

P
(∣∣a>V ZU

∣∣ > ‖a‖t
)

= EZ
[
P
(∣∣a>V ZU

∣∣ > ‖a‖t
∣∣Z
)]

≤ EZ
{

2 exp
[
−ceτt2

]}
= 2 exp

[
−ceτt2

]
.

For V E , since ‖V ‖ ≤ σ−1ε , similar argument yields

P
(∣∣a>V E

∣∣ > ‖a‖t
)
≤ 2 exp

[
−ceσ2

εt
2
]
.

In summary, it holds

P
(∣∣a>V (ZU + E)

∣∣ > ‖a‖t
)
≤ P

(∣∣a>V ZU
∣∣ > ‖a‖t

)
+ P

(∣∣a>V E
∣∣ > ‖a‖t

)

≤ 4 exp
(
−ce

(
τ ∧ σ2

ε

)
t2
)
, (S.18)

where τ = λmin(Ψ).

In addition, similar argument results in

P
(∣∣a>i Vi(ziui + εi)

∣∣ > ‖ai‖t
)
≤ 4 exp

{
−ce

(
τ ∧ σ2

ε

)
t2
}

(S.19)

for any ai ∈ Rni , where Vi is the square root matrix of Wi such that Wi = V 2
i . Moreover, let Vs = diag

[
(Vi)i:Li=s

]
,

Us = (ui)
>
i:Li=s

and Es = (εi)
>
i:Li=s

. Then we have

P
(∣∣b>s Vs(ZsUs + Es)

∣∣ > ‖bs‖t
)
≤ 4 exp

{
−ce

(
τ ∧ σ2

ε

)
t2
}

(S.20)

for any bs ∈ Rgs .
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S.5. Derivation of Algorithm 1
The augmented Lagrangian of (9) can then be formulated by

L(β,Θ, δ,ν) =L0(β,Θ, δ)

+
∑

1≤i<j≤M

ν>ij (θi − θj − δij)

+
κ

2

∑

1≤i<j≤M

‖θi − θj − δij‖2 , (S.21)

where the dual variables ν = (ν>ij )
>
i<j are Lagrange multipliers and κ > 0 is the penalty parameter.

The minimizer of the augmented Lagrangian (S.21) can be solved by developing an ADMM algorithm. Given the values of
Θ[k], δ[k] and ν [k] at the k-th iteration, we update β using

β[k+1] =

(
M∑

i=1

x>i Wixi

)−1
×

(
M∑

i=1

x>i Wi

[
xi

̂
βi + zi

(̂
θi − θ[k]i

)]
)
. (S.22)

Next, given β[k+1], δ[k] and ν [k], the updating formula for Θ is

Θ[k+1] =
(
Z>WZ + κNBB>

)−1×
[
Z>WZ

̂
Θ +Dzx

(̂
β − 1M ⊗ β[k+1]

)

+NB
(
κδ[k] − ν [k]

) ]
, (S.23)

where Θ̂ = (

̂
θ
>
i )>i=1,...,M ,

̂
β = (

̂
β
>
i )>i=1,...,M , Dzx = diag

[
(z>i Wixi)i=1,...,M

]
and B is a matrix such that B>Θ =

(θ>i − θ>j )>i<j . Note that the form ofB depends on how we arrange δij’s in δ; see Remark S.5.1.

To update δ, we use (S.29), (S.30), (S.31) and (S.32) derived below for L1, MCP, SCAD and TLP, respectively. Finally,
updating the Lagrange multipliers ν takes a standard form in general ADMM algorithms,

ν [k+1] = ν [k] + κ
(
B>Θ[k+1] − δ[k+1]

)
. (S.24)

The above discussions are summarized in Algorithm 1.

As the initial values of (Θ[0], δ[0],ν [0]), we use Θ[0] = Θ̂, δ[0] = B>Θ̂ and ν [0] = 0 in our implementation. We also fix
κ = 1 because the ADMM method can be shown to converge for all values of the penalty parameter κ > 0 (e.g., Eckstein
(2012); Ghadimi et al. (2015)).

Detailed derivation for (S.29), (S.30), (S.31) and (S.32).
Given the values of δ[k] and ν [k] in the k-th interation, the ADMM that solves the augmented Lagrangian (S.21) goes as
follows:

(
β[k+1],Θ[k+1]

)
= arg min

Θ
L(β,Θ, δ[k],ν [k]), (S.25)

δ[k+1] = arg min
δ

L(β[k+1],Θ[k+1], δ,ν [k]), (S.26)

and ν [k+1] is updated using (S.24).
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Firstly, we rewrite the augmented Lagrangian (S.21) by expanding the first term as

L(β,Θ, δ,ν) =
1

2N

M∑

i=1

(

̂
βi − β)>x>i Wixi(

̂
βi − β) +

1

2N

M∑

i=1

(

̂
θi − θi)>z>i Wizi(

̂
θi − θi)

+
1

N

M∑

i=1

(

̂
βi − β)>x>i Wizi(

̂
θi − θi) +

∑

1≤i<j≤M

pγ (‖θi − θj‖ ;λ)

+
∑

1≤i<j≤M

ν>ij (θi − θj − δij) +
κ

2

∑

1≤i<j≤M

‖θi − θj − δij‖2 (S.27)

=
1

2N
(

̂
β − 1M ⊗ β)>Dx(

̂
β − 1M ⊗ β) +

1

2N
(

̂
Θ−Θ)>Z>WZ(

̂
Θ−Θ)

+
1

N
(

̂
Θ−Θ)>Dzx(

̂
β − 1M ⊗ β) +

∑

i<j

pγ (‖δij‖ ;λ)

+ (B>Θ− δ)>ν +
κ

2
(B>Θ− δ)>(B>Θ− δ), (S.28)

where Dx = diag
[
(x>i Wixi)i=1,...,M

]
, Dzx = diag

[
(z>i Wixi)i=1,...,M

]
and B is a matrix such that B>Θ = (θ>i −

θ>j )>i<j . Given Θ[k], δ[k] and ν [k], solving the equation using (S.27)

∂L(β,Θ[k], δ[k],ν [k])

∂β
= − 1

N

M∑

i=1

x>i Wi

[
xi(

̂
βi − β) + zi(

̂
θi − θ[k]i )

]
= 0

yields the updating formula (S.27) for β. Similarly, given β[k+1], δ[k] and ν [k], setting the partial derivative w.r.t. Θ using
(S.28),

∂L(β[k+1],Θ, δ[k],ν [k])

∂Θ
= − 1

N

[
Z>WZ(

̂
Θ + Θ)−Dzx(

̂
β − 1M ⊗ β[k+1])

]
+Bν [k] + κB(B>Θ− δ[k])

equal to zero leads to the updating formula (S.23) for Θ.

