
Learning with Bounded Instance- and Label-Dependent Label Noise
Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Proof. ∀x ∈ supp(PD∗(X)) = supp(PD(X)), we have

g∗D∗(x) = sgn

(
PD∗(Y = +1|x)− 1

2

)
=sgn

(
1[g∗D(x) = +1]− 1

2

)
=g∗D(x),

where the last equality is justified by checking the pos-
sible binary values of g∗D(x), e.g., when g∗D(x) = +1,
sgn(1[g∗D(x) = +1] − 1

2 ) = +1; when g∗D(x) = −1,
sgn(1[g∗D(x) = +1]− 1

2 ) = −1.

A.2. Proof of Theorem 2 and Corollary 1

Proof. ∀x ∈ X , η̃(x) can be rewritten as

η̃(x) =P (Ỹ = +1, Y = +1|x)

+ P (Ỹ = +1, Y = −1|x)

=P (Ỹ = +1|Y = +1,x)P (Y = +1|x)

+ P (Ỹ = +1|Y = −1,x)P (Y = −1|x)
=(1− ρ+1(x))η(x) + ρ−1(x)(1− η(x))

Then, we have

η(x) ≥ 1

2
=⇒ η̃(x) =(1− ρ+1(x))η(x)

+ ρ−1(x)(1− η(x))
≥(1− ρ+1(x))η(x)

≥1− UB(ρ+1(x))

2

and its contrapositive

η̃(x) <
1− UB(ρ+1(x))

2
=⇒ η(x) <

1

2
=⇒ g∗D(x) = −1

The last step follows by Lemma 1. Similarly, we can prove
η̃(x) > 1+UB(ρ−1(x))

2 =⇒ g∗D(x) = +1.

Corollary 1 holds by replacing UB(ρ+1(x)) and
UB(ρ−1(x)) by ρ+1max and ρ−1max, respectively.

A.3. Proof of Propositions 1 and 2

A.3.1. PROPOSITION 1

Proof. The following Lemma holds because of the basic
Rademacher bound on the maximal deviation between the
expected and empirical risks (Bartlett & Mendelson, 2002).

Lemma A1. For any δ > 0, with probability at least 1− δ,
we have

sup
f∈F

∣∣∣R̂D∗,L(f)−RD∗,L(f)
∣∣∣ ≤ R(L◦F)+b

√
log(1/δ)

2m
.

Then, with probability at least 1− δ, we have

RD∗,L(f̂D∗,L)−RD∗,L(f
∗
D∗,L)

=(RD∗,L(f̂D∗,L)− R̂D∗,L(f̂D∗,L))

+ (R̂D∗,L(f
∗
D∗,L)−RD∗,L(f

∗
D∗,L))

+ (R̂D∗,L(f̂D∗,L)− R̂D∗,L(f
∗
D∗,L))

≤2 sup
f∈F

∣∣∣R̂D∗,L(f)−RD∗,L(f)
∣∣∣

≤2R(L ◦ F) + 2b

√
log(1/δ)

2m
,

where the first inequality holds because f̂D∗,L =

argminf∈F R̂D∗,L(f) and the second inequality follows
by Lemma A1.

A.3.2. PROPOSITION 2

Proof. Notice that RD,L(f) = RD∗,βL(f), then the proof
is similar with the proof of Proposition 1.

A.4. Proof of Theorem 3

Proof. ∀x ∈ X , we have

η̃(x) =(1− ρ+1(x))η(x) + (1− η(x))ρ−1(x)
=(1− ρ+1(x)− ρ−1(x))η(x) + ρ−1(x)

≥ρ−1(x),

where the first equality has been derived in the proof of
Theorem 2 and the inequality follows by our bounded total
noise assumption 0 ≤ ρ+1(x)+ ρ−1(x) < 1. Similarly, we
can prove ρ+1(x) ≤ 1− η̃(x).



Learning with Bounded Instance- and Label-dependent Label Noise

B. Extension to the Multiclass Classification
By the one-vs.-all strategy, our algorithm can be easily
adapted for multiclass classification. In the multi-class case,
our Theorem 1 still holds and keeps the idea of learning with
distilled examples justified. An example (x, y) is distilled
if g∗D(x) = y, where g∗D(x) = argmaxi PD(Y = i|x) is
the Bayes optimal classifier under D. Like in the binary
case, ILN can be modeled by flip rates ρy(x) = P (Ỹ 6=
y|x, Y =y) and ρ−y(x)=P (Ỹ =y|x, Y 6=y). Let ηy(x)=
P (Y = y|x) and η̃y(x)=P (Ỹ = y|x). Easy to derive that
η̃y(x) >

1+UB(ρ−y(x))
2 =⇒ ηy(x) >

1
2 =⇒ (x, y) is

distilled. Hence, distilled examples can be collected out of
noisy examples by thresholding η̃y(x). Other parts of our
algorithm can be performed without special adaptations.
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