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The supplementary material is organized as follows:

In Section S.1, we give the formulas for the penalty functions we have used.

e In Section S.2, we prove Theorem 2.1.

e In Section S.3, we prove Theorem 4.1.

e In Section S.4, we derive the bounds related to random matrices, which are needed in Section S.3.
e In Section S.5, we present the detailed derivation of the ADMM Algorithm 1.

e In Section S.6, we prove Proposition 3.1.

e In Section S.7, we prove Theorem 4.2.

e In Section S.8, we prove (ii) in Corollary 4.1.

e In Section S.9, we present technical lemmas.

e In Section S.10, we define the signal-to-noise ratio (SNR) for the proposed method.

e In Section S.11, we present additional simulation and real data results.

S.1. Penalty Functions
More specifically, for ¢ > 0, the L;, MCP, SCAD and TLP are respectively given by
Pt A) = At,

t
MCP -

P t; A :)\/ (1—) de, v > 1,
Y (:A) o Ay N

t _z
p,SYCAD(t; A) = )\/ min {1, W} dx, v > 2,
0 7=

and

p?“P(t; A) = Amin (¢, Ay), v > 0.

S.2. Proof of Theorem 2.1
To prove QP (8, ©) — Qn (B, ®) is a constant, first note that
" (8,0) - Qn(B,a) = Ly (B,a) — Ly (B, ©),

where
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Define r;(3, 0;) = (xi, z;) < 05 B go ) , where B and 0, are true values of 3 and ;, respectively. Then we can write
i — 00

o (Bi=BY _ .\ (Bi=Bo\_ . (BB
(x4, 23) (\0/2 B 01‘) (x4, 2:) <51 B 02_0) (@i, z:) <0i — 9¢0>

= (i, 21) [(i, 21) T Wi(@i, 25)] (@, z) Wi(zu; + &;) — (B, 6;)
=V, Py, (4, . Vi(ziu; + €) — (8, 0,)

where V; denote the squared root matrix of W; such that W; = Vf. In addition, we can also write

10

Yi — i — 2:0; = yi — (x4, 2) (ﬂ()) — (xi, 2i) (g B g;) = ziu; +&; — (B, 6;).

Consequently, we have

(fEi7Zi) (gl _9'8) - (yz —x;0 - ziei) = (V IPV(ml z7)V I, ) (Ziui + Ei)
= _Vflpé(mi,zi)v;(ziui +&;).
Note that PJ-( =) is the projection matrix onto the orthogonal complement of the column space of V;(x;, z;) such that
PL(% 2 Vii = 0 and PV(:,3 -, Vizi = 0. Hence we have

B:—B -
(i, 2;) (5;— 0, (yi —x:B — 2:0;) = =V, 1P‘é(mi’zi)‘/i€i-

and therefore we can write

L§P(8.©) = 5 Z —xiB— 20, — V' Py, Vie) Wiy —z.8 — 2.0, - V; ' Py, . Viey)
1 M
= Ln(B,0) — NZ(@/- — B — 2:0;) ViPy . .\ Viei + —ZETVPV(% 2 Vies
1 Z;[l
N(B.©) = 5 D Ul ViPyo, o Viei + o ZETVPL(:BI - Viei,

i=1

where the last identity follows from x; VPL(w .y = 0and z VP

) = 0. Hence we conclude Q5P (B,0) —
Qn(B,a) = L§P (B, a) — Ly (B, ®) is a constant.

Vi(xi,z;
S.3. Proof of Theorem 4.1
To prove (i), we write
<§OR B ﬁo) — (FTWF) 'FTW (ZU +€),
QOR — &

where F = (X, Z A), and hence

H(ﬂOR )H<H (FTwWF) HHFT (2U +€)||
QOR — O

< virsa|Etwe) | |FTwzu e,
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We derive the upper bounds for H (FTWF) ! H and ||[FTW (ZU + €)||__ under the events

Ecp = { max H ]H < +/5¢yN and max max || k” < \/5cfgmax}

1<i<p 1<s<S 1<k<q
and

Epp = {Qf < in (£ Fi/3) < A (£ £i/mi) STpri=1,.. M}
where f; = (@, 2;) and npi, = minj<;<p n;. According to Sections S.4.1 and S.4.2, we have P(Ecp) > 1 — (p +
Sq)e~ 9> and P(Egp) > 1 — 2Me™"min,
We first look at H (FTWF)™! H By definition, we can write
W =[0Iy + Z(Iy 0 ®)Z"] " =02 [IN —02Z(Iy @ ¥ + U;QZTz)‘lzT]
where the second identity holds by applying the Woodbury identity (S.41). It then follows that

|(FTWE) | = ALk (FTWEF)

min

€ 'min

= A [FTF =02 F T Z(Ly @ 9™ + 0,227 2) ' Z7F|

< 02 {hin (FTF) + 02\ [F Z(Iy @ 9™ + 0,227 2) " 27 F)| }71
<02 (F1F)
S Cr 0 0m: 8.7)

gmln’

where the last inequality holds from (S.14).

It remains to show the upper bound for | FTW (ZU + £) ||. Recall that F = (X, ZA). Let V; denote the square root
matrix of W; such that W; = V.2, and then define V' = diag [(‘/i)izl _____ M] and V, = diag [(VZ-)Z-;LI:S]. It is easy
to see from (S.15) that [|V|| = [W|'/? = maxi<j<ar [Wil|/? < o2 and ||V, || = maxi.p,— [Wi]|"/? < o' Let
ZS = (z;r )IL,,:S denote the stacked design matrix for the s-th subgroup. Under the events Ecp and Egp, we have

IVIXLll < IVIIX] ) < o' VBesN - and ([VA[Z]ll < (IVSIIZs)ill < 02" /565 Gman

forallj=1,...,p,s=1,...,5 k=1,...,q. By union bound and the tail bounds in (S.18) and (S.20), it holds

P(|XTW(2U +&)| > 1) < ZP( W (ZU +&)| > t)
(T/\O’?) O’?t2

< 4peXp W s (SS)

s q _
(lzayTwzu + &), >t) <33 P(IZIW(ZU, + £,)| > t)
s=1k=1
2\ 2,2
< 4Sqexp <—C€(;c/>Z€)UEt> , (S.9)

where Z, = diag [(2i)i:0,=s), Us = (w; ) 1. _,. Wy = diag [(Wi)iiL,=s|. Es = (] )iip,—s» and T = Apmin (®). Since
F = (X,ZA), it follows that

P(|FTw(zU +&)| >t) < P(| X W(2U +&)| > t) + P([(Z2a) W(ZU +€)| > 1)

ce (T A 02) 022 ce (T A 02) 022
< 2pexp (—e( ) o >+2Slep (—e( 2) o

5CfN SCf Jmax

Ce ('r A 02) o2t?
4 S - el E .
(p+ Sq) exp ( 5o N
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Taking ¢t = \/50;1/20}/2 (TA a?)_l/2 o-1v/Nlog N hence yields

|FTW(ZU + )|, < V5,1 %¢/* (r no?) " 072\ /Nlog N (S.10)

with probability at least 1 — (p + Sq) (4N ~1 + e~ 9max) — 2\ [ e~ "min,

In summary, combining the results in (S.7) and (S.10) leads to

H(?OR‘%)H<\/WH FTwr) || |[FTw(zU + &),

QOR — O

< Ve V20 (rno?) T ognk /(0 + SN 1og N,

with probability at least 1 — (p + Sq) (4N ! + e~ 9max) — 2\ e~ min,

To prove (ii), we show the oracle estimator satisfies the Lindeberg-Feller condition as follows. Note that for any ay € RP+54
with |lay|| = 1,

QOR —

e [o (Zon 2 20)] -0

<ﬁOR - f@0> — o (FTWF)"'\FTW(ZU + €).

