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Abstract
We study the problem of high-dimensional ro-
bust mean estimation in the presence of a con-
stant fraction of adversarial outliers. A recent line
of work has provided sophisticated polynomial-
time algorithms for this problem with dimension-
independent error guarantees for a range of nat-
ural distribution families. In this work, we show
that a natural non-convex formulation of the prob-
lem can be solved directly by gradient descent.
Our approach leverages a novel structural lemma,
roughly showing that any approximate station-
ary point of our non-convex objective gives a
near-optimal solution to the underlying robust
estimation task. Our work establishes an in-
triguing connection between algorithmic high-
dimensional robust statistics and non-convex op-
timization, which may have broader applications
to other robust estimation tasks.

1. Introduction
Learning in the presence of outliers is an important goal in
machine learning that has become a pressing challenge in a
number of high-dimensional data analysis applications, in-
cluding data poisoning attacks (Barreno et al., 2010; Biggio
et al., 2012; Steinhardt et al., 2017) and exploratory analysis
of real datasets with natural outliers, e.g., in biology (Rosen-
berg et al., 2002; Paschou et al., 2010; Li et al., 2008). In
both these application domains, the outliers are not “ran-
dom” but can be arbitrarily correlated, and could exhibit
rather complex structures that is essentially impossible to
accurately model. Hence, the goal in these settings is to
design computationally efficient estimators that can tolerate
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a small constant fraction of arbitrary outliers.

Throughout this paper, we focus on the following data con-
tamination model that generalizes several existing models,
including Huber’s contamination model (Huber, 1964).

Definition 1.1 (Strong Contamination Model). Given a pa-
rameter 0 < ε < 1/2 and a distribution family D on Rd,
the adversary operates as follows: The algorithm specifies
the number of samples N , and N samples are drawn from
some unknown D ∈ D. The adversary is allowed to inspect
the samples, remove up to εN of them and replace them
with arbitrary points. This modified set of N points is then
given as input to the algorithm. We say that a set of samples
is ε-corrupted if it is generated by the above process.

The parameter ε in the above definition is the fraction of
corrupted samples and quantifies the power of the adversary.
Intuitively, among our samples, an unknown (1− ε) fraction
are generated from a distribution of interest and are called
inliers, and the rest are called outliers.

The statistical foundations of outlier-robust estimation were
laid out in early work by the robust statistics community,
starting with the pioneering works of Tukey (1960) and
Huber (1964). In contrast, until fairly recently, even the
most basic algorithmic questions were poorly understood.
Specifically, even for the basic task of high-dimensional
mean estimation, all known robust estimators had runtime
exponential in the dimension, rendering them ineffective in
high-dimensional settings.

Recently, Diakonikolas et al. (2016); Lai et al. (2016) gave
the first efficiently computable robust estimators for high-
dimensional unsupervised learning tasks, including mean
and covariance estimation. Specifically, Diakonikolas et al.
(2016) obtained the first polynomial-time robust estimators
with dimension-independent error guarantees, i.e., with error
scaling only with the fraction of corrupted samples ε and not
with the dimensionality of the data. Since the dissemination
of these works, there has been a flurry of research activity
on algorithmic aspects of high-dimensional robust statistics;
see, e.g., Diakonikolas & Kane (2019) for a recent survey
on the topic.

Despite this exciting progress, the design of efficient robust
estimators in high dimensions remains challenging. The
difficulty, of course, lies in the non-convexity of the under-
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lying optimization problem. Prior work developed fairly
sophisticated algorithmic tools, even for the task of robust
mean estimation. These include convex relaxations (Di-
akonikolas et al., 2016) and quite subtle iterative spectral
methods (Diakonikolas et al., 2016; Lai et al., 2016).

A natural and important goal is to understand to what extent
such sophisticated methods are indeed necessary or whether
much simpler robust learning algorithms exist. In this work,
we take a direct optimization view of these problems and
ask the following general question:

Is it possible to solve robust estimation tasks by
standard first-order methods?

We believe that this question merits investigation in its own
right. Moreover, its positive resolution may have significant
implications in the practical adoption of robust estimation
methods. Particularly so since prior algorithms are either
(1) computationally prohibitive (relying on large convex
relaxations), (2) involve carefully crafted parameters that
require precise tuning for practical deployment, or (3) are
challenging to extend to more sophisticated robust estima-
tion tasks. A tantalizing possibility is the following: For
a range of high-dimensional robust estimation tasks, there
exists a (natural) non-convex formulation such that gradient
descent efficiently converges to a near-optimal solution.

In this paper, we show that this premise is true for the task of
high-dimensional robust mean estimation. In robust mean
estimation, we are given a set of N ε-corrupted samples
from an unknown distribution D in a known family D, and
we want to output a hypothesis vector µ̂ such that ‖µ̂−µ?‖2
is as small as possible, where µ? is the mean of D. For
simplicity, we will assume in this discussion that D is an
unknown mean and identity covariance Gaussian on Rd. We
note that our results hold under more general distributional
assumptions, as in Diakonikolas et al. (2016; 2017a).

The goal in robust mean estimation is to develop efficient
algorithms whose `2-error guarantee scales only with ε and
not with the dimension d. In particular, for the identity
covariance Gaussian case, Diakonikolas et al. (2016) gave
polynomial-time algorithms for the problem that use N =
Ω̃(d/ε2) samples and guarantee errorO(ε

√
log(1/ε)). This

error guarantee matches known Statistical Query (SQ) lower
bounds (Diakonikolas et al., 2017b).