Now, given β[k+1],Θ[k+1] and ν [k], we derive the updating formula for δ. By omitting irrelevant terms w.r.t. δ, (S.27)
results in

∑

i<j

[
pγ (‖δij‖ ;λ) +

κ

2

∥∥ζ[k+1]
ij − δij

∥∥2
]
,

where ζ[k+1]
ij = θ

[k+1]
i − θ[k+1]

j + κ−1ν
[k]
ij . Its minimizer is taken as the update of δ. In particular, the solution for the L1

penalty is

δ
[k+1]
ij = ST

(
ζ
[k+1]
ij ;λ/κ

)
, (S.29)

where ST
(
v; t
)

= (1− t/‖v‖)+v is the soft thresholding operator. For the MCP given in (S.2) with γ > κ−1, the solution
is

δ
[k+1]
ij =





ST
(
ζ
[k+1]
ij ;λ/κ

)

1− 1/(γκ)
if
∥∥ζ[k+1]

ij

∥∥ ≤ γλ,

ζ
[k+1]
ij if

∥∥ζ[k+1]
ij

∥∥ > γλ.

(S.30)

For the SCAD penalty given in (S.3) with γ > κ−1 + 1, the solution is

δ
[k+1]
ij =





ST
(
ζ
[k+1]
ij ;λ/κ

)
if
∥∥ζ[k+1]

ij

∥∥ ≤ λ+ λ/κ,

ST
(
ζ
[k+1]
ij , γλ/[(γ − 1)κ]

)

1− 1/[(γ − 1)κ]
if λ+ λ/κ <

∥∥ζ[k+1]
ij

∥∥ ≤ γλ,

ζ
[k+1]
ij if

∥∥ζ[k+1]
ij

∥∥ > γλ.

(S.31)
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For the TLP given in (S.4) with γ > κ−1, the solution is

δ
[k+1]
ij =

{
ST
(
ζ
[k+1]
ij ;λ/κ

)
if
∥∥ζ[k+1]

ij

∥∥ ≤ γλ,
ζ
[k+1]
ij if

∥∥ζ[k+1]
ij

∥∥ > γλ.
(S.32)

Algorithm 1 ADMM for CD Fusion Approach

1: Input: Initial values of Θ[0], δ[0] and ν [0]

2: for k = 1, 2, . . . do
3: Compute β[k+1] using (S.22)
4: Compute Θ[k+1] using (S.23)
5: Compute δ[k+1] using (S.29), (S.30), (S.31) or (S.32)
6: Compute ν [k+1] using (S.24)
7: if Convergence criterion is met then
8: Break
9: else

10: k ← k + 1
11: end if
12: end for
13: Input:β̂(λ) = β[k+1] and Θ̂(λ) = Θ[k+1]

Remark S.5.1. Here we stress that, though δ = (δ>ij)
>
i<j ,ν = (νij)

>
i<j and the matrixB such thatB>Θ = (θ>i −θ>j )>i<j

are just auxiliary parameters in the ADMM algorithm, one has to be cautious with matching their forms. More specifically,
νij’s are the corresponding Lagrangian multipliers for δij , which are made to match θi − θj . For example, suppose M = 4,
and one may have

δ =




δ12
δ13
δ14
δ23
δ24
δ34



, ν =




ν12
ν13
ν14
ν23
ν24
ν34




and B> =




Iq −Iq
Iq −Iq
Iq −Iq

Iq −Iq
Iq −Iq

Iq −Iq




s.t.B>Θ =




θ1 − θ2
θ1 − θ3
θ1 − θ4
θ2 − θ3
θ2 − θ4
θ3 − θ4



.

However, it is also possible to set

δ =




δ12
δ23
δ34
δ13
δ24
δ14



, ν =




ν12
ν23
ν34
ν13
ν24
ν14




and B> =




Iq −Iq
Iq −Iq

Iq −Iq
Iq −Iq

Iq −Iq
Iq −Iq




s.t.B>Θ =




θ1 − θ2
θ2 − θ3
θ3 − θ4
θ1 − θ3
θ2 − θ4
θ1 − θ4



.

As can be seen that the order of νij’s and the form ofB both depend on the order of δij’s. Although it is not necessary to
have guidelines to make their forms unique, while matching them correspondingly is crucial in implementation.

S.6. Proof of Proposition 3.1

Here we show limk→∞
∥∥r[k]

∥∥2 = 0. Define

f [k+1] = inf
B>Θ[k+1]−δ=0



L

CD
N (β[k+1],Θ[k+1]) +

∑

i<j

pγ(‖δ‖;λ)





= inf
B>Θ[k+1]−δ=0

L(β[k+1],Θ[k+1], δ,ν [k]),
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where LCD
N (β,Θ) is defined in (S.5). By the definition of δ[k+1] as in (S.26), we have

L(β[k+1],Θ[k+1], δ[k+1],ν [k]) ≤ f [k+1].