It is then clear that

and
0% (an) = Var [ (ﬁOR - 50)} — o (FTWF)!
QOR — &
> Auin [(FTWF)™ = |[FTWF| ™" > |F| 2 |W| ™" 2 TN,
where the last inequality is due to (S.13) and (S.16). Let &; = [V;(z;u; + €;)]; denote the I-th coordinate of V;(z;u; + €;),

and F; the n; x (p + Sq) submatrix of F' that collects the corresponding rows of the i-th unit. Then for any € > 0, we can
write

M n;

T Te1?
on’(an X;IX;E{ (FTWF)'[V,F]/ & ]1|a;(FTWF>71[V1Fi]I§u >eoN(aN>}
M n; . T 14 1/2
<Cf —2NZZ{ NEFTWE)TUVF] &) }
=1 [=1

X {P( lay (FTWF) ViE] €| > eaN(aN))}l/Q.

We are going to show the above quantity is o(1).

From (S.19) we can see that &;; has sub-Gaussian tails, and thus there exists an a constant cg > 0 such that E [||§zl I ] <e3

and E[[|€;[|?] < cs. By the definition of F; and Lemma S.9.2, we have ||[F; || < 5¢4(p + Sq) with probability at least
1 — e~ (P59 for some constant ¢4 > 0. It then follows that

{Elak(FTWF) ' V.F)[ca)" }1/2
< lanl? [(FTWE) | [VIIP IR0 {Eal ]}

< ey 2esC; 2002 (p+ Sq)gnl
=0 [(p+ Sq)gmi] -
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where the second inequality holds based on (S.7) and (S.15) under the event 'g . In addition, similar argument gives
- 2 —1/2 2 2
Elay(FTWEF) ' ViF][ €] < ay| [|[(FTWE)7H[" VI IIFL" E[l6a]]
= O [(p+ S9)gimia] -
Then by Markov inequality, it holds
E [a} (FTWE) " [ViF)[ &)

e20% (an)

P( lay (FTWEF)[ViF)]] &1] > eaN(aN)> <

=0 [(p+Sq)Ng 2]

It then can be concluded from the above results that
M ng
_ _ 2
oy’ (an) Z Z E { [ax (FTWF) " ViF]; &l ﬂ\a;(wwm—l[wm?&iz
i=1 =1 '

=0 [(p+50)* N9 ]

Imin

>eon(an) }

which is o(1) provided that gy, > (p + Sq)*/2N3/%. Accordingly, the asymptotic normality assertion (12) follows from
the Lindeberg-Feller Central Limit Theorem.

S.4. Properties of Random Matrices

In this section, we derive the bounds for the Ly norms and eigenvalues of the random design matrices under Assumption 4.1.
In addition, we derive the non-asymptotic upper bound for V(ZU + &), where V' denotes the square root matrix of W
such that W = V2, under Assumption 4.2.

S.4.1. Ly-norm Bounds for Columns of Design Matrices

By union bound and (S.42), there exists a constant ¢; > 0 such that

P( max [[[X],]| > v5eN) < ZP:P(H[X]_jH > VeV <pe ¥

1<j<p

and similarly

P( max max H[ié]kH > \/M) < Sqe9max,

1<s<S1<k<gq

where Zs - (z;r)z—’l:rbizsl

We define an event

Ecp = { max H[X]JH <+/5ciN and 11%15&%{5 11;1’?%((] H[Zs]ku < \/5clgmax} (S.11)

1<j<p

with P(Ecg) > 1 — (p + Sq)e9m= for later use. (The subscript “CB” stands for “column bounds.”)

S.4.2. Eigenvalue Bounds for Design Matrices

In this section, we first derive the eigenvalue bounds for a:ZT:cl and z; z; for i = 1,..., M, and then those for
(X,AZ)T(X,AZ).

Let f; = (x4, z;). Since the rows of f; are independently drawn from F, then the rows of E [FFT] -1/2 [ are isotropic, i.e.,

Cov(E [FFT] -1/ [f:]x.) = I. Following Theorem 5.39 of Vershynin (2012), it then can be shown that, on an event with
probability at least 1 — 2 exp(—cat?), we have

Vi = CvpFa—t < N (E[FFT) T fT FE[FFT] )

< N2 (E[FFT] V2T RE[FRT) V) < Vi OV T+,
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where C, co are some positive constants. By taking ¢ = ¢, 1 2\/717 , with probability at least 1 — 2e™" we have
(szfi/ni) _ ”;1/2)\11431 (E[FFT]I/QE[FFT]—1/2fi‘rfiE[FFT]—1/2E[FFT}1/2>
> nidwin (E[FET]Y2) N2 (ETFFT] Y2 £T rE[FET) )
1/2

1/2 P+q —1/2 —1/2

\L/2

min

and similarly
N2 (E[FFT) 2T pE[RET) )

max

N2 (T fi/m) < ng A (E[FFT)Y?)
< Cf—1/2 <1 LC /png +02_1/2> <( +62_1/2)Cf_1/2.

In summary, it holds
(13 *)Cp < Ain (£ £1/13) < Amax (£ £1/m) S (1 + ¢, VH)OF,

with probability at least 1 — 2e™ " fori =1,..., M
By the fact that the largest (smallest) eigenvalue of an submatrix with fewer columns is bounded above (below) from the

largest (smallest) eigenvalue of the full matrix, we have
—-1/2 —1/2\ y—

(1—c / )C < Amin (2] /1) < Amax (@] Ti/ni) S (1+ 3 / )C; g

—-1/2 —1/2\ —

(1 —Cy / )Cf S, /\min (ZZTZZ/”%) < /\max(z;zi/ni) S/ (1 + Co / )Cf 17

with probability at least 1 — 2e™™ foreach: =1,..., M
Define the event
Brp = {Cp S A (ST fin3) < Mo (£ Fi/ni) S Cpii=1,...,M } (5.12)
with P(Epp) > 1 — 2Me "min where C; = (1 —¢; /*)C,Cy = (1+ ¢, /*)C7" and nupin = ming<;<s ;. Then,

on the event F'gp, it follows that
Amax (FTF) < max { Ao (X TX), e [(24) 7 (Z4)] }

M
< max {z Amax (a:ja:z), max, Amax (zjzl) }
1=1 — 7 4:L;=s
(S5.13)

5 max {6fN, éfgmax} = éfN

and
Amin (FTF) > min {)\min (X7 X), Amin [(ZA)T(ZA)}}

M
Z min {Z )\min (iji)a 12125 Amin (Z;Tzi) }
- 7 i:L;=s
(S.14)

i=1

Z min {QfN’ Qfgmln} = Qfgmin.