1.1. Overview of Results and Contributions

In this paper, we consider a natural non-convex optimization
formulation of high-dimensional robust mean estimation,
and show that gradient descent1 efficiently converges to a
near-optimal solution. Specifically, we show that gradient

1Throughout, we informally use the term “gradient descent”
to refer to variations of gradient descent methods, which involve

descent converges in a polynomial number of iterations and
matches the error guarantee of the best known polynomial-
time algorithms for the problem. Our technical contribution
lies in showing that any approximate stationary point of our
non-convex objective suffices – in the sense that it gives a
near-optimal solution for the underlying estimation problem.

To describe our non-convex formulation, we require some
background. We use the following framework for robust
mean estimation, introduced in Diakonikolas et al. (2016).
The idea is to assign a non-negative weight to each data
point and then find an appropriate combination of weights
such that the weighted empirical mean is close to the true
mean. The constraint on the chosen weights is that they
represent at least a (1− ε)-density fractional subset of the
dataset. More formally, given datapointsX1, . . . , XN ∈ Rd
with corresponding data matrix X ∈ Rd×N , the objective
is to find a weight vector w ∈ RN such that µw = Xw is
close to µ?. The constraint on w is that it belongs in the set

∆N,ε =
{
w ∈ RN : ‖w‖1 = 1 and 0 ≤ wi ≤ 1

(1−ε)N ∀i
}
,

which is the convex hull of all uniform distributions over
subsets S ⊆ [N ] of size |S| = (1− ε)N .

Diakonikolas et al. (2016) established a key structural
lemma (Lemma 2.1), which formed the basis of their al-
gorithms. Roughly speaking, the lemma states that any
weight vector w is a good solution if the spectral norm of
the weighted empirical covariance, Σw =

∑N
i=1 wi(Xi −

µw)(Xi − µw)>, is small. This lemma directly motivates
the following non-convex optimization formulation:

Min ‖Σw‖2 subject to w ∈ ∆N,2ε (1)

It follows from the aforementioned structural lemma that a
near-optimal solutionw to (1) gives an µw that is close to µ∗.
The challenge is that the objective function is not convex,
hence it is unclear how to efficiently optimize. Faced with
this difficulty, prior works on the topic (Diakonikolas et al.,
2016; 2017a) developed various sophisticated algorithms.

In this paper, we work directly with the natural formula-
tion (1). Despite its non-convexity, we are able to leverage
the structure of the problem to show that gradient descent
efficiently converges to a good vector w. In more detail,
we prove a novel result about the structure of approximate
stationary points of this objective.

Theorem 1.2 (informal statement). Any approximate sta-
tionary point w of (1) defines an µw that is close to µ?.

See Theorem 3.1 for a detailed formal statement. Tech-
nically speaking, our statement is more subtle for various
reasons, including the fact that the objective function is not

updates based on a generalized notion of a gradient, e.g., sub-
gradient for non-differentiable functions.
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differentiable and the domain is constrained. As a result, we
require a careful definition of stationarity in our setting.

Given Theorem 1.2, we proceed to show that projected
sub-gradient descent converges to an approximate station-
ary point in a polynomial number of iterations. This step
is also somewhat intricate as the function is non-convex,
non-smooth and the optimization problem (1) involves con-
straints. In summary, we establish the following theorem:
Theorem 1.3. After Õ(N2d4) iterations, projected sub-
gradient descent on (1) outputs a point w such that with
high probability ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

The bound we establish on the convergence rate on the
spectral norm objective (1) is polynomially bounded, but
relatively slow. Our second main contribution involves con-
sidering the “softmax” version of the spectral norm, which
has better smoothness properties. An analogous lemma
about the structure of stationary points allows us to show a
faster rate of convergence for this modified objective.
Theorem 1.4. After Õ(Nd3/ε) iterations, projected gradi-
ent descent on the softmax objective outputs a point w such
that with high probability ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

As evident from the above result, the additional smoothness
of the “softmax” objective allows us to establish a signifi-
cantly improved bound on the number of iterations.

1.2. Related Work

The algorithmic question of designing efficient robust mean
estimators in high-dimensions has been extensively studied
in recent years. After the initial papers (Diakonikolas et al.,
2016; Lai et al., 2016), a number of works (Diakonikolas
et al., 2017a; Steinhardt et al., 2018; Cheng et al., 2018;
Dong et al., 2019; Depersin & Lecue, 2019; Cheng et al.,
2019) have obtained algorithms with improved asymptotic
worst-case runtimes that work under weaker distributional
assumptions on the good data. Moreover, efficient high-
dimensional robust mean estimators have been used as
primitives for robustly solving a range of machine learn-
ing tasks that can be expressed as stochastic optimization
problems (Prasad et al., 2018; Diakonikolas et al., 2019a).

We compare our approach with the works of Cheng et al.
(2018) and Dong et al. (2019) that give the asymptotically
fastest known algorithms for robust mean estimation. At
a high-level, Cheng et al. (2018), building on the convex
programming relaxation of Diakonikolas et al. (2016), pro-
posed a primal-dual approach for robust mean estimation
that reduces the problem to a poly-logarithmic number of
packing and covering SDPs. Each such SDP is known to
be solvable in time Õ(Nd), using mirror descent Allen-
Zhu et al. (2016); Peng et al. (2016). Dong et al. (2019)
build on the iterative spectral approach of Diakonikolas et al.
(2016). That work uses the matrix multiplicative weights

update method with a specific regularization and dimension-
reduction to improve the worst-case runtime.