Let t be an integer. Since ν [k+t−1] = ν [k] + κ
∑t−1
i=1(B>Θ[k+i] − δ[k+i]), it follows that

L(β[k+t],Θ[k+t], δ[k+t],ν [k+t−1]) = LCD
N (β[k+t],Θ[k+t]) +

∑

i<j

pγ(‖δ[k+t]‖;λ)

+ (ν [k+t−1])>(B>Θ[k+t] − δ[k+t]) +
κ

2

∥∥∥B>Θ[k+t] − δ[k+t]
∥∥∥
2

= LCD
N (β[k+t],Θ[k+t]) +

∑

i<j

pγ(‖δ[k+t]‖;λ)

+ (ν [k])>(B>Θ[k+t] − δ[k+t])

+ κ

t−1∑

i=1

(B>Θ[k+i] − δ[k+i])>(B>Θ[k+t] − δ[k+t])

+
κ

2

∥∥∥B>Θ[k+t] − δ[k+t]
∥∥∥
2

≤ f [k+t].

We are going to show that limk→∞
∥∥r[k]

∥∥2 = 0 is a necessary condition for the inequality

lim
k→∞

L(β[k+t],Θ[k+t], δ[k+t],ν [k+t−1]) ≤ lim
k→∞

f [k+t]

for all t ≥ 0.

By applying the results in Theorem 4.1 of (Tseng, 2001), the sequence (β[k],Θ[k], δ[k]) has a limit point, denoted by
(β[∗],Θ[∗], δ[∗]), since the objective function L(β,Θ, δ,ν) is differentiable w.r.t. (β,Θ) and is convex w.r.t. δ. Define

f [∗] = lim
k→∞

f [k+1] = lim
k→∞

f [k+t] = inf
B>Θ[∗]−δ[∗]=0



L

CD
N (β[∗],Θ[∗]) +

∑

i<j

pγ(‖δ[∗]‖;λ)



 .

For all t ≥ 0, we have

lim
k→∞

L(β[k+t],Θ[k+t], δ[k+t],ν [k+t−1]) = LCD
N (β[∗],Θ[∗]) +

∑

i<j

pγ(‖δ[∗]ij ‖;λ)

+ lim
k→∞

(ν [k])>(B>Θ[∗] − δ[∗]) + (t− 1

2
)κ
∥∥∥B>Θ[∗] − δ[∗]

∥∥∥
2

≤ f [∗].

Note that f [∗] is a constant by definition, and thus we must have limk→∞
∥∥r[k]

∥∥2 =
∥∥B>Θ[∗] − δ[∗]

∥∥2 = 0 to make the
last inequality hold for all t ≥ 0.

S.7. Proof of Theorem 4.2
In this section, we prove the results in Theorem 4.2. We start with introducing the folllowing notations. The objective
functions for the proposed and oracle estimators can be written respectively by

QN (β,Θ) = LN (β,Θ) + PN (Θ) and QGN (β,α) = LGN (β,α) + PGN (α),

where

LN (β,Θ) =
1

2N
(Y −Xβ −ZΘ)>W (Y −Xβ −ZΘ), PN (Θ) = λ

∑

1≤i<j≤N

ρ(‖θi − θj‖),

LGN (β,α) =
1

2N
(Y −Xβ −ZAα)>W (Y −Xβ −ZAα), PGN (Θ) = λ

∑

1≤s<s′≤S

MsMs′ρ(‖αs −αs′‖),
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ρ(t) = λ−1pγ(t;λ) and Ms is the number of units in the s-th subgroup. Recall that the set

MG =
{
Θ ∈ RMq : θi = θj for any Li = Lj = s, s = 1, . . . , S

}

is the collection of stacked heterogeneous effect vector Θ = (θ>i )>i=1,...,M with only S distinct values of θi’s. For each
θ ∈ MG , there exists a Mq × Sq label matrix A and α ∈ RSq such that Θ = Aα and α = (A>A)−1A>Θ. Hence, let
T :MG → RSq be the mapping such that T (Θ) is the (Sq)-vector stacking the S different θi’s in Θ, and its inverse mapping
T−1 : RSq → MG is well-defined. Let T ∗ : RMq → RSq be the mapping such that T ∗(Θ) =

{
M−1s

∑
i:Li=s

θi
}S
s=1

.
For any Θ ∈ RMq , define Θ∗ = T−1(T ∗(Θ)).

By the above definitions, it clearly follows that T (Θ) = T ∗(Θ) and PN (Θ) = PGN (T (Θ)) for every Θ ∈ MG , and that
PN (T−1(α)) = PGN (α) for every α ∈ RSq. Moreover, we can write

QN (β,Θ) = QGN (β, T (Θ)) for every Θ ∈MG ,
QGN (β,α) = QN (β, T−1(α)) for every α ∈ RSq.

(S.33)

Consider a neighborhood of (β0,Θ0):

Υ =

{
β ∈ Rp,Θ ∈ RMq : ‖β − β0‖ ≤ φN , max

1≤i≤M
‖θi − θi0‖ ≤ φN

}
.

By Theorem 4.1, there is an eventE1 with P (E1) ≥ 1−(p+Sq)(4N−1+e−gmax)−2Me−nmin such that (β̂OR, Θ̂OR) ∈ Υ

on event E1. We show that (β̂OR, Θ̂OR) is a strict local minimizer of the objective function (5) with probablity tending to 1
through the following two steps.

(i) On the event E1, QN (β,Θ∗) > QN (β̂OR, Θ̂OR) for any (β,Θ) ∈ Υ and (β,Θ∗) 6= (β̂OR, Θ̂OR).

(ii) There is an event E2 with P (E2) ≥ 1−Me−gmin . On E1 ∩ E2, there is a neighborhood of (β̂OR, Θ̂OR), denoted by
ΥN , such that QN (β,Θ) ≥ QN (β,Θ∗) for any (β,Θ) ∈ ΥN ∩Υ for sufficiently large N .

By resutls (i) and (ii), we have QN (β,Θ) > QN (β̂OR, Θ̂OR) for any (β,Θ) ∈ ΥN ∩Υ and (β,Θ∗) 6= (β̂OR, Θ̂OR) on
the event E1 ∩ E2, so that (β̂OR, Θ̂OR) is a strict local minimizer of QN (β,Θ) given in (5) over the event E1 ∩ E2 with
P (E1 ∩ E2) ≥ 1− (p+ Sq)(4N−1 + e−gmax)−M(2e−nmin + e−gmin) for sufficiently large N .