S.4.3. Weight Matrix

1 —2 (S.15)

It is easy to see that
2 T

ozl +z,¥z') < =0

( e ! ¢ ) 02 +/\min(zi\11zi—r) <

€

>\max (Wl) = )\;Hln
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where /\min(zi\IlziT ) = 0 since ¢ < n;. Note that this is an exact result without any probabilistic nor asymptotic statement.
M] , we can also conclude

.....

)\max(W) = max )\max(Wi) < 05_2- (S.16)

1<i<M

S.4.4. Tail bounds of Weighted Random Effects and Noises

On the event Eip, we show the non-asymptotic tail bounds for V(ZU + ). For V ZU, we first check ||Z TV|| as
follows. By definition, we can write

1
W, = (afIm + zi\Ilz;r) = 05—2 [Ini - agzzi(\llfl + szz;zi)*lzj—] ,

€ (3

where the second identity holds by applying the Woodbury identity (S.41). It then follows that
(z] Wiz;) ™! = o2 [z;rzi — o220z (P 4 ngz;zi)_lz;zi] -
=o02(z] z) P+ @
where the second and identity holds by applying Woodbury identity (S.41) on the inverse term. It then holds
Amax (27 Wizi) = Al (2 Wizi) ™!

= 02 M (2 20) T+ 00T
05_2 {)‘min [(zi—rzi)_l} + 05_2)\min(‘1’_1>}_1

1

IN A

Accordingly, we have

12TV <|VZ|=A2 (ZTWZ) = max A
1<i<M

1/2 (z;rWizi) < 12, (S.17)

max

Under events Ecp and Fgp, it follows for any a € RY that
t
P(la"VZU| > |a|t|Z) < P (|aTVZU| > ||ZTVa|||VZ”‘Z>

cot?

< 2exp <_||VZ||2> < 2exp (—CeTtQ) .

By law of iterated expectations, we have
P(la'VZU| > |a|t) =Ez [P (la"VZU| > |a|t|Z))]

<Egz {2 exp [—CeTtQ]} = 2exp [—CeTtQ] .

For V€, since |V|| < o1, similar argument yields
P (‘aTVS| > |lallt) < 2exp [—c.o?t?].
In summary, it holds
P(la"V(ZU+&)| > |a|t) < P(la"VZU| > ||a|it) + P (|a" VE| > ||allt)

<4dexp (fce (T A ag) t2) , (S.18)
where 7 = Apin (¥).
In addition, similar argument results in

P (‘aiTVi(ziui + si)‘ > Hath) < 4dexp {—ce (T A 0?) t2} (S.19)

for any a; € R™?, where V; is the square root matrix of W; such that W; = Vi2. Moreover, let V, = diag [(Vl)l Li:s] ,
Us = (u;);.p,_, and &, = (&;);, _,. Then we have

P (|b]V(ZUs + )| > |Ibs]it) < dexp{—ce (7 A 02)1?} (S.20)
for any by € RYs.
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S.5. Derivation of Algorithm 1

The augmented Lagrangian of (9) can then be formulated by

L(,B,@,&,V) :Lo(ﬁ7®,6)
+ Z V;JF(OY — Oj — 653)

1<i<j<M

K 2
+3 2 lei-6;—s,l, (S:21)
1<i<j<M

T

where the dual variables v = (I/Z—; )i ; are Lagrange multipliers and x > 0 is the penalty parameter.

The minimizer of the augmented Lagrangian (S.21) can be solved by developing an ADMM algorithm. Given the values of
Ol 8 and v!*] at the k-th iteration, we update 3 using

M —1
B = (Z ijm) X

=1
M

(Z z] W, [wi,?ii +2(8; - 01[’“])}) . (5.22)
1=1

Next, given BF+1], §[¥ and v!*], the updating formula for @ is

ek = (ZTWZ+rNBBT) ' x
[ZTWZO + D.. (B — 1y ® glEHY)
+NB (ms[k'] _ u[’ﬂ) ], (S.23)

.....

(6] —0,)._,. Note that the form of B depends on how we arrange d;;’s in 8; see Remark S.5.1.

To update §, we use (S.29), (S.30), (S.31) and (S.32) derived below for L;, MCP, SCAD and TLP, respectively. Finally,
updating the Lagrange multipliers v takes a standard form in general ADMM algorithms,

P+l _ I (BT@[kH] _ 5[k+1]) _ (S.24)

The above discussions are summarized in Algorithm 1.

As the initial values of (®°], §(°1 1/[%)), we use ®[°) = 0.6 = BTO and v = 0 in our implementation. We also fix
+ = 1 because the ADMM method can be shown to converge for all values of the penalty parameter x > 0 (e.g., Eckstein
(2012); Ghadimi et al. (2015)).

Detailed derivation for (S.29), (S.30), (S.31) and (S.32).

Given the values of §!*] and v[¥] in the k-th interation, the ADMM that solves the augmented Lagrangian (S.21) goes as
follows:

(B[k+1]7@[k+1]) = argmin L(8, ©, 8, k), (8.25)
)
s+l — arg minL(ﬁ[k'H], e+l § ,,[k]), (8.26)
5

and v* 1 is updated using (S.24).
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Firstly, we rewrite the augmented Lagrangian (S.21) by expanding the first term as

1 M 1 M - -
L(B,0,6,v) == (B; = B) & Wzi(B, - B) + 5= Y _(0;i — 6;) "2/ Wiz(6; — 6))
2N ~ 2N pet

M
1 - ~
+ﬁ2(ﬁi*5)TwiTWizi(0i*9i)+ >y (116: - 650150
=1

1<i<j<M
K
+ l/;;(el — Oj — 5”) + 5 Z ||01 — Oj — (sinZ (5.27)
1<i<j<M 1<i<j<]\/1
1= T B 1 T =
*ﬁ(ﬁ 1v ®B) D, (B 1M®/3)+2N(@ ©)'Z2'Wz(® -0)
1 = -
~©- ©)'D..(B—1m @)+ Y py (165
i<j
+(BTO-8) v+ (B'O-9)(B'O-3) (S.28)

where D, = diag [(z] Wix;)i=1,.. m |, D.o = diag [(2;! Wix;)i=1,...m| and B is a matrix such that B'© = (8] —

OT)K] Given ©¥! §l* and ¥, solving the equation using (S.27)

oL(B, O, 5, 1)

L~ 3 b, — ol¥)
—— xT; VVz CBZ‘(,@Z'—,B)—FZZ‘(BZ‘—GZ- ) =0
5 e |

yields the updating formula (S.27) for 3. Similarly, given B¥1 §l¥ and v*], setting the partial derivative w.r.t. © using
(S.28),

oL(B", ©, 1M, v M)
00

equal to zero leads to the updating formula (S.23) for ©.