In contrast to all of the above, we use a natural non-convex
formulation of the robust mean estimation task, and show
that a standard first-order method provably and efficiently
converges to a near-optimal solution. Even though the con-
vergence rates that we establish in this work do not yield
the fastest known asymptotic runtimes for the problem, we
believe that our approach is conceptually interesting for a
number of reasons. First, our theorem regarding stationary
points provides novel structural understanding about robust
mean estimation and can be viewed as an explanation as
to why this problem is polynomially solvable. Second, it
is plausible that gradient descent applied in this context is
more stable than previously known algorithms and may fa-
cilitate the adoption of robust estimation methods in practice.
We hope that this work will serve as the starting point for
solving other robust estimation tasks via first-order methods.

Finally, we note that there is an increasing literature on de-
veloping rigorous guarantees for non-convex optimization
problems via gradient descent, e.g., see the recent survey
(Jain & Kar, 2017) for a review of this literature. With a few
exceptions (Loh & Wainwright, 2011; Hassani et al., 2017),
this literature mostly focuses on showing that gradient de-
scent converges to a global optimum starting from a spectral
(Keshavan et al., 2010; Candes et al., 2015; Tu et al., 2015)
or random initialization (Ge et al., 2015) in settings where
there are no bad local optima. In contrast to most of this
literature, in this paper we show that any stationary point
has good approximation properties so that no specialized
or random initialization is necessary. We believe that such
a perspective may enable rigorous analysis of many other
non-convex optimization problems.

1.3. Roadmap

In Section 2, we set up the necessary notation and provide
some background on robust mean estimation. In the next
two sections, we focus on the spectral norm objective. In
Section 3, we prove our main structural result showing that
any stationary point of the spectral norm objective yields
a good solution. We also extend this result in Appendix B,
showing that in fact, any approximate stationary point yields
a sufficiently good solution. In Section 4, we show that gra-
dient descent converges to an approximate stationary point
and hence yields a good solution in a polynomial number
of iterations. In Appendix C, we prove structural and algo-
rithmic results for the softmax objective, showing that any
approximate stationary point of the softmax objective yields
a good solution, and we can find an approximate station-
ary point using projected gradient descent in a polynomial
number of iterations. We conclude with future directions in
Section 5.
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2. Preliminaries and Background
Notation. For N ∈ Z+, we denote [N ] := {1, . . . , N}.
For a vector x, we use ‖x‖1, ‖x‖2, and ‖x‖∞ to denote the
`1, `2, and `∞ norm of x respectively. For a matrix A, we
use ‖A‖2 to denote the spectral norm of A.

For two vectors x, y ∈ Rn, we use x>y =
∑n
i=1 xiyi to

denote the inner product of x and y, and we use x� y ∈ Rn
to denote entrywise product of x and y. For a vector x ∈ Rn,
let diag(x) ∈ Rn×n denote a diagonal matrix with x on the
diagonal. For a matrix A ∈ Rn×n, let diag(A) ∈ Rn
denote a column vector with the diagonal entries of A.

Let I denote the identity matrix. For a matrix A ∈ Rn×n,
let tr(A) denote the trace of A. For two matrices A and B
of the same dimensions, let A • B = 〈A,B〉 = tr(A>B)
be the entry-wise inner product of A and B. We use exp(A)
to denote the matrix exponential of A.

A symmetric matrix A ∈ Rn×n is said to be positive
semidefinite (PSD) if x>Ax ≥ 0 for all x ∈ Rn. For
two symmetric matrices A and B, we write A � B iff the
matrix B −A is positive semidefinite. Let ∆n×n be the set
of all PSD matrices of trace 1.

Framework. We use N for the number of input samples,
d for the dimension of the ground-truth distribution, and ε
for the fraction of corrupted samples. Given N datapoints
X1, . . . , XN ∈ Rd, we use X ∈ Rd×N to denote the sam-
ple matrix, where the i-th column of X is Xi.

Given w ∈ RN , let µw = Xw =
∑N
i=1 wiXi denote the

weighted empirical mean and let Σw =
∑N
i=1 wi(Xi −

µw)(Xi − µw)> denote the weighted empirical covariance.
Let ∆N,ε denote the convex hull of all uniform distributions
over subsets S ⊆ [N ] of size |S| = (1− ε)N :

∆N,ε =
{
w ∈ RN : ‖w‖1 = 1 and 0 ≤ wi≤ 1

(1−ε)N ∀i
}
.

Every weight vector w ∈ ∆N,ε corresponds to a fractional
set of (1− ε)N samples.

Background on Robust Mean Estimation. As men-
tioned in the introduction, our non-convex formulation is
directly motivated by the following structural lemma:

Lemma 2.1 (Diakonikolas et al. (2016)). Let S be an ε-
corrupted set of N = Ω̃(d/ε2) samples from an unknown
N (µ?, I) and w ∈ ∆N,2ε. If λmax (Σw) ≤ 1 + δ, for
some δ ≥ 0, then with high probability, we have that
‖µ? − µw‖2 = O(

√
εδ + ε

√
log(1/ε)).