We first show PGN (T ∗(Θ)) = KN for any Θ ∈ Υ, where KN is a constant independent of Θ. Let T ∗(Θ) = α =
(α>s )>s=1,...,S . Since ρ(t) = λ−1pγ(t;λ) is constant for t ≥ aλ according to Assumption 4.3, it suffices to show that
‖αs −αs′‖ > aλ for all s, s′ ∈ {1, . . . , S}. Since

max
1≤s≤S

∥∥αs −αs0
∥∥ = max

1≤s≤S

∥∥∥∥∥
1

Ms

∑

i:Li=s

(θi − θi0)

∥∥∥∥∥

≤ max
1≤s≤S

1

Ms

∑

i:Li=s

‖θi − θi0‖

≤ max
1≤s≤S

∥∥θi − θi0
∥∥

≤ φN , (S.34)

then for all s, s′ ∈ {1, . . . , S} we have
∥∥αs −αs′

∥∥ ≥
∥∥αs0 −αs′0

∥∥− 2 max
1≤s≤S

∥∥αs −αs0
∥∥ ≥ ∆N − 2φN > aλ, (S.35)

where the last inequality follows from the assumption that ∆N � aλ� φN . Accordingly, we have PGN (T ∗(Θ)) = KN

for some constant KN > 0 and hence QGN (β, T ∗(Θ)) = LGN (β, T ∗(Θ)) +KN for all (β,Θ) ∈ Υ. Since (β̂OR, α̂OR) is
the unique global minimizer of LGN (β,α), we have LGN (β, T ∗(Θ)) > LGN (β̂OR, α̂OR) for all (β, T ∗(Θ)) 6= (β̂OR, α̂OR).
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It then follows that QGN (β, T ∗(Θ)) > QGN (β̂OR, α̂OR) for all T ∗(Θ) 6= α̂OR. Let Θ̂OR = Aα̂OR, and by (S.33) we
have QGN (β̂OR, α̂OR) = QN (β̂OR, Θ̂OR) and QGN (β, T ∗(Θ)) = QN (β, T−1(T ∗(Θ))) = QN (β,Θ∗). Consequently,
we have QN (β,Θ∗) > QN (β̂OR, Θ̂OR) for all (β,Θ) ∈ Υ and (β,Θ∗) 6= (β̂OR, Θ̂OR), and the result (i) follows.

Next we prove the result in (ii). For positive sequence {tN}, let

ΥN = {Θ : max
1≤i≤M

‖θi − Θ̂OR,i‖ ≤ tN}.

For (β,Θ) ∈ ΥN ∩Υ, Taylor’s expansion leads to

QN (β,Θ)−QN (β,Θ∗) = −N−1
M∑

i=1

(yi − xiβ − ziθ̃i)>Wizi(θi − θ∗i )

︸ ︷︷ ︸
Γ1

+

M∑

i=1

∂PN (Θ̃)

∂θi
(θi − θ∗i )

︸ ︷︷ ︸
Γ2

,

where Θ̃ = ςΘ + (1− ς)Θ∗ for some ς ∈ (0, 1).

We firstly deal with Γ2. Observe that

Γ2 = λ
∑

i6=j

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>(θi − θ∗i )

= λ
∑

i<j

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>(θi − θ∗i ) + λ
∑

i<j

ρ′(‖θ̃j − θ̃i‖)
‖θ̃j − θ̃i‖

(θ̃j − θ̃i)>(θj − θ∗j )

= λ
∑

i<j

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>(θi − θ∗i )− λ
∑

i<j

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>(θj − θ∗j )

= λ
∑

i<j

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>
[
(θi − θ∗i )− (θj − θ∗j )

]
. (S.36)

When Li = Lj = s, we have θ∗i = θ∗j and θ̃i − θ̃j = ς(θi − θj), and therefore

Γ2 = λ

S∑

s=1

∑

Li=Lj=s
i<j

ρ′(‖θ̃i − θ̃j‖)‖θi − θj‖

+ λ
∑

s<s′

∑

Li=s
Lj=s

′

ρ′(‖θ̃i − θ̃j‖)
‖θ̃i − θ̃j‖

(θ̃i − θ̃j)>
[
(θi − θ∗i )− (θj − θ∗j )

]
.

We look at the second term in Γ2. Since Θ ∈ Υ and Θ∗ = T−1(α) ∈MG , it holds

max
1≤i≤M

∥∥θi − θi0
∥∥ ≤ φN and max

1≤i≤M

∥∥θ∗i − θi0
∥∥ = max

1≤s≤S

∥∥αs −αs0
∥∥ ≤ φN ,

where the inequality follows from (S.34). Since Θ̃ = ςΘ + (1− ς)Θ∗, we have

max
1≤i≤M

∥∥θ̃i − θi0
∥∥ ≤ ς max

1≤i≤M

∥∥θi − θi0
∥∥+ (1− ς) max

1≤i≤M

∥∥θ∗i − θi0
∥∥ ≤ ςφN + (1− ς)φN = φN .

Then for Li = s and Lj = s′ with s 6= s′, it follows that

∥∥θ̃i − θ̃j
∥∥ ≥ min

Li=s,Lj=s′

∥∥θi0 − θj0
∥∥− 2 max

1≤i≤M

∥∥θ̃i − θi0
∥∥ ≥ ∆N − 2φN � aλ,
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and accordingly ρ′
(
‖θ̃i − θ̃j‖

)
= 0. As a result, the second term in Γ2 is zero and we have

Γ2 = λ

S∑

s=1

∑

Li=Lj=s
i<j

ρ′
(
‖θ̃i − θ̃j‖

)
‖θi − θj‖.