- —% [ZTWZ((:) +O) -D.,(B-1u® ﬂ[’““])} +BvH L kB(BTO - §lM)

Now, given Bl @F+1] and v[*, we derive the updating formula for 8. By omitting irrelevant terms w.r.t. 8, (S.27)
results in

> [P U8l + SlIeh T = 6]

1<J

where ¢;; [k+1] Oz[kﬂ] — Hj[-kH] + /{*lu[ ). Its minimizer is taken as the update of 4. In particular, the solution for the L
penalty i 1s

S =51 (¢ k), (S.29)

ij
where ST (v;t) = (1 — t/||v]|)+v is the soft thresholding operator. For the MCP given in (S.2) with v > £, the solution
is

ST (¢ N /k)

(k+1] _ if || ¢l <A,
%=L Tom Tl - < (830

Cij if ||C H > A

For the SCAD penalty given in (S.3) with v > £~ + 1, the solution is
ST (d{f*” S A/K) if || < A+ /K,
k+1]

6[1§+1] _ ST (C A [y = 1)“]) [k+1] S.31
i Y A+ Mk < || <A, (8.3

¢l if || ¢ > A
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For the TLP given in (S.4) with v > !, the solution is

[k+1]

st _ ST (k) A || ¢ <, (5.32)
i ¢l if ||| > A
Algorithm 1 ADMM for CD Fusion Approach
1: Input: Initial values of ®[% §[° and v
2: fork=1,2,...do
3:  Compute B**1 using (S.22)
4:  Compute O+ ysing (S.23)
5. Compute 8/t using (S.29), (S.30), (S.31) or (S.32)
6:  Compute v*+1] using (S.24)
7. if Convergence criterion is met then
8: Break
9: else
10: k+—k+1
11:  endif
12: end for R
13: Input:3(\) = BlF*+1 and @(\) = @1
Remark S.5.1. Here we stress that, though & = (8,;),.;,v = (vi;),; and the matrix B such that BT ® = (6 —6])/[_;

are just auxiliary parameters in the ADMM algorithm, one has to be cautious with matching their forms. More specifically,
v;;’s are the corresponding Lagrangian multipliers for d;;, which are made to match 8; — ;. For example, suppose M = 4,

and one may have

512 V12 Iq —Iq i 91 - 02
513 Vi3 Iq —Iq 91 - 03
_ 014 _ | V4 T_ |14 -1, To_ | 0104
6= 5o v= Vo and B' = 1, -1, st. B'® = 0, — 05
024 129) I, -1, 6, — 0,
634 V34 L Iq —Iq_ 63 - 04
However, it is also possible to set

612 V12 —Iq —Iq i 91 — 02
523 Vo3 Iq —Iq 92 — 03
034 V34 T I, -1I T 0; — 0,

6 — — d B = 4 q L. B 6 =
613 v V13 an Iq —Iq s 01 — 03
624 Voy Iq —Iq 62 — 04
614 V14 _Iq —Iq_ 91 — 04

As can be seen that the order of v;;’s and the form of B both depend on the order of §;;’s. Although it is not necessary to
have guidelines to make their forms unique, while matching them correspondingly is crucial in implementation.

S.6. Proof of Proposition 3.1
Here we show limy_, ||7'[k] Hz = 0. Define

fleH] = inf
BT+ -§=0

LEP (B, @) 3 " p ([18]15 A)
1<j

L(g*1, et 5, vlH),

= inf
BT OIlk+1-§=0
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where L§P (3, ©) is defined in (S.5). By the definition of §*+'] as in (S.26), we have
L(I@[k—H} , @[k+1]’ 6[k+1]’ V[k]) < f[k+1].
Let ¢ be an integer. Since v =1 = p[Fl 4 xS~ (BT @IF+1 — §lF+) it follows that

L(BI1, @+, g1+ i1l = GP(gl, @) 1§ . (814 )

i<j
+ (I T (BT @+t _ glk+tly g HBT@[k—&-t] _ gl 2

= LEP (B, @) 13 " p (|6 )

i<j
+ (V[k])T(BTg[k—i-t] _ 6[k+t])
t—1
+ KZ(BTG')[k+i] _ 6[k+l])T(BT®[k+t] _ 5[k+t])
i=1

L h HBTG)[k+t] a 6[k+t]H2
2
S f[k-‘rt].
We are going to show that limy_, o ||r[k] ||2 = 0 is a necessary condition for the inequality

lim L(,@[k"'t] et glhtt] plktt— 1]) < lim f[k+t

k—o0 k—o0

forallt > 0.

[¥1) has a limit point, denoted by

By applying the results in Theorem 4.1 of (Tseng, 2001), the sequence (3%, ®¥l, §
(8, ©) and is convex w.r.t. . Define

(B, @1, §11), since the objective function L(3, ©, 8, v) is differentiable w.r.t.

[*] _ 1 [k+1] _ 1 [k+t] _ inf LCD [*] (_)[*] 5[*] A
S = lim 5 = lim o (B, )+;pv(ll I %)

For all ¢ > 0, we have

lim L(Ia[k+t],@[k+t],5[k+t]’y[k+t71]) LCD ﬁ[* *] + Zp’y ||6 || )\

k—o0
i<J

1
+ lim () T(BTOM — o) 4 (1 = 5w HBT@[*] 8

k—o0

< fi

Note that f1*/ is a constant by definition, and thus we must have limj . [|7*] H2 = ||BTOF — g ? — 0 to make the

last inequality hold for all £ > 0.