As in prior work, we will establish correctness for our algo-
rithms under deterministic conditions on the inliers (good
samples) that hold with high probability. Let G? denote the
original set of N good samples. Let S = G ∪ B denote

the input samples after the adversary replaced ε-fraction of
the samples, where G ⊂ G? is the set of remaining good
samples and B is the set of bad samples (outliers) added by
the adversary. Note that |G| = (1 − ε)N and |B| = εN .
Given w ∈ RN , let wG =

∑
i∈G wi be the total weight on

good samples, and wB be the total weight on bad samples.

We require the following concentration bounds to hold for
the original N good samples G? (which happens with high
probability when N = Ω̃(d/ε2)). For all ŵ ∈ ∆N,3ε, we re-
quire the following condition to hold for δ = O(ε log(1/ε)):∥∥∥∥∥∑

i∈G?
ŵi(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

≤ δ . (2)

Condition (2) on original samples G? implies the follow-
ing conditions on the remaining good samples G. For any
weight vector w ∈ ∆N,2ε on the ε-corrupted set of samples
S = G ∪B:∥∥∥∥∥∑

i∈G
wi(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

≤ δ . (3)

This is because we can define ŵ as follows: ŵi = wi
wG

for all
i ∈ G and ŵi = 0 for all i ∈ B. Since w ∈ ∆N,2ε, we have
‖ŵ‖∞ ≤

‖w‖∞
wG

=
‖w‖∞
1−wB ≤

‖w‖∞
1−|B|·‖w‖∞

≤ 1
(1−3ε)N . In

other words, ŵ ∈ ∆N,3ε and Condition (3) follows directly
from Condition (2).

Remark 2.2 (Distributional Assumptions). For simplicity,
in this paper we focus on the fundamental setting that the
good data are drawn from an unknown mean and identity
covariance Gaussian distribution. It should be noted that
our structural and algorithmic results hold under more gen-
eral distributional assumptions. Specifically, Theorem 4.1
immediately applies to identity covariance subgaussian dis-
tributions, with the same error guarantees, since it only relies
on the concentration bounds (2) and (3) that only require
subgaussian tails (see, e.g., (Diakonikolas et al., 2017a).)
Moreover, one can modify the proof of our structural results
(Theorems 3.1 and 3.2), mutatis-mutandis, to apply (1) for
distributions with bounded covariance (i.e., Σ � I) and
match the optimal O(

√
ε) approximation to the mean (Di-

akonikolas et al., 2017a); and, (2) more generally, under the
(ε, δ)-stability condition of (Diakonikolas & Kane, 2019) to
yield an O(δ) `2-approximation to the mean.

Background and Definitions of Stationarity. Note that
the spectral norm is not a differentiable function and there-
fore we need an alternative definition of stationarity. To
address this issue, by the definition of spectral norm, we
can define a function F (w, u) = u>Σwu that takes two
parameters as input: the weights w ∈ RN and a unit vec-
tor u ∈ Rd. Our non-convex objective minw f(w) :=
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‖Σw‖2 is then equivalent to solving the minimax prob-
lem minw maxu F (w, u). The function maxu F (w, u) is
weakly-convex, and we use the following stationary point
definition that is common in the weakly-convex optimiza-
tion literature (Rockafellar, 1970; 1981; Drusvyatskiy, 2017;
Davis & Drusvyatskiy, 2018; Jin et al., 2019).
Definition 2.3 (First-order stationary point). Let F (w, u)
be a function that is differentiable with respect to w for all
u. Let f(w) = maxu F (w, u). Consider the constrained
optimization problem minw∈K f(w), where K is a closed
convex set. We say that w ∈ K is a first-order stationary
point if there exists some u ∈ arg maxv F (w, v) such that

(∇wF (w, u))>(w̃ − w) ≥ 0 for all w̃ ∈ K .

We also need a notion of an approximate stationary point in
the sense that the updates from one iteration to the next do
not change much. In the unconstrained and differentiable
case, such a point can be characterized by the gradient being
small. However, the objective function we consider is both
non-differentiable and has constraints, so that a proper defi-
nition of approximate stationarity is much more subtle. To
overcome this, we appeal to tools from conic geometry and
notions of stationarity for weakly convex functions (Rock-
afellar, 1970; 1981; Drusvyatskiy, 2017; Davis & Drusvy-
atskiy, 2018) to define an appropriate notion of approximate
stationarity.

To discuss the notion of approximate stationarity that we use,
we need to work with a smoothed variant of the objective
known as the Moreau envelope.
Definition 2.4 (Moreau envelope). For any function f and
closed convex set K, its associated Moreau envelope fβ(w)
is defined to be the function

fβ(w) := min
w̃∈K

f(w̃) + β ‖w − w̃‖22 .

The Moreau envelope can be thought of as a form of convolu-
tion between the original function f and a quadratic, so as to
smoothen the landscape. In particular, when f(w) takes the
form of a maximization problem (f(w) = maxu F (w, u))
with F a mapping that is β-smooth in the u parameter
(|∇wF (w, ũ) − ∇wF (w, u)| ≤ β‖ũ − u‖2), the Moreau
envelope is also β-smooth (Drusvyatskiy, 2017). Therefore,
the approximate stationarity of the Moreau envelope can be
easily defined through its gradient allowing us to define the
following notion of approximate stationarity.
Definition 2.5 (Approximate first-order stationary point).
For any function f and closed convex set K consider its
associated Moreau envelope fβ(w) per Definition 2.4. we
say that a point w is a ρ-approximately stationary point if
‖∇fβ(w)‖2 ≤ ρ.