For the first term in Γ2, since Θ ∈ ΥN , the same reasoning as (S.34) yields

max
1≤i≤M

∥∥θ∗i − θ̂OR,i

∥∥ = max
1≤i≤M

∥∥αs − α̂OR,s

∥∥ ≤ max
1≤i≤M

∥∥θi − θ̂OR,i

∥∥ ≤ tN .

Since θ̃i = ςθi + (1− ς)θ∗i for some ς ∈ (0, 1), it holds θ̃i − θ∗i = ς(θi − θ∗i ). For Li = Lj , due to θ∗i = θ∗j , we have

max
1≤i≤M

∥∥θ̃i − θ̃j
∥∥ ≤ max

1≤i≤M

(∥∥θ̃i − θ∗i
∥∥+

∥∥θ̃j − θ∗j
∥∥
)

≤ 2 max
1≤i≤M

∥∥θ̃i − θ∗i
∥∥

≤ 2 max
1≤i≤M

∥∥θi − θ∗i
∥∥

≤ 2

(
max

1≤i≤M

∥∥θi − θ̂OR,i

∥∥+ max
1≤i≤M

∥∥θ∗i − θ̂OR,i

∥∥
)

≤ 4tN .

The concavity of ρ(·) then implies that ρ′(‖θ̃i − θ̃j‖) ≥ ρ′(4tN ). In summary, we have

Γ2 ≥ λ
S∑

s=1

∑

Li=Lj=s
i<j

ρ′(4tN )‖θi − θj‖. (S.37)

Now we analyze Γ1. For i = 1, . . . ,M , let

hi = (yi − xiβ − ziθ̃i)>Wizi = z>i Wi

[
ziui + εi + xi(β0 − β) + zi(θi0 − θ̃i)

]
.

Recall that Ms is the number of units in the s-th subgroup. By the definition of θ∗i , it holds

θi − θ∗i = θi −
∑

j:Lj=Li

θi
Ms

=
∑

j:Lj=Li

(θi − θj)
Ms

.
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Then we have

Γ1 = −N−1
M∑

i=1

(yi − xiβ − ziθ̃i)>Wizi(θi − θ∗i )

= −N−1
M∑

i=1

h>i (θi − θ∗i )

= −N−1
S∑

s=1

∑

Li=Lj=s

h>i (θi − θj)
Ms

= −N−1
S∑

s=1

∑

Li=Lj=s

h>i (θi − θj)
2Ms

−
S∑

s=1

∑

Li=Lj=s

h>j (θi − θj)
2Ms

= −N−1
S∑

s=1

∑

Li=Lj=s

(hi − hj)>(θi − θj)
2Ms

= −N−1
S∑

s=1

∑

Li=Lj=s
i<j

(hi − hj)>(θi − θj)
Ms

≥ −N−1
S∑

s=1

∑

Li=Lj=s
i<j

max
i,j
‖hi − hj‖‖θi − θj‖. (S.38)

Combining (S.37) and (S.38) yields

QN (β,Θ)−QN (β,Θ∗) = Γ1 + Γ2 ≥
S∑

s=1

∑

Li=Lj=s
i<j

[
λρ′(4tN )−N−1 max

i,j
‖hi − hj‖

]
‖θi − θj‖

&
S∑

s=1

∑

Li=Lj=s
i<j

[
λ−N−1 max

i,j
‖hi − hj‖

]
‖θi − θj‖,

where the last inequality holds by taking tN = o(1) so that ρ′(4tN )→ 1. It is then left to show λ > N−1 maxi,j ‖hi−hj‖
to conclude the results in (ii).

Recall thatWi = V 2
i . On the event E1, we can write

max
i,j
‖hi − hj‖ ≤ 2 max

1≤i≤M
‖hi‖

≤ 2 max
1≤i≤M

{
‖Vizi‖‖Vi(ziui + εi)‖+

(
‖z>i Wixi‖+ ‖z>i Wizi‖

)
φN

}

≤ 2 max
1≤i≤M

{
‖Vizi‖‖Vi(ziui + εi)‖+

(
‖Vizi‖‖Vi‖‖xi‖+ ‖z>i Wizi‖

)
φN

}

. 2 max
1≤i≤M

{
τ−1

∥∥Vi(ziui + εi)
∥∥+

(
C

1/2

f σ−1ε τ−1n
1/2
i + τ−2

)
φN

}
,

where the last inequality follows from (S.17) and (S.15) under events ECB and EEB . Moreover, since Vi(ziui + εi) has
sub-Gaussian tails according to (S.19), applying union bound and (S.42) yields

P
(

max
1≤i≤M

∥∥Vi(ziui + εi)
∥∥ >

√
5c5gmin

)
≤Me−gmin ,
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where c5 > 0 is a constant. Then we have

max
i,j
‖hi − hj‖ . 2

[√
5c

1/2
5 τ−1g

1/2
min +

(
C

1/2

f σ−1ε τ−1 max
1≤i≤M

n
1/2
i + τ−2

)
φN

]

≤ 2g
1/2
min

[√
5c

1/2
5 τ−1 +

(
C

1/2

f σ−1ε τ−1 + τ−2
)
φN
]

with probability at least 1−Me−gmin . Hence, there is an event E2 with P (E2) ≥ 1−Me−gmin and, on the event E2, we
have

N−1 maxi,j ‖hi − hj‖
φN

.
2N−1g

1/2
min

[√
5c

1/2
5 τ−1 +

(
C

1/2

f σ−1ε τ−1 + τ−2
)
φN
]

φN
= O

(
N−1g

1/2
min

)
= o(1),

which indicates that

λ� φN � N−1 max
i,j
‖hi − hj‖. (S.39)

In summary, we conclude the results in (ii) and the proof is complete.