S.7. Proof of Theorem 4.2

In this section, we prove the results in Theorem 4.2. We start with introducing the folllowing notations. The objective
functions for the proposed and oracle estimators can be written respectively by

Qn(B,©) =Ly(8,0©) + Py(®) and QF(B,a) =L (B, @) + Py (a),

where
V(B.0) = 5o (Y - X8~ 20) W(Y - X8~ 20), Py(®) =\ 3 (6~ 6],
1<i<j<N
L4(8,0) = 5 (Y —~ X~ ZA) W(Y ~ XB - ZAa), PEO) =1 Y MMup(la, - avl)),

1<s<s’<S
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p(t) = A"'p,(t; X) and Mj is the number of units in the s-th subgroup. Recall that the set
Mg = {@ERM‘]:&- =0;forany L; =L; =s,5 = 1,...,5}

is the collection of stacked heterogeneous effect vector © = (8, );1  With only S distinct values of 8;’s. For each

0 € Mg, there exists a Mq x Sq label matrix A and & € R%% such that @ = A and o = (ATA)"'AT®. Hence, let
T : Mg — R be the mapping such that T(®) is the (Sq)-vector stacking the S different 6;’s in ©, and its inverse mapping

T-':R% — Mg is well-defined. Let T* : RM? — R4 be the mapping such that T*(©) = {M;* >, _ Oi}le.
For any © € RM4, define @ = T-1(T*(©)).

By the above definitions, it clearly follows that 7(©) = T*(®) and Py (®) = P5(T(®)) for every ® € Mg, and that
Py (T~ () = Pg(c) for every o € RS9, Moreover, we can write

Qn(8,0) = Q% (8,T(®)) forevery © € Mg,

0%(8,a) = Qn(B.T () forevery o € RS, (S.33)

Consider a neighborhood of (3¢, ©g):
= {ﬁ ERP,© e RM7:||B - By < ¢Na122%)](\/[ 10; — Biol| < ¢N} :

By Theorem 4.1, there is an event E1 with P(E1) > 1—(p+Sq)(4N 1 +e=9max) —2 M e~"min guch that (aom (:DOR) eY
on event F/;. We show that (,BOR, GOR) is a strict local minimizer of the objective function (5) with probablity tending to 1
through the following two steps.

(i) On the event Eq, QN (B, 0*) > QN(BOR, (:)OR) for any (8,0) € T and (3,0*) # (EOR, @OR).

(ii) There is an event Fo with P(FEy) > 1 — Me~9min_ On E; N Es, there is a neighborhood of (EOR, (:)OR), denoted by
T, such that Qn (8, ©) > Qn (B, ©%) for any (3,0) € Ty N T for sufficiently large V.

By resutls (i) and (ii), we have Qn (8, ©) > Qn(Bor,©or) forany (8,0) € Tn N'Y and (8, ©%) # (Bor, Oor) on
the event E1 N Es, so that (ﬂOR, C-)OR) is a strict local minimizer of Q (3, ©®) given in (5) over the event Ey N Ey with

P(E1NEy) >1— (p+ Sq)(4N—1 4 e79max) — M (2e~"min 4 ¢~9min) for sufficiently large N.

We first show P5(T*(®)) = Ky for any ® € Y, where K is a constant independent of ©. Let T*(®) = a =
(al)] g+ Since p(t) = A~'p,(t;)) is constant for ¢ > a) according to Assumption 4.3, it suffices to show that

s /Js=1

las — || > arforall s, s’ € {1,...,S}. Since

]\}[s > (6; — 0i0)

max Has —050” = max

1<s<S 1<s<S iLms
S1gls<xsﬁ LZ; 10; — il
< s, [16: — O
< ¢n, (S.34)
then for all s,s’ € {1,...,S} we have
Has — Oy Ots'OH — 2 max Has - asoH > AN — 20N > al, (S.35)

1<s<S

where the last inequality follows from the assumption that Ay > a) > ¢n. Accordingly, we have P (T*(®)) = Ky
for some constant Ky > 0 and hence Q%,(3,T*(®)) = L, (3, T*(®)) + Ky forall (3,0) € Y. Since (Bor, Qor) is
the unique global minimizer of L%, (3, ), we have LY, (3, T*(©)) > L, (Bor, @or) for all (3, T*(®)) # (Bor, GoR)-
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It then follows that Q% (3, 7%(©)) > Q% (Bor, @or) for all T*(®) # dor. Let Oor = Ador, and by (S.33) we
have Q% (Bor, Gor) = QN(BOR,G)OR) and Q% (8, T%(©)) = Qn(B8,T~1(T*(®))) = Qn(B, ©"). Consequently,
we have Qn (3, O%) > C)N(ﬁOR7 GOR) forall (3,0) € T and (3,0*) # (,BOR, GOR) and the result (i) follows.

Next we prove the result in (ii). For positive sequence {ty }, let
Ty ={O: 0; — Oor,i|| < tn}.
N ={0: max [[6; —Oor| < tn}

For (3,0) € T N'Y, Taylor’s expansion leads to

M

Qn(B,8) —Qn(B,0") = —N""> (y; — :8 — z:6,) W;z,(6, — 6; +ZaPN (6; — 7).

i=1

Iy Iy

where © = ¢® + (1 — ¢)®* for some s € (0,1).
We firstly deal with I'5. Observe that

p 0 70 *

gy ||0 0||
o( 9 || =~ P H0 0” oNT *
8, —8,)7( (6, - 6,)7(8; - 67)
Z ||0 0, ’ Z 16, -6 T
p'( 9 || ~ r H0 0 || aNT *
8,—0,)7( - 0,—6;)" (6, —67)
Z ||0 o, Z 16; — ;]| ’
g 9—9 X %
Ay PUe =0 5,7 (6, - 0) - (0, - 0))). (536
= 6 -0

When L; = Lj = s, we have 8] = 67 and 6, — 6~j = ¢(0; — 0;), and therefore

LAY Y 18— 6016 -0,

s=1L;=Lj=s

i<j
¢ (16: — 8,1) 5T " "
+ A 01 0, 0,—0;)—(0,—-067)|.
;LZ_j ||0—0||( i) )~ (0; - 6;)]
L]‘:S/

We look at the second term in I's. Since ® € T and ©* = T~ () € Mg, it holds

12%?/[ ||9 i()H <¢n and 122?/[ ||9 i()” = 1ISHSa§XS Has - as()” < ¢n,

where the inequality follows from (S.34). Since © = ¢© + (1 — ¢)©®*, we have

12%{””0 *910” <g Inax HO 7010H+ (1-9) inax ||0 —010” <son + (1 =<)pn = dn.

Then for L; = sand L; = s’ with s # ¢, it follows that

|6; - 6;]| > min_ |60 — 80 —212%H0 —0i0|| = An — 20N > a),
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and accordingly p’ (||0~l - 0~j |) = 0. As a result, the second term in I’ is zero and we have

s
To=2> " > (116 —6;)]6: — 6,]l.

s=1L;=L;=s
i<j

For the first term in Iy, since ® € T y, the same reasoning as (S.34) yields

max ||9:< — é\OR,i” = maX HO(S — &OR,SH < max ||0z — §OR,i|| <tn.