As mentioned earlier, the spectral norm admits a minimax
formulation of the form f(w) = maxu F (w, u). Further-

more, as detailed in Appendix B, the corresponding function
F (w, u) is β-smooth with β = 2‖X‖22, so that this notion
of approximate stationarity can be applied to the objective
of interest in this paper.

3. Structural Result: Any Approximate
Stationary Point Suffices

In this section, we establish our main structural result, which
says that every approximate stationary point of (1) must give
a µw that is close to µ?. For simplicity of the exposition, in
the main body of this paper, we state and prove a simpler
theorem showing that every (exact) stationary point is a
good solution.

Theorem 3.1 (Any stationary point is a good solution). Let
S denote an ε-corrupted set of N samples drawn from a
d-dimensional Gaussian N (µ?, I) with unknown mean µ?.
Suppose that S satisfies Lemma 2.1 and Condition (3).

Let f(w) be the objective function defined in Equation (1).
For any first-order stationary point w ∈ ∆N,2ε of f(w), we
have ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

We note that while Theorem 3.1 shows that any (exact) sta-
tionary point has small objective value, a stronger statement
is required for our algorithmic results in the next section.
Specifically, we require that any approximate stationary
point — in the sense of Definition 2.5 — which gradient de-
scent efficiently converges to, also has low objective value.
This is accomplished in the next theorem which we prove
in Appendix B. Specifically, by appealing to the gradient
of the Moreau envelope from Definition 2.4, we extend the
proof of Theorem 3.1 to show the following:

Theorem 3.2 (Any approximate stationary point suffices).
Consider the same setting as in Theorem 3.1. Consider
the spectral norm objective f(w) = ‖Σw‖2 with fβ(w)
denoting the corresponding Moreau envelope function per
Definition 2.4 with β = 2‖X‖22. Then, for any w ∈ ∆N,2ε

satisfying
‖∇fβ(w)‖2 = O(log(1/ε)) ,

we have ‖µw − µ?‖2 = O(ε
√

log(1/ε)).

In the remainder of this section, we focus on proving Theo-
rem 3.1 and briefly discuss how this proof can be generalized
to prove Theorem 3.2. Our proof is carried out in two steps:
(1) We establish a structural lemma which states that ev-
ery stationary point w must satisfy a bimodal subgradient
property; (2) We show any point satisfying such property
must have a small objective value. Given these two steps,
we can conclude any stationary points µw is close to µ?, by
Lemma 2.1.

For the first step, the bimodal subgradient property states
that there exists a vector ν ∈ ∂f(w) (in the sub-gradient
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of the function at that stationary point) whose entries di-
vided in two groups of indices such that for any i ∈ S−

and any j ∈ S+ we have νi ≤ νj . Intuitively, S− contains
all indices with positive wi, so they can potentially be de-
creased; while S+ contains all indices with wi < 1

(1−2ε)N ,
so they can potentially be increased. If the bimodal sub-
gradient property is violated, there must be indices i ∈ S−,
j ∈ S+, where νi > νj . In this case, decreasing wi and
increasing wj would decrease the objective and thus violate
stationarity.

For the second step, recall that

Σw =
(
X diag(w)X> −Xww>X>

)
and F (w, u) = u>Σwu. Let us first compute the sub-
gradient ∇wF (w, u) with respect to a vector u:

∇wF (w, u) = X>u�X>u− 2(u>Xw)X>u . (4)

Our key observation is that the sub-gradient at direction u
is equivalent to the gradient of w for the one-dimensional
problem with input (X>i u)Ni=1. This allows us to effectively
reduce our problem to a one-dimensional robust mean es-
timation problem. This reduction allows us to show that
when the objective function is large, then there must be
some non-zero weights associated with the corrupted points
that are far away from the mean (these points will be in S−);
while on the other hand, S+ must contain at least ε-fraction
of the good points. One can then select indices from these
two sets to violate the bimodal sub-gradient property.

Fix a first-order stationary point w ∈ ∆N,2ε. Definition 2.3
implies that there is a corresponding unit vector u ∈ Rd
such that w is a stationary point of F (w, u). We first state
the bimodal sub-gradient property.

Lemma 3.3 (Bimodal sub-gradient property at stationarity).
Fix w ∈ ∆N,2ε and a unit vector u with u>Σwu = ‖Σw‖2.
Let S− = {i : wi > 0} and S+ = {i : wi <

1
(1−2ε)N }

denote the coordinates of w that can decrease and increase
respectively. If w is a first-order stationary point of F (w, u),
then

∇wF (w, u)i ≤ ∇wF (w, u)j ,

for all i ∈ S− and j ∈ S+.

Proof. Suppose there is some i ∈ S− and j ∈ S+ such
that ∇wF (w, u)i > ∇wF (w, u)j , then intuitively we can
make f(w) smaller by decreasing wi and increasing wj .
Formally, let w̃ = w + min(wi,

1
(1−2ε)N − wj)(ej − ei)

where ei is the i-th basis vector. We have w̃ ∈ ∆N,2ε and
(∇wF (w, u))>(w̃−w) < 0, which violates the assumption
that w is a stationary point (Definition 2.3).