S.8. Proof of (ii) in Corollary 4.1
Since the asymptotic equivalence between the proposed estimator and the oracle estimator has been shown in Theorem 4.2,
it suffices to show, for any p-vector v and q-vector vq ,

v>p Cov
(
β̂OR

)
vp ≤ v>p Cov

(̂
βi
)
vp and v>q Cov

(
θ̂OR,i

)
vq ≤ v>q Cov

(̂
θi
)
vq, (S.40)

for all i = 1, . . . ,M . Recall that

Cov

(
β̂OR

α̂OR

)
=
[(
X,ZA

)>
W
(
X,ZA

)]−1
and Cov

(̂
βî
θi

)
=
[
(xi, zi)

>Wi(xi, zi)
]−1

.

With straightforward matrix algebra, we have

(
X,ZA

)>
W
(
X,ZA

)
=

M∑

i=1

G>Li
(xi, zi)

>Wi(xi, zi)GLi
,

whereGs are the (p+ q)× (p+ Sq) matrices such that (β>0 ,θ
>
i0)> = GLi(β

>
0 ,α

>
s0)>, for any parameter dimensions.

Without loss of generality, assume M = 2. When S = 1, we haveGL1
= GL2

= Ip+q and θ̂1,0 = θ̂2,0 = α̂0. Hence, we
have for any (p+ q)-vector a,

a>Cov

(
β̂OR

α̂OR

)
a = a>

[(
X,ZA

)>
W
(
X,ZA

)]−1
a

= a>
[
(x1, z1)>W1(x1, z1) + (x2, z2)>W2(x2, z2)

]−1
a

≤ a>
[
(xi, zi)

>Wi(xi, zi)
]−1

a

= a>Cov

(̂
βî
θi

)
a, for i = 1, 2.

where the inequality follows from Lemma S.9.3.

When S = 2, we calculate the expressions of Cov
(̂
βi
)
,Cov

(̂
θi
)
,Cov

(
β̂OR

)
and Cov

(
θ̂OR,i

)
in the following so as to

establish the inequalities in (S.40). Firstly, for the unit estimators, letDi = Cov
(̂
βi
)

andHi = Cov
(̂
θi
)
, and then we can

write

Cov

(̂
βî
θi

)
=
[
(xi, zi)

>Wi(xi, zi)
]−1

=

[
Di Bi

B>i Hi

]
, i = 1, 2,
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whereBi are some p× q matrices.

For the oracle estimators, suppose L1 = 1 and L2 = 2. Then we have (β>0 ,α
>
0 )> = (β>0 ,θ1,0,θ2,0)>,

G1 =

[
Ip Op×q Op×q
O>p×q Iq Oq×q

]
and G2 =

[
Ip Op×q Op×q
O>p×q Oq×q Iq

]
,

whereOd1×d2 stands for the d1 × d2 zero matrix. By blockwise matrix inversion, we can write

(xi, zi)
>Wi(xi, zi) =

[
D−1i +D−1i BiKiB

>
i D

−1
i −D−1i BiKi

−KiB
>
i D

−1
i Ki

]
, i = 1, 2,

whereKi = (Hi −B>i D−1i Bi)
−1. Accordingly, it follows that

(
X,ZA

)>
W
(
X,ZA

)
=



∑2
i=1

{
D−1i +D−1i BiKiB

>
i D

−1
i

}
−D−11 B1K1 −D−12 B2K2

−K1B
>
1 D

−1
1 K1 Oq×q

−K2B
>
2 D

−1
2 Oq×q K2


 .

By the blockwise matrix inversion, we have

Cov

(
β̂OR

α̂OR

)
=
[(
X,ZA

)>
W
(
X,ZA

)]−1

=




Q QD−11 B1 −QD−12 B2

B>1 D
−1
1 Q H1 −B1D

−1
1 B1 +B>1 D

−1
1 QD−11 B1 B>1 D

−1
1 QD−12 B2

−B>2 D−12 Q B>2 D
−1
2 QD−11 B1 H2 −B2D

−1
2 B2 +B>2 D

−1
2 QD−12 B2


 ,

where Q = (D−11 + D−12 )−1. As a result, we have Cov
(
β̂OR

)
= Q = (D−11 + D−12 )−1 and Cov

(
θ̂OR,i

)
= Hi −

BiD
−1
i Bi +B>i D

−1
i QD−1i Bi, i = 1, 2.

With the above results, it is then straightforward that, for any p-vector vp,

v>p Cov
(
β̂OR

)
vp = v>p

(
D−11 +D−12

)−1
vp ≤ v>p Divp = v>p Cov

(̂
βi
)
vp, for i = 1, 2,

where the inequality follows from Lemma S.9.3. In addition, for any q-vector vq ,

v>q Cov
(
θ̂OR,i

)
vq = v>q

[
Hi −B>i D−1i Bi +B>i D

−1
i (D−11 +D−12 )−1D−1i Bi

]
vq.

For the third term of the R.H.S., it holds

v>q B
>
i D

−1
i (D−11 +D−12 )−1D−1i Bivq ≤ v>q B>i D−1i DiD

−1
i Bivq = v>q B

>
i D

−1
i Bivq,

where the ineqaulity follows from Lemma S.9.3. Consequently, we have

v>q Cov
(
θ̂OR,i

)
vq ≤ v>q Hivq = Cov

(̂
θi
)
, i = 1, 2.

The proof is thus complete.

S.9. Auxiliary Lemmas
In this section we provide technical lemmas, with a bit abuse of notations.

Lemma S.9.1 (Woodbury matrix identity, Theorem 18.2.8 of Harville (2000)). Let A,U ,B and V denote n × n, n ×
m,m×m and m× n matrices, respectively. SupposeA andB are nonsingular. Then we have

(
A±UBV

)−1
= A−1 ∓A−1U

(
B−1 ± V A−1U

)−1
V A−1. (S.41)



Mutual Transfer Learning for Massive Data

Lemma S.9.2 (Lemma 8 of Hsu et al. (2014)). Suppose ξ is a sub-Gaussian random n-vector. For all symmetric positive
semidefinite matricesM � O and all t > 0, we have

P
[
ξ>Mξ > c

(
tr(M) + 2

√
tr(M2)t+ 2‖M‖t

)]
≤ e−t,

where c > 0 is an absolute constant. WithM = I and t = n, it follows that

P
(
‖ξ‖2 > 5cn

)
≤ e−n. (S.42)

Lemma S.9.3 (Lemma A.3 of Liu et al. (2015)). SupposeM1 andM2 are d× d positive definite matrices. Then, for any
d-vector v,

(
v>M−1

1 v
)−1

+
(
v−1M>

1 v
)−1 ≤

[
v> (M1 +M2)

−1
v
]−1

. (S.43)

This implies that v> (M1 +M2)
−1
v ≤ v>M−1

1 v.