1<i<M 1<i<M 1<i<M

Since 0; = <0; + (1 — <)@ for some ¢ € (0, 1), it holds 0; — 0; =<(0; — 07). For L; = Ly, due to 8] = 07, we have

max [0 -8, < max (]6: - 67 + |16, - 6;]])
<2 max HH: —9;‘|
1<i<M
<2 max |6, - 6;
1<i<M

<2 (lr<nax ||¢9Z — éopw-H + max HB;‘ — §ORJ—H)
<i<M 1<i<M

IN

dtn.

The concavity of p(-) then implies that o/ (||6; — §j ) > p'(4tn). In summary, we have

S
Ty > AN Y p(4tw)]|6: — 6.
s=1L

Lj:S
<J

<.

Now we analyze I';. For: =1,..., M, let

hi = (yi — 23 — 2:0;) W,z = 2] W, [ziui teit+x(Bo—B) + zi(0i0 — 6:)| .

Recall that M is the number of units in the s-th subgroup. By the definition of 87, it holds

. 0; (0; —0;)
bio0l=0im >, 5= D g
j:Lj: i ]:L]‘:Li

(8.37)
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Then we have

M

I'=-N"! Z(yi —x,8 — 2:0;) W,;2,(6, — ;)

M

S
i=L,=s

s=1L j
S S T
h,T 0;) h; (6,86,
_ 1 7 J
Sy Y MO0 vy MOS0
s=1L;=Lj=s s=1L;=Lj=s
5
(h; —h 0, —0;
=y (kg 00
s=1L;=Lj=s
S T
_ Nt (hi — h;) (6; — 6;)
Sy e
s=1L;=Lj=s -
i<j
5
>-N"TY max||h — hj|16; — 65]|. (S.38)
s=1L;=L;=s i
1<j

Combining (S.37) and (S.38) yields

S
Qn(B.©) —Qn(B3,0") =T1 +T22 > > {Ap’(zitN)—N1n;a}x||hi—hjll} 16; — ;]

s=1L;=Lj=s

i<j
S
22 R L | e
s=1L;=L;=s ’
1<j

where the last inequality holds by taking ¢ ;v = o(1) so that p/(4¢x) — 1. Itis then left to show A > N~!'max; ; ||h; — h;]|
to conclude the results in (ii).

Recall that W, = VZ?Q. On the event F/{, we can write
max ||h; — hj|| <2 max | h;||
,J 1<i<M
<2 max {[|Vizl|Vi(ziwe + )| + (2] Wl + 2] Wiz o |

<2 max {IViail|[Vi(zus + &)l + (Vi Villlail + 1= Wizil) o |

S2 1525 {Tﬁl||Vi(zz-ui +&)||+ (5/20;17'*1713/2 + 772)¢N},

where the last inequality follows from (S.17) and (S.15) under events Fcp and Egp. Moreover, since V;(z;u; + €;) has
sub-Gaussian tails according to (S.19), applying union bound and (S.42) yields

P( max || Vi(ziu; + &) > \/m> < Me=9min,

1<i<M



Mutual Transfer Learning for Massive Data

where c5 > 0 is a constant. Then we have

maxHh —hil| $2 \[01/27_19;/1?1 (C}/QUE_IT ! max n1/2 +T_2> ¢N]

1<i<M
[VBey 7= 4 (Cf Pzt e 4 77%) o]

with probability at least 1 — M e~ 9min, Hence, there is an event Ey with P(FE3) > 1 — Me™9min and, on the event Eo, we
have

< 2g1/2

min

N~'max;,  |[h; — hj] _ oN 1gr1n/j1 [\[61/2T_1 (6}/205_17_1 +T—2)¢N]
N ~ N

which indicates that

= O(N"1g)2) = o(1),
A on > N ' max ||h; — hjl|. (S.39)
i
In summary, we conclude the results in (ii) and the proof is complete.

S.8. Proof of (ii) in Corollary 4.1

Since the asymptotic equivalence between the proposed estimator and the oracle estimator has been shown in Theorem 4.2,
it suffices to show, for any p-vector v and g-vector v,

v; Cov (BOR)UP < v; Cov(Bi)vp and v;rCov (§OR,i)vq < v;rCov (éi)vq, (S.40)
forallv =1,..., M. Recall that
~ . <
v <ggi) = [(X,ZA)TW(X,ZA)} and Cov (g:) = [(mi,zi)TWi(wi,ziﬂ_
With straightforward matrix algebra, we have

(X,ZA) "W (X,ZA) ZGL xi, z) Wi, )Gy,

where G are the (p + ¢) x (p + Sq) matrices such that (37 ,0,,)" = Gr,(8] ,a),) ", for any parameter dimensions.

Without loss of generality, assume M = 2. When S = 1, we have G, = G, = I, and 91,0 = 0270 = @o. Hence, we
have for any (p + ¢)-vector a,

QOR

a” Cov <ﬁ0R> —a’ [(X,ZA)TW(X,ZA)}_1 a

1
a' [(z1,21) Wi(z1,21) + (22, 22) Wa(z2,22)] @

<a' [(ziz) Wiwi, 2)] “a

=a'Cov (’gl> a, fori=1,2.

where the inequality follows from Lemma S.9.3.

When S = 2, we calculate the expressions of Cov (BZ), Cov (éz), Cov (EOR) and Cov (§OR 2) in the following so as to

establish the inequalities in (S.40). Firstly, for the unit estimators, let D; = Cov(B;) and H; = Cov(;), and then we can
write

3. 1 D, B; ,
Cov <€l> = [(whzi)—rwi(whzi)] = |:B1T Hz:| ) 1= 1727
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where B; are some p X ¢ matrices.

For the oracle estimators, suppose Ly = 1 and Ly = 2. Then we have (ﬁg, OLJ)—r = (BJ, 010, 02’0)1

I (0) (0) I 0) (0
G, = p PXq PXq d G, = p PXq PXq ,
! [O;Xq Iq OGXJ o ? [Oz;rxq Oqu Iq ]

where Oy, x4, stands for the d; x ds zero matrix. By blockwise matrix inversion, we can write

~1 “'B.K,B' D' —-D 'B,K;
(mi,zqz)TW}(a:i,zi)[Di +D; BiK.B; D, D; BZK%}, i=1,2,

~K;B/D;! K;
where K; = (H; — B D; 1Bi)*l. Accordingly, it follows that

. S D'+ D;'B,K;B/D;'} -D'BiK, —D;'B;K;
(X,ZA) W(X,ZA) = -K,B! D" K, Oyxq
~K,yB, D;* O, x4 K,

By the blockwise matrix inversion, we have

1

Cov <BOR> _ [(X,ZA)TW(X,ZA)}_

QOR
Q QD 'B, -QD,'B,
=| B/D;'Q H,-B,D;{'B,+B/D;'QD;'B; B! D;'QD;'B, ,
-B, D;'Q B, D;'QD;'B,; H, - B,D;'B, + B, D;'QD;'B,

where Q = (D;' + D;')~'. As a result, we have Cov(ﬁOR) =Q = (D;"+ D;Y) ! and Cov(éopw-) = H; —
B,D;'B;+ B/ D;'QD;'B;,i =1,2.