Given Lemma 3.3, we prove Theorem 3.1 by contradiction.
We show that if µw is far from µ?, then w violates the

property stated in Lemma 3.3 and therefore cannot be a
stationary point. More specifically, we show that, if µw is
far from µ?, then there exists a bad sample with index j ∈
S− whose gradient is large (Lemma 3.4). Meanwhile, the
concentration bounds in Condition (3) guarantee that there
exists a good sample with index i ∈ S+ whose gradient is
small (Lemma 3.5).
Lemma 3.4 (Bad sample with large gradient). Assume that
Condition (3) and Lemma 2.1 hold. Fix w ∈ ∆N,2ε and a
unit vector u with u>Σwu = ‖Σw‖2. Let r = ‖µw − µ?‖2
and suppose r ≥ c2ε

√
ln(1/ε). Then there exists some

i ∈ (B ∩ S−) such that

∇wF (w, u)i − u>µ?(µ? − 2µw)>u > 2c3 ·
r2

ε2
.

Here, c2 and c3 are universal positive constants.
Lemma 3.5 (Good sample with small gradient). Consider
the same setting as in Lemma 3.4. There is some j ∈ (G ∩
S+) such that

∇wF (w, u)j − u>µ?(µ? − 2µw)>u ≤ c3 ·
r2

ε2
.

We defer the proofs of Lemmas 3.4 and 3.5 to Sec-
tions 3.1 and 3.2, and we first use these two lemmas to
prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that w ∈ ∆N,2ε is a first-
order stationary point of f(w), and moreover, w is a bad
solution where ‖µw − µ?‖2 ≥ c2ε

√
ln(1/ε). By Defini-

tion 2.3, there exists a unit vector u ∈ Rd such that w is a
stationary point of F (w, u).

Fix such a vector u. Since Condition (3) and Lemma 2.1
both hold, we can invoke Lemmas 3.4 and 3.5 on (w, u) to
find two coordinates i ∈ S− and j ∈ S+ that violate the
bimodal subgradient condition in Lemma 3.3. Consequently,
w cannot be a stationary point of F (w, u). This leads to a
contradiction, and therefore, all first-order stationary points
of f(w) are good solutions.

We now briefly comment on the modifications required
to prove Theorem 3.2 (see Appendix B). Theorem 3.2 is
proven by first showing (using conic geometry) that for such
an approximate stationary point an approximate bimodal
sub-gradient property holds. Specifically, we show that the
bimodal sub-gradient property (Lemma 3.3) is stable in the
sense that for an approximate stationary point an approxi-
mate bimodal sub-gradient property holds, i.e., νi ≤ νj + δ.
Further, for any point obeying such an approximate bimodal
property, the objective is small and has good approximation
guarantees. The last two steps when combined show that
any approximate stationary point has good approximation
guarantees (similar to the proof of Theorem 3.1 for exact
stationary points).
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3.1. Finding a Bad Sample With Large Gradient

In this subsection, we prove Lemma 3.4.

Lemma 3.4 states that when µw is far from µ?, there exists
an index i ∈ (B ∩ S−) such that the gradient ∇wF (w, u)i
is relatively large.

Recall that ∇wF (w, u) in Equation (4) is the same as
the gradient of the variance (weighted by w) of the one-
dimensional samples

(
X>i u

)N
i=1

. Roughly speaking, for
this one-dimensional problem, a sample far from the (pro-
jected) true mean should have large gradient. Our objective
is to find such a sample with positive weight.

More specifically, since w is a bad solution and u is in the
top eigenspace of Σw, the weighted empirical variance of
the projected samples is very large. Because the good sam-
ples cannot have this much variance, most of the variance
comes from the bad samples. We show that among the bad
samples that contribute a lot to the variance, one of them
must be very far from the (projected) true mean.

In this section and Section 3.2, we use c1, . . . , c4 to denote
universal constants that are independent of N , d, and ε. We
give a detailed description of how to set these constants in
Appendix A.

Proof of Lemma 3.4. We first show that the variance of one-
dimensional samples

(
X>i u

)N
i=1

is relatively large.

By Lemma 2.1, we know that if ‖µw − µ?‖2 ≥ r and r ≥
c2ε
√

ln(1/ε), then

λmax(Σw) ≥ 1 + c4 ·
r2

ε

for some universal constant c4.

Because u is a unit vector that maximizes u>Σwu, we have

u>Σwu = λmax(Σw) ≥ 1 +
c4r

2

ε
.

Recall that Σw =
∑N
i=1 wi(Xi − µw)(Xi − µ>w). If we

replace µw with µ?, we have

N∑
i=1

wi(Xi − µ?)(Xi − µ?)> � Σw ,

and therefore,

u>

(
N∑
i=1

wi(Xi − µ?)(Xi − µ?)>
)
u ≥ 1 +

c4r
2

ε
.

Next we show that most of this variance is due to bad sam-
ples. By Condition (3),

u>

(∑
i∈G

wi(Xi − µ?)(Xi − µ?)>
)
u ≤ 1 + c1ε ln(1/ε) .

Consequently,

u>

(∑
i∈B

wi(Xi − µ?)(Xi − µ?)>
)
u

≥ c4r
2

ε
− c1ε ln(1/ε) ≥ 0.98 · c4 ·

r2

ε
.

The last step is because r ≥ c2 · ε
√

ln(1/ε) and we can
choose c4 to be sufficiently large.

