
Robust Mean Estimation via Gradient Descent

A. Setting Constants in Section 3
In this section, we describe how to appropriately set the universal constants c1, . . . , c4 ≥ 1 in Section 3. These constants are
set in the following order: c1, c3, c4, c2. In this order, each ci only depends on the constants set before it, and there is only a
lower bound requirement on the value of each ci so we can set ci to a sufficiently large constant.

The constant c1 appears in Condition (3). and is related to the constants involved in the concentration inequalities required
to establish this condition. With the right sample complexity, Condition (3) holds with high probability for δ = c1ε ln(1/ε).

For the remaining three constants, recall that by assumption r = ‖µw − µ?‖2 ≥ c2ε
√

ln(1/ε) ≥ ε
√

ln(1/ε).

Next we choose c3 such that c3 ≥ 5c1. This is to guarantee that, in the proof of Lemma 3.5, we have 2c1 ln(1/ε) +

2
√

2c1 ln(1/ε) · r ≤ c3 · r
2

ε2 .

The constant c4 appears in the proof of Lemma 3.4. There are two inequalities related to c4. We need c4 ≥ 50c1 so that
c4r

2

ε − c1ε ln(1/ε) ≥ 0.98 · c4 · r
2

ε , and we require c4 ≥ max(100, 6c3) so that 0.49·c4·r2
ε2 − 1.4·√c4·r2

ε > 2c3 · r
2

ε2 .

Finally, we set the value of c2, which appears in our final guarantee: we show that any stationary point w of f(w) satisfies
‖µw − µ?‖2 ≤ c2ε

√
ln(1/ε). The constant c2 only depends on c4. At the beginning of the proof of Lemma 3.4, we need

that if ‖µw − µ?‖2 ≥ c2ε
√

ln(1/ε), then ‖Σw‖2 ≥ 1 + c4 · r
2

ε . By Lemma 2.1 from (Diakonikolas et al., 2016), we know
that this is possible if we set c2 to be sufficiently large.

B. Missing Proofs from Section 4
In this section, we prove Theorem 3.2 and Lemma 4.2 from Section 4. These two statements play an important role in
showing that projected sub-gradient descent efficiently finds an approximate stationary point w, and that w is a good solution
to our robust mean estimation task.

We briefly recall our notation. We use X ∈ Rd×N to denote the sample matrix, Σw =
(
X diag(w)X> −Xww>X>

)
,

F (w, u) = u>Σwu, f(w) = maxu F (w, u) = ‖Σw‖2, and ∆N,ε =
{
w ∈ RN : ‖w‖1 = 1 and 0 ≤ wi ≤ 1

(1−ε)N ∀i
}

.

Note that we can assume without loss of generality that no input samples have very large `2-norm. This is because we can
perform a standard preprocessing step that centers the input samples at the coordinate-wise median, which does not affect
our mean estimation task. We can then throw away all samples that are Ω(

√
d log d) far from the coordinate-wise median.

With high probability, the coordinate-wise median of all good samples are O(
√
d log d) far from the true mean. Assuming

this happens, then no good samples are thrown away and the remaining samples satisfy maxi ‖Xi‖2 = O(
√
d log d).

Consequently, we have ‖µw‖2 = O(
√
d log d) for any w ∈ ∆N,ε.

In Lemma B.1, we show that the function F (w, u) = u>Σwu is Lipschitz and smooth with respect to w.

Lemma B.1. The function F (w, u) is L-Lipschitz and β-smooth for L = Õ(
√
Nd) and β = Õ(Nd). That is,

|F (w, u)− F (w̃, u)| ≤ L ‖w̃ − w‖2 for all w, w̃,∈ ∆N,2ε and all unit vectors u ∈ Rd

‖∇wF (w, u)−∇wF (w̃, u)‖2 ≤ β ‖w̃ − w‖2 for all w, w̃,∈ ∆N,2ε and all unit vectors u ∈ Rd .

Proof. We use the `2-norm of the gradient to bound L from above. We have

‖∇wF (w, u)‖2 =
∥∥X>u�X>u− 2(u>Xw)X>u

∥∥
2

≤
√
N max

i
(X>i u)2 + 2

∥∥u>X∥∥∞ ‖w‖1 ‖X‖2 ‖u‖2
≤
√
N max

i
‖Xi‖22 + 2 max

i
‖Xi‖2 ‖X‖2 .

To bound from above the smoothness parameter, we have

‖∇wF (w, u)−∇wF (w̃, u)‖2 = 2
∣∣u>X(w − w̃)

∣∣ ∥∥X>u∥∥
2
≤ 2 ‖X‖22 ‖w − w̃‖2 .