S.10. Signal-to-Noise Ratio for the proposed MTL method
Here we define the signal-to-noise ratio (SNR) for the proposed method. In order to supply information of how strong the
subgroup effects compared to the noise, we first compute the signal for different subgroups i and j as

Signal(i, j) = Var
[
(X>β0 + Z>αi)− (X>β0 + Z>αj)

]

= Var
[
Z>(αi −αj)

]

= (αi −αj)>ΣZ(αi −αj),

and then define the desired signal as the minimal signal variance between different subgroups, i.e.,

Signal = min
1≤i<j≤S

Signal(i, j).

For noise, we calculate

Noise = Var
[
(Z>ui + εi)− (Z>ui + εi)

]

= Var
[
Z>(uj − uj)

]
+ 2Var(ε) = 2

[
tr(E[ZZ>]Ψ) + σ2

ε

]
.

Accordingly, we have

SNR =
Signal

Noise
=

min1≤i<j≤S Signal(i, j)

2
[

tr(E[ZZ>]Ψ) + σ2
ε

] .

S.11. Additional Simulation and Real Data Results.
S.11.1. Simulation Results for all the cases.

We present the all-case version of Table 2.
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Table S.1. Evaluation of subgroup recovery. Complete version of Table 2.

Ŝ Perfect
Method Mean (SD) Median (Min,Max) NMI Recovery

Case 1 MCP 2.00 (0.0000) 2 (2, 2) 0.9988 0.99
(S = 2) SCAD 2.00 (0.0000) 2 (2, 2) 0.9988 0.99

TLP 2.00 (0.0000) 2 (2, 2) 0.9988 0.99
L1 2.39 (0.6651) 2 (1, 4) 0.9476 0.62
K-Means 2.05 (0.2179) 2 (2, 3) 0.9896 0.95

Case 2 MCP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
(S = 3) SCAD 3.00 (0.0000) 3 (3, 3) 1.0000 1.00

TLP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
L1 2.40 (1.0731) 3 (1, 4) 0.6467 0.55
K-Means 3.00 (0.0000) 3 (3, 3) 1.0000 1.00

Case 3 MCP 2.00 (0.0000) 2 (2, 2) 0.9988 0.99
(S = 2) SCAD 2.00 (0.0000) 2 (2, 2) 0.9988 0.99

TLP 2.00 (0.0000) 2 (2, 2) 0.9988 0.99
L1 2.33 (0.5870) 2 (1, 4) 0.9718 0.70
K-Means 2.01 (0.0995) 2 (2, 3) 0.9979 0.99

Case 4 MCP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
(S = 3) SCAD 3.00 (0.0000) 3 (3, 3) 1.0000 1.00

TLP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
L1 2.43 (1.2248) 3 (1, 6) 0.6141 0.47
K-Means 3.00 (0.0000) 3 (3, 3) 1.0000 1.00

Case 5 MCP 2.00 (0.0000) 2 (2, 2) 1.0000 1.00
(S = 2) SCAD 2.01 (0.1000) 2 (2, 3) 0.9990 0.99

TLP 2.01 (0.1000) 2 (2, 3) 0.9990 0.99
L1 2.27 (0.5835) 2 (1, 4) 0.9807 0.77
K-Means 3.36 (1.0538) 4 (2, 5) 0.7877 0.36

Case 6 MCP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
(S = 3) SCAD 3.00 (0.0000) 3 (3, 3) 1.0000 1.00

TLP 3.00 (0.0000) 3 (3, 3) 1.0000 1.00
L1 4.09 (9.7152) 3 (1, 100) 0.9303 0.72
K-Means 3.76 (0.8261) 4 (3, 6) 0.9303 0.48

Case 7 MCP 5.01 (0.1000) 5 (5, 6) 0.9996 0.98
(S = 5) SCAD 5.00 (0.0000) 5 (5, 5) 0.9997 0.99

TLP 5.01 (0.1000) 5 (5, 6) 0.9996 0.99
L1 63.24 (47.1983) 100 (1, 100) 0.5878 0.00
K-Means 5.00 (0.0000) 5 (5, 5) 0.9768 0.37

Case 8 MCP 5.01 (0.1000) 5 (5, 6) 0.9998 0.99
(S = 5) SCAD 5.02 (0.1407) 5 (5, 6) 0.9998 0.98

TLP 5.02 (0.1407) 5 (5, 6) 0.9998 0.98
L1 97.26 (70.6762) 150 (1, 150) 0.6137 0.00
K-Means 5.43 (0.5875) 5 (5, 7) 0.9550 0.16

Case 9 MCP 7.00 (0.0000) 7 (7, 7) 0.9999 0.99
(S = 7) SCAD 7.26 (0.5245) 7 (7, 9) 0.9981 0.77

TLP 7.22 (0.5041) 7 (7, 9) 0.9982 0.81
L1 150.00 (0.0000) 150 (150, 150) 0.6205 0.00
K-Means 7.00 (0.0000) 7 (7, 7) 0.9786 0.20

S.11.2. NOAA Data Features

In our analysis, each climate division is taken as a data unit. The monthly average temperature is the response of interest,
and we include precipitation (PCPN), Palmer Drought Severity Index (PSDI, based on the principles of a balance between
moisture supply and demand without considering man-made changes), Palmer Hydrological Drought Index (PHDI, based
on principles similar to PDSI, but with consideration of some man-made changes) and Palmer Z Index (ZNDX, a moisture
anomaly index) into the covariate pool. Negative and positive values of PDSI, PHDI and ZNDX indicate dry and wet spells,
respectively. See the database documentation4 for more details about these drought indices. To account for seasonal effects,
we include dummy variables for the four seasons (March, April and May as spring; June, July and August as summer;

4Available on ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/divisional-readme.txt.

ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/divisional-readme.txt
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Table S.2. Average ASD(α̂1,1) and ESD(α̂1,1), based on replicates with perfect subgroup structure recovery.
Average ASD(α̂1,1) ESD(α̂1,1)

MCP SCAD TLP Oracle MCP SCAD TLP Oracle
Case 1 0.1123 0.1123 0.1123 0.1205 0.1166 0.1166 0.1166 0.1166
Case 2 0.1508 0.1508 0.1508 0.1531 0.1569 0.1569 0.1569 0.1569
Case 3 0.1244 0.1244 0.1244 0.1200 0.1117 0.1117 0.1117 0.1177
Case 4 0.1591 0.1591 0.1591 0.1525 0.1728 0.1728 0.1728 0.1728
Case 5 0.0781 0.0781 0.0781 0.0823 0.0871 0.0871 0.0871 0.0871
Case 6 0.0988 0.0988 0.0988 0.1025 0.1131 0.1131 0.1131 0.1131
Case 7 0.1319 0.1318 0.1319 0.1380 0.1285 0.1147 0.1282 0.1285
Case 8 0.1069 0.1066 0.1167 0.1104 0.1023 0.1028 0.1034 0.1030
Case 9 0.1284 0.1280 0.1284 0.1339 0.1414 0.1348 0.1448 0.1409

September, October and November as Fall; December, January and February as winter), and the spring effect is taken as the
baseline intercept term. In summary, there are 8 covariates in our analysis.

We next determine heterogeneous effects by observing the kernel densities of the ordinary least-squares (OLS) estimates
of the candidate effects, as shown in Figure S.1. Intuitively, the distributions of heterogeneous effects are likely to form a
multimodal or wide-spread shapes. As a result, we choose the intercept, PCPN and ZNDX as the heterogeneous effects (i.e.,
q = 3 and hence p = 5).
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Figure S.1. Kernel densities of the 344 OLS estimates obtained from the nClimDiv database.

S.11.3. Asymptotic covariance approximation

We assess how close the estimated asymptotic covariance is to its oracle and empirical counterparts. To this end, we observe
‖Σ̂ − Σ̂OR‖max, where Σ̂ and Σ̂OR stand for the asymptotic covariance matrices of (β̂>, α̂>)> and (β̂>OR, α̂

>
OR)>,

respectively. Furthermore, we compare the average asymptotic standard deviation (ASD) with the empirical standard
deviation (ESD) to evaluate the finite-sample second moment approximation. Since the ASDs and ESDs of all coordinates
in α̂ behave similarly, we only show the results for α̂1,1.

Results of ‖Σ̂− Σ̂OR‖max, ASD(α̂1,1) and ESD(α̂1,1) are shown in Figure S.2 and Table S.2, based on the replicates with
perfect subgroup structure recovery. It can be seen that the Σ̂’s are fairly close to Σ̂OR’s, and the average ASD(α̂1,1)’s are
decently comparable to their empirical counterpart ESD(α̂1,1)’s. Accordingly, we confirm that the empirical covariance
matrix of the proposed estimator can be properly approximated by the asymptotic covariance matrix given in Corollary 4.1.
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, based on replicates with perfect subgroup structure recovery.

S.11.4. Inferential Accuracy

In this section, we study the statistical inferential accuracy based on the asymptotic normality result in Corollary 4.1. Let
Σ̂α = (ZÂ)>W (ZÂ)− [(ZÂ)>WX](X>WX)−1[X>W (ZÂ)] denote the estimated asymptotic covariance matrix
for α̂, where Â is the estimated label matrix A by substituting the estimated subgroups for the true ones. For the first
subgroup effect α1, a 95% confidence region can be constructed by

CRα1
=
{
v ∈ Rq : (α̂1 − v)

>

(
L1Σ̂αL

>
1

)−1
(α̂1 − v) ≤ χ2

q(0.95)
}
,

where L1 =
[
Iq,Oq, · · · ,Oq

]
q×Sq such that L1α̂ = α̂1 and χ2

q(0.95) is the 95% percentile of the χ2
q distribution.

Table S.3 displays the empirical coverage probabilities obtained from replications with perfect subgroup recovery. It can be
seen that the empirical coverages, including that by the oracle estimates, are close to the nominal level 95% except for Case
7, which again indicates that S = 5 could be too large for M = 100.

Table S.3. Empirical coverage probabilities for CRα1 .
MCP SCAD TLP Oracle

Case 1 0.9600 0.9600 0.9596 0.9500
Case 2 0.9200 0.9200 0.9200 0.9200
Case 3 0.9394 0.9394 0.9394 0.9100
Case 4 0.9300 0.9300 0.9300 0.9400
Case 5 0.9400 0.9556 0.9596 0.9100
Case 6 0.9200 0.9200 0.9200 0.9300
Case 7 0.8800 0.8800 0.8800 0.8800
Case 8 0.9596 0.9468 0.9600 0.9500
Case 9 0.9286 0.9286 0.9310 0.9200

We further formulate a heterogeneous test H0 : α1 = α2 between the first two subgroups. Since α1 −α2 = L12α, where
L12 =

[
Iq,−Iq,Oq, · · · ,Oq

]
q×Sq, we define the F test statistic as

T = (α̂1 − α̂2)
>
(
L12Σ̂αL

>
12

)−1
(α̂1 − α̂2) /q.

Under H0, the test statistic T asymptotically follows the Fq,N−p−Ŝq−2 distribution. For replications with perfect subgroup
recovery, the p-values of the heterogeneity test are all less than 0.0001. This indicates that the estimated subgroups obtained
from the proposed method cannot be further combined.