Now that we know most of the variance is due to the bad
samples, observe that the total weight wB on the bad sam-
ples is at most εN · 1

(1−2ε)N ≤ 2ε. Therefore, there must be
some i ∈ B with wi > 0 such that

u>
(
(Xi − µ?)(Xi − µ?)>

)
u ≥ 0.98 · c4 · r2 · ε−1

wB

≥ 0.49 · c4 ·
r2

ε2
.

In other words,∣∣u>(Xi − µ?)
∣∣ ≥ 0.7 ·

√
c4 ·

r

ε
.

By definition, i ∈ B ∩ S−. It remains to show that
∇wF (w, u)i is large.

∇wF (w, u)i − u>µ?(µ? − 2µw)>u

= u>
(
(Xi − µ?)(Xi − µ?)>

)
u

− 2u>
(
(Xi − µ?)(µw − µ?)>

)
u

≥
(
u>(Xi − µ?)

)2 − 2
∣∣u>(Xi − µ?)

∣∣ · ‖µw − µ?‖2
≥ 0.49 · c4 · r2

ε2
− 2 ·

0.7 · √c4 · r
ε

· r > 2c3 ·
r2

ε2
.

The first inequality is by Cauchy-Schwarz. The last step
uses the fact that ε is sufficiently small.

3.2. Finding a Good Sample With Small Gradient

In this subsection, we prove Lemma 3.5.

Lemma 3.5 states that there exists an index j ∈ (G ∩ S+)
such that the gradient ∇wF (w, u)j is relatively small. Sim-
ilar to the previous section, a sample close to the (projected)
true mean should have small gradient. Our goal is to find
such a sample for which we can increase its weight.

Recall that S+ contains all samples whose weight can be
increased. We first prove that there are at least εN good
samples in S+. Among these εN good samples, the concen-
tration bounds imply that some Xj must be very close to
the (projected) true mean.

Proof of Lemma 3.5. Recall that S+ contains every coor-
dinate i where wi < 1

(1−2ε)N . Since at most (1 − 2ε)N
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samples can have the maximum weight 1
(1−2ε)N , we know

that |S+| ≥ 2εN . Combining this with |G| = (1 − ε)N ,
we know that |G ∩ S+| ≥ εN .

Fix a subset G+ ⊆ (G ∩ S+) of size |G+| = εN . We
first show that on average, samples in G+ do not contribute
much to the variance.

Letw′ be the uniform weight vector onG, i.e.,w′i = 1
(1−ε)N

for all i ∈ G and w′i = 0 otherwise. Since w′ ∈ ∆N,2ε, by
Condition (3),∥∥∥∥∥∑
i∈G

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

≤ c1 · ε ln(1/ε) .

Let w′′ be the uniform weight vector on S \ G+ = (G \
G+) ∪ B, i.e., w′′i = 1

(1−ε)N for all i ∈ ((G \ G+) ∪
B) and w′′i = 0 otherwise. Since w′′ ∈ ∆N,2ε, again by
Condition (3), we have∥∥∥∥∥∥
∑

i∈G\G+

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥∥
2

≤ c1ε ln(1/ε).

Combining the previous two concentration bounds,∥∥∥∥∥∑
i∈G+

1

|G|
(Xi − µ?)(Xi − µ?)>

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i∈G

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈G\G+

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥∥
2

≤ 2c1 · ε ln(1/ε) .

Consequently, because u is a unit vector,

u>

(∑
i∈G+

1

|G|
(Xi − µ?)(Xi − µ?)>

)
u ≤ 2c1ε ln(1/ε) .

At this point, we know samples in G+ do not contribute
much to the variance. We now proceed to show that one of
these samples satisfies the lemma.

Let j = arg mini∈G+

∣∣u>(Xi − µ?)
∣∣. We have

u>
(
(Xj − µ?)(Xj − µ?)>

)
u ≤ |G|

|G+|
· 2c1 · ε ln(1/ε)

≤ 2c1 ln(1/ε) .

Finally, because
∣∣u>(Xj − µ?)

∣∣ ≤ √2c1 ln(1/ε), we can

show that∇wF (w, u)j is small:

∇f(w)j − µ?>Y (µ? − 2µw)

= u>
(
(Xj − µ?)(Xj − µ?)>

)
u

+ 2u>
(
(Xj − µ?)(µw − µ?)>

)
u

≤ 2c1 ln(1/ε) + 2
√

2c1 ln(1/ε) · r

≤ c3
2
· r

2

ε2
+
c3
2
· r
ε
· r ≤ c3 ·

r2

ε2
.

The last step uses that c3 is sufficiently large, as well as the
fact that ln(1/ε) ≤ r2

ε2 because r ≥ c2ε
√

ln(1/ε).

4. Algorithmic Result: Finding a Stationary
Point via Gradient Descent

In this section, we show that a simple Projected Gradient
Descent (PGD) algorithm (Algorithm 1) can efficiently find
an approximate stationary point w of our spectral norm
objective, and that w is a good solution to our robust mean
estimation task.

Algorithm 1 Robust Mean Estimation via PGD
Input: ε-corrupted set of N samples {Xi}Ni=1 on Rd
satisfying Condition (3), and ε < ε0.
Output: w ∈ RN with ‖µw − µ?‖2 ≤ O(ε

√
log(1/ε)).