We conclude the proof by observing that, after the preprocessing step, we have maxi ‖Xi‖2 = O(
√
d log d) and consequently

‖X‖2 = O(
√
Nd log d). Therefore, L = O(

√
Nd log d) and β = O(Nd log d).
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Recall that the Moreau envelope fβ(w) is defined as

fβ(w) = min
w̃
IK(w̃) + F (w̃) + β ‖w̃ − w‖22 = min

w̃∈K
f(w̃) + β ‖w̃ − w‖22 ,

where IK(·) is the support function of K.

We restate Theorem 3.2 before proving it.

Theorem 3.2. Consider the spectral norm loss f(w) = ‖Σw‖2 with fβ(w) denoting the corresponding Moreau envelope
function per Definition 2.4 with β = 2‖X‖22. Then, for any w ∈ ∆N,2ε obeying

‖∇fβ(w)‖2 = O(log(1/ε)),

we have ‖µw − µ?‖2 = O(ε
√

log(1/ε)).

Proof. Let δ =
c3c

2
2 ln(1/ε)√

2
, where c2 and c3 are the positive universal constants from Lemma 3.4. We show that any

w ∈ ∆N,2ε obeying ‖∇fβ(w)‖2 ≤ δ must satisfy that ‖µw − µ?‖2 ≤ O(ε
√

log(1/ε)).

The condition ‖∇fβ(w)‖2 ≤ δ implies that there exists a vector ŵ such that (see, e.g., Rockafellar (2015)):

‖ŵ − w‖2 =
δ

2β
and min

g∈∂f(ŵ)+∂IK(ŵ)
‖g‖2 ≤ δ .

We first show that ŵ is a good solution.

It is well known that the subdifferential of the support function is the normal cone, which is in turn the polar of the tangent
cone. That is,

∂IK(ŵ) = NK(ŵ) = (CK(ŵ))◦ .

Thus, there exists a vector g = ν + v with ‖g‖2 ≤ δ such that ν ∈ ∂f(ŵ) and v ∈ (CK(ŵ))◦. Now consider any unit vector
u ∈ CK(ŵ):

−δ ≤ u>g = u>ν + u>v ≤ u>ν ,

where the last step follows from the definition of the polar set. In other words, there exists a vector ν ∈ ∂f(ŵ) such that

−ν>u ≤ δ for all unit vectors u ∈ CK(ŵ) . (5)

Suppose ‖µŵ − µ?‖2 ≥ c2ε
√

ln(1/ε). Then for the v ∈ ∂f(ŵ) in question, we can use Lemmas 3.4 and 3.5 to find two
coordinates i and j such that

ŵi > 0, ŵj <
1

(1− 2ε)N
, and νi − νj > c3

‖µŵ − µ?‖22
ε2

≥ c3c22 ln(1/ε) =
√

2δ .

However, this contradicts Condition (5), because for the unit vector u = 1√
2
(ej − ei), where ei is the i-th basis vector, we

have u ∈ C∆N,2ε
(ŵ) but

−ν>u =
νi − νj√

2
> δ .

Therefore, ŵ must satisfy ‖µŵ − µ?‖2 < c2ε
√

ln(1/ε).

We conclude the proof by noticing that w is very close to ŵ, so if ŵ is a good solution, then w must also be a good solution:

‖µw − µ?‖2 ≤ ‖µw − µŵ‖2 + ‖µŵ − µ?‖2
≤ ‖X‖2 ‖w − ŵ‖2 + c2ε

√
ln(1/ε)

= O(β−1/2δ + ε
√

log(1/ε)) = O(ε
√

log(1/ε)) .

In the last two steps, we used the fact that ‖ŵ − w‖2 = δ
2β and β = 2 ‖X‖22 (see Lemma B.1). This completes the proof of

Theorem 3.2.
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We restate Lemma 4.2 before proving it. We note that the proof of Lemma 4.2 is directly inspired by the proof of Theorem
2.1 in (Davis & Drusvyatskiy, 2018).

Lemma 4.2. Let K be a closed convex set. Let F (w, u) be a function which is L-Lipschitz and β-smooth with respect to w.
Consider the following optimization problem minw∈Kmax‖u‖2=1 F (w, u).

Starting from any initial point w0 ∈ K, we run iterative updates of the form:

Find uτ with F (wτ , uτ ) ≥ (1− ε′) max
u

F (wτ , uτ );

wτ+1 = PK(wτ − η∇wF (wτ , uτ ) ,

for T iterations with step size η = γ√
T

. Then, we have

min
0≤τ<T

‖∇fβ(wτ )‖22

≤ 2√
T

(
fβ(w0)−minw f(w)

γ
+ γβL2

)
+ 4βε′ ,

where fβ(w) is the Moreau envelope, as in Definition 2.4.