With the above results, it is then straightforward that, for any p-vector vy,
’UJCOV(,@OR)’U;D = v;,r (D1_1 + D2_1)71 v, < ’UJDZ"UP = ’UJCOV(BZ-)’UP, fort=1,2,
where the inequality follows from Lemma S.9.3. In addition, for any g-vector vy,
v, Cov(Bor,i)v, = v, [Hi — B/ D;'B; + B D/ (D' + D;")™'D; ' B;] v,.
For the third term of the R.H.S., it holds
v, B/ D;"(D{"'+ D;')"'D;'Bjv, < v, B/ D;'D;D; "' Bjv, = v, B/ D;' Bjv,,
where the ineqaulity follows from Lemma S.9.3. Consequently, we have

v(ITCov(§OR7i)vq < v;rHi'vq = Cov(éi), i =1,2.

)

The proof is thus complete.

S.9. Auxiliary Lemmas

In this section we provide technical lemmas, with a bit abuse of notations.

Lemma S.9.1 (Woodbury matrix identity, Theorem 18.2.8 of Harville (2000)). Let A, U, B and V denote n X n,n X
m,m X m and m X n matrices, respectively. Suppose A and B are nonsingular. Then we have

1

(A+UBV) ' =A'5sA U (B '+VATIU) ' vATL (S41)
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Lemma S.9.2 (Lemma 8 of Hsu et al. (2014)). Suppose & is a sub-Gaussian random n-vector. For all symmetric positive
semidefinite matrices M > O and all t > 0, we have

P {gTMg > (tr(M) +2/er(M2)t + 2||M||t)} <et,
where ¢ > 0 is an absolute constant. With M = I and t = n, it follows that
P(||€]]* > 5en) < e ™. (S.42)

Lemma S.9.3 (Lemma A.3 of Liu et al. (2015)). Suppose M, and M are d X d positive definite matrices. Then, for any
d-vector v,

1

(M) (0T M w) T < 0T (M M) v]_l . (S.43)

This implies that v (M, + M2)71 v < vTMflv.

S.10. Signal-to-Noise Ratio for the proposed MTL method

Here we define the signal-to-noise ratio (SNR) for the proposed method. In order to supply information of how strong the
subgroup effects compared to the noise, we first compute the signal for different subgroups ¢ and j as

Signal(i, j) = Var[(XTﬁo +Z ;) — (X8 + ZTaj)]
= Var[ZT(ai - aj)]
= (ai — o)) ' Bz(a; - ay),
and then define the desired signal as the minimal signal variance between different subgroups, i.e.,

Signal = in Signal(i, 7).
ignal = min Signa (,7)

For noise, we calculate
Noise = Var[(ZTui +ei) — (ZTu; + &)
= Var[ZT(uj —u;)] +2Var(e) = Q[tr(E[ZZT]\I’) +02].
Accordingly, we have

Signal  minj<;<;<s Signal(i, j)

SNR = = '
Noise 2 [tr(E[ZZT]‘I’) +o2]

S.11. Additional Simulation and Real Data Results.

S.11.1. Simulation Results for all the cases.

We present the all-case version of Table 2.
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Table S.1. Evaluation of subgroup recovery. Complete version of Table 2.

~

S Perfect
Method Mean (SD) Median (Min,Max) NMI Recovery
Case 1 MCP 2.00 (0.0000) 2(2,2) 0.9988 0.99
(=2 SCAD 2.00 (0.0000) 2(2,2) 0.9988 0.99
TLP 2.00 (0.0000) 2(2,2) 0.9988 0.99
L1 2.39 (0.6651) 2(1,4) 0.9476 0.62
K-Means 2.05 (0.2179) 2(2,3) 0.9896 0.95
Case 2 MCP 3.00 (0.0000) 3(3,3) 1.0000 1.00
(S=3) SCAD 3.00 (0.0000) 3(3,3) 1.0000 1.00
TLP 3.00 (0.0000) 3(3,3) 1.0000 1.00
Ly 2.40 (1.0731) 3(1,4) 0.6467 0.55
K-Means 3.00 (0.0000) 3(3,3) 1.0000 1.00
Case 3 MCP 2.00 (0.0000) 2(2,2) 0.9988 0.99
(S=2) SCAD 2.00 (0.0000) 2(2,2) 0.9988 0.99
TLP 2.00 (0.0000) 2(2,2) 0.9988 0.99
Ly 2.33 (0.5870) 2(1,4) 0.9718 0.70
K -Means 2.01 (0.0995) 2(2,3) 0.9979 0.99
Case 4 MCP 3.00 (0.0000) 3(3,3) 1.0000 1.00
(S=3) SCAD 3.00 (0.0000) 3(3,3) 1.0000 1.00
TLP 3.00 (0.0000) 3(3,3) 1.0000 1.00
L1 2.43 (1.2248) 3(1,6) 0.6141 0.47
K-Means 3.00 (0.0000) 3(3,3) 1.0000 1.00
Case 5 MCP 2.00 (0.0000) 2(2,2) 1.0000 1.00
(=2 SCAD 2.01 (0.1000) 2(2,3) 0.9990 0.99
TLP 2.01 (0.1000) 2(2,3) 0.9990 0.99
L1 2.27 (0.5835) 2(1,4) 0.9807 0.77
K-Means 3.36 (1.0538) 4(2,5) 0.7877 0.36
Case 6 MCP 3.00 (0.0000) 3(3,3) 1.0000 1.00
(S=3) SCAD 3.00 (0.0000) 3(3,3) 1.0000 1.00
TLP 3.00 (0.0000) 3(3,3) 1.0000 1.00
L1 4.09 (9.7152) 3 (1,100) 0.9303 0.72
K-Means 3.76 (0.8261) 4 (3,6) 0.9303 0.48
Case 7 MCP 5.01 (0.1000) 5(5,6) 0.9996 0.98
(S=5) SCAD 5.00 (0.0000) 5(5,5) 0.9997 0.99
TLP 5.01 (0.1000) 5(5,6) 0.9996 0.99
Ly 63.24 (47.1983) 100 (1, 100) 0.5878 0.00
K-Means 5.00 (0.0000) 5(5,5) 0.9768 0.37
Case 8 MCP 5.01 (0.1000) 5(5,6) 0.9998 0.99
(S=5) SCAD 5.02 (0.1407) 5(5,6) 0.9998 0.98
TLP 5.02 (0.1407) 5(5,6) 0.9998 0.98
Ly 97.26 (70.6762) 150 (1, 150) 0.6137 0.00
K-Means 5.43 (0.5875) 5(5,7) 0.9550 0.16
Case 9 MCP 7.00 (0.0000) 7(7,7) 0.9999 0.99
(=T SCAD 7.26 (0.5245) 7(7,9) 0.9981 0.77
TLP 7.22 (0.5041) 7(7,9) 0.9982 0.81
Ly 150.00 (0.0000) 150 (150, 150) 0.6205 0.00
K-Means 7.00 (0.0000) 7(7,7) 0.9786 0.20