Let F (w, u) = u>Σwu.
Let w0 be an arbitrary weight vector in ∆N,2ε.
Let T = Õ(N2d4).
for τ = 0 to T − 1 do

Find a unit vector uτ ∈ Rd such that F (wτ , uτ ) ≥
(1− ε) maxu F (wτ , u).
wτ+1 = P∆N,2ε

(wτ − η∇wF (wτ , uτ )), wherePK(·)
is the `2 projection operator onto K.

end for
return wτ? where τ? = arg min 0≤τ<T ‖Σwτ ‖2.

We note that finding the unit vector uτ required in the for
loop of Algorithm 1 can be done in time O(Nd log(d)/ε).
Given the PSD matrix A = Σ(wτ ), we want to find a unit
vector u ∈ Rd such that u>Au ≥ (1 − ε) maxv(v

>Av).
This is the (approximate) largest eigenvector problem which
can be solved via power method in O(log(d)/ε) iterations.
Since the matrix-vector multiplication Av = Σwτ v =(
X diag(wτ )X> −Xwτw>τ X>

)
v can be computed in

time O(Nd), the running time for finding such a vector
uτ is O(Nd log(d)/ε).

The main result of this section is the following theorem:

Theorem 4.1 (Gradient descent finds a good solution). Let
S be an ε-corrupted set of N = Ω̃(d/ε2) samples from a
d-dimensional Gaussian N (µ?, I) with unknown mean µ?.
Suppose S satisfies Condition (3) and Lemma 2.1. Then,
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after Õ(N2d4) iterations, Algorithm 1 outputs a weight
vector w ∈ RN such that ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

We first give a high-level overview of the proof. Our proof
of Theorem 4.1 can be divided into two steps:

1. The first step is an immediate consequence of Theorem
3.2, which allows us to conclude that any approximate
stationary point (in the sense of Definition 2.5) has
good approximation guarantees.

2. To finalize the proof, in the second step we show that
simple iterative procedures such as (sub)gradient de-
scent can converge in a polynomial number of iter-
ations to such an approximate stationary point. We
prove such a result by utilizing a simple and well-
known observation: a minimax optimization prob-
lem which is smooth in the minimization parameter is
weakly convex (after maximization) in the minimiza-
tion parameter. This connection allows us to leverage
recent literature (Drusvyatskiy, 2017; Davis & Drusvy-
atskiy, 2018) that provides convergence guarantees for
weakly convex optimization problems to prove our
algorithm finds an approximate stationary point in a
polynomial number of iterations.

To elaborate further, in the second step of our proof, we
utilize and slightly generalize2 the analysis of (Davis &
Drusvyatskiy, 2018) and prove that projected sub-gradient
descent can find an approximate stationary point.

Lemma 4.2. Let K be a closed convex set. Let F (w, u)
be a function which is L-Lipschitz and β-smooth with re-
spect to w. Consider the following optimization problem
minw∈Kmax‖u‖2=1 F (w, u).

Starting from any initial point w0 ∈ K, we run iterative
updates of the form:

find uτ with F (wτ , uτ ) ≥ (1− ε′) max
u

F (wτ , uτ )

wτ+1 = PK(wτ − η∇wF (wτ , uτ )

for T iterations with step size η = γ√
T

. Then, we have

min
0≤τ<T

‖∇fβ(wτ )‖22

≤ 2√
T

(
fβ(w0)−minw f(w)

γ
+ γβL2

)
+ 4βε′

where fβ(w) is the Moreau envelope as in Definition 2.4.

As shown in Appendix B, F (w, u) associated with f(w)
obeys the required Lipschitz and smoothness property, with
L = Õ(

√
Nd) and β = Õ(Nd). In addition, we have 0 ≤

2The generalization is to deal with constraints and handle the
fact that the inner maximization is not solved precisely.

f(w) ≤ Õ(d) for all w ∈ ∆N,2ε. Thus, we can apply the
result above with the constraint K = ∆N,2ε. Theorem 4.1
follows by combining Theorem 3.2 and Lemma 4.2. We
defer the proofs to Appendix B.

5. Discussion
The main conceptual contribution of this work is to es-
tablish an intriguing connection between algorithmic high-
dimensional robust statistics and non-convex optimization.
Specifically, we showed that high-dimensional robust mean
estimation can be efficiently solved by directly applying a
first-order method to a natural non-convex formulation of
the problem.

The main technical contribution of this paper is in showing
that any approximate stationary point of our non-convex
objective suffices to solve the underlying learning problem.
Our novel structural result may be viewed as an explanation
as to why robust mean estimation can be solved efficiently in
high dimensions, despite its non-convexity. Specifically, we
establish that the optimization landscape of our non-convex
objective is well-behaved, in a precise sense.

There are a number of directions along which our results
could be improved. At the technical level, it would be inter-
esting to obtain faster convergence rates for gradient descent
(or other first-order methods), with linear convergence as
the ultimate goal. We note that our upper bound is fairly
loose and we did not make an explicit effort to optimize the
polynomial dependence.

A natural direction is to extend our approach to more gen-
eral robust estimation tasks, including covariance estima-
tion (Diakonikolas et al., 2016; Cheng et al., 2019), sparse
PCA (Balakrishnan et al., 2017; Diakonikolas et al., 2019b),
and robust regression (Klivans et al., 2018; Diakonikolas
et al., 2019c). Such generalizations will appear in a followup
work.
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