S.11.2. NOAA Data Features

In our analysis, each climate division is taken as a data unit. The monthly average temperature is the response of interest,
and we include precipitation (PCPN), Palmer Drought Severity Index (PSDI, based on the principles of a balance between
moisture supply and demand without considering man-made changes), Palmer Hydrological Drought Index (PHDI, based
on principles similar to PDSI, but with consideration of some man-made changes) and Palmer Z Index (ZNDX, a moisture
anomaly index) into the covariate pool. Negative and positive values of PDSI, PHDI and ZNDX indicate dry and wet spells,
respectively. See the database documentation* for more details about these drought indices. To account for seasonal effects,
we include dummy variables for the four seasons (March, April and May as spring; June, July and August as summer;

4 Available on ftp:/ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/divisional-readme.txt.
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Table S.2. Average ASD(&1,1) and ESD(@1,1), based on replicates with perfect subgroup structure recovery.

Average ASD(ai1,1) ESD(au,1)

MCP SCAD TLP Oracle MCP SCAD TLP Oracle
Case 1 0.1123 0.1123 0.1123 0.1205 0.1166 0.1166 0.1166 0.1166
Case 2 0.1508 0.1508 0.1508 0.1531 0.1569 0.1569 0.1569 0.1569
Case 3 0.1244 0.1244 0.1244 0.1200 0.1117 0.1117 0.1117 0.1177
Case 4 0.1591 0.1591 0.1591 0.1525 0.1728 0.1728 0.1728 0.1728
Case 5 0.0781 0.0781 0.0781 0.0823 0.0871 0.0871 0.0871 0.0871
Case 6 0.0988 0.0988 0.0988 0.1025 0.1131 0.1131 0.1131 0.1131
Case 7 0.1319 0.1318 0.1319 0.1380 0.1285 0.1147 0.1282 0.1285
Case 8 0.1069 0.1066 0.1167 0.1104 0.1023 0.1028 0.1034 0.1030
Case 9 0.1284 0.1280 0.1284 0.1339 0.1414 0.1348 0.1448 0.1409

September, October and November as Fall; December, January and February as winter), and the spring effect is taken as the
baseline intercept term. In summary, there are 8 covariates in our analysis.

We next determine heterogeneous effects by observing the kernel densities of the ordinary least-squares (OLS) estimates
of the candidate effects, as shown in Figure S.1. Intuitively, the distributions of heterogeneous effects are likely to form a
multimodal or wide-spread shapes. As a result, we choose the intercept, PCPN and ZNDX as the heterogeneous effects (i.e.,
q = 3 and hence p = 5).

Intercept Summer Fall Winter
0.02 0.10
0.10
0.05
0.01 0.05 0.05
0.00 T T 0.00 T T 0.00 0.00 T ¥
0 50 0 20 -10 0 10 -20 0
PCPN PDSI PHDI ZNDX
1.0 1.0
0.10
0.05
0.5 0-5 0.05
0.00 T 1 0.0 1 T T 0.0 T T 0.00 T T
0 20 -1 0 1 0 1 —10 0

Figure S.1. Kernel densities of the 344 OLS estimates obtained from the nClimDiv database.

S.11.3. Asymptotic covariance approximation

We assess how close the estimated asymptotic covariance is to its oracle and empirical counterparts. To this end, we observe
|2 = 20R |lmax, Where & and Sog stand for the asymptotic covariance matrices of (37,a")T and (Bl adr) T
respectively. Furthermore, we compare the average asymptotic standard deviation (ASD) with the empirical standard
deviation (ESD) to evaluate the finite-sample second moment approximation. Since the ASDs and ESDs of all coordinates

in & behave similarly, we only show the results for &y ;.

>

Results of HE EORHde, ASD(@4,1) and ESD(&; 1) are shown in Figure S.2 and Table S.2, based on the replicates with
perfect subgroup structure recovery. It can be seen that the S’s are fairly close to EOR s, and the average ASD(&v,1)’s are
decently comparable to their empirical counterpart ESD(&1,1)’s. Accordingly, we confirm that the empirical covariance
matrix of the proposed estimator can be properly approximated by the asymptotic covariance matrix given in Corollary 4.1.
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Figure S.2. Boxplots of H s - EOR‘Hmax’ based on replicates with perfect subgroup structure recovery.

S.11.4. Inferential Accuracy

In this section, we study the statistical inferential accuracy based on the asymptotic normality result in Corollary 4.1. Let
4=(ZA)TW(ZA) - [(ZA)TWX](XTWX) [ X TW(ZA)] denote the estimated asymptotic covariance matrix
for &, where A is the estimated label matrix A by substituting the estimated subgroups for the true ones. For the first
subgroup effect a1, a 95% confidence region can be constructed by

CRa, = {veER?: (@1 —v)"
(L1BaL]) (@ - v) < x2(0.95)},

where Ly = [I;, 04, ,0q] ¢, such that L1& = & and x7(0.95) is the 95% percentile of the 7 distribution.
Table S.3 displays the empirical coverage probabilities obtained from replications with perfect subgroup recovery. It can be
seen that the empirical coverages, including that by the oracle estimates, are close to the nominal level 95% except for Case
7, which again indicates that S = 5 could be too large for M = 100.

Table S.3. Empirical coverage probabilities for CRq; .

MCP SCAD TLP Oracle
Casel 0.9600 0.9600 0.9596 0.9500
Case2 0.9200 0.9200 0.9200 0.9200
Case3 0.9394 0.9394 0.9394 0.9100
Cased4 0.9300 0.9300 0.9300 0.9400
Case5 0.9400 0.9556 0.9596 0.9100
Case6 0.9200 0.9200 0.9200 0.9300
Case7 0.8800 0.8800 0.8800 0.8800
Case8 0.9596 0.9468 0.9600 0.9500
Case9 0.9286 0.9286 0.9310 0.9200

We further formulate a heterogeneous test Hy : vy = a2 between the first two subgroups. Since oty — ato = Lz, where

Ly = [ 0 =IO, ’Oq]qXSq’ we define the F’ test statistic as

~ —1
T = (&1 — )" (szaLg) (@1 — @s) /q.

Under H, the test statistic 7" asymptotically follows the F’ Nep—8q—2 distribution. For replications with perfect subgroup
recovery, the p-values of the heterogeneity test are all less than 0.0001. This indicates that the estimated subgroups obtained
from the proposed method cannot be further combined.