Proof. Note that since f is β-smooth with respect to w and uτ is an approximate maximizer for wτ , for any w̃ ∈ K, we
have that

f(w̃) ≥ F (w̃, uτ ) ≥ F (wτ , uτ ) + (∇wF (wτ , uτ ))>(w̃ − wτ )− β

2
‖w̃ − wτ‖22

≥ f(wτ )− ε′ + (∇wF (wτ , uτ ))>(w̃ − wτ )− β

2
‖w̃ − wτ‖22 . (6)

To continue, define the proximal function

proxfβ (w) = arg min
w̃∈K

(f(w̃) + β ‖w̃ − w‖2) ,

and let ŵτ = proxfβ (wτ ).

Now we have

fβ(wτ+1) ≤ f(ŵτ ) + β ‖ŵτ − wτ+1‖2
= f(ŵτ ) + β ‖ŵτ −ΠK(wτ − η∇wF (wτ , uτ ))‖2
≤ f(ŵτ ) + β ‖ŵτ − wτ + η∇wF (wτ , uτ )‖2 (convexity of K)

= f(ŵτ ) + β ‖ŵτ − wτ‖22 + 2ηβ(∇wF (wτ , uτ ))>(ŵτ − wτ ) + η2β ‖∇wF (wτ , uτ )‖22
= fβ(wτ ) + 2ηβ(∇wF (wτ , uτ ))>(ŵτ − wτ ) + η2β ‖∇wF (wτ , uτ )‖22 (ŵτ = proxfβ (wτ ))

≤ fβ(wτ ) + 2ηβ(∇wF (wτ , uτ ))>(ŵτ − wτ ) + η2βL2 (F (w, u) is L-Lipschitz in w)

≤ fβ(wτ ) + 2ηβ

(
f(ŵτ )− f(wτ ) + ε′ +

β

2
‖ŵτ − wτ‖22

)
+ η2βL2 . (by Inequality (6))

Summing the above over τ , we obtain

fβ(wT ) ≤ fβ(w0) + 2ηβ

T−1∑
τ=0

(
f(ŵτ )− f(wτ ) +

β

2
‖ŵτ − wτ‖22

)
+ η2βL2T + 2ηβTε′ .

Dividing by 2ηβT , we get

1

T

T−1∑
τ=0

(
f(wτ )− f(ŵτ )− β

2
‖ŵτ − wτ‖22

)
≤ fβ(w0)− fβ(wT )

2ηβT
+
ηL2

2
+ ε′

≤ fβ(w0)−minw f(w)

2ηβT
+
ηL2

2
+ ε′ .



Robust Mean Estimation via Gradient Descent

Observe that the function w → f(w) + β ‖w − wτ‖22 is β-strongly convex, therefore

f(wτ )− f(ŵτ )− β

2
‖ŵτ − wτ‖22

=
(
f(wτ ) + β ‖wτ − wτ‖22

)
−
(
f(ŵτ ) + β ‖wτ − ŵτ‖22

)
+
β

2
‖wτ − ŵτ‖22

≥ β

2
‖ŵτ − wτ‖22 +

β

2
‖ŵτ − wτ‖22 (strong convexity)

= β ‖ŵτ − wτ‖22 =
1

4β
‖∇fβ(wτ )‖22 .

In the above, we used the fact that for a β-strongly convex function h(w) = IK(w) + f(w) + β ‖w − wτ‖22, we have
g(wτ )− g(ŵτ ) ≥ β

2 ‖wτ − ŵτ‖
2
2.

Combining the two inequalities above, we arrive at

1

T

T−1∑
τ=0

‖∇fβ(wτ )‖22 ≤ 2
fβ(w0)−minw f(w)

ηT
+ 2ηβL2 + 4βε′ .

Finally, setting the step size η = γ√
T

, we conclude that

min
0≤τ<T

‖∇fβ(wτ )‖22 ≤
2√
T

(
fβ(w0)−minw f(w)

γ
+ γβL2

)
+ 4βε′ .

This completes the proof of Lemma 4.2.

C. Minimizing Softmax of Spectral Norm
In this section, we analyze our alternate non-convex formulation that replaces the spectral norm with a softmax. Note
that when the largest eigenvalue of Σw is not unique, the spectral norm of Σw may not be differentiable with respect to w.
Instead of considering sub-gradients, we can minimize the softmax of the eigenvalues of Σw, which is a smoothed version
of spectral norm that is differentiable everywhere.

Formally, we minimize the following non-convex objective function:

f(w) = smaxρ (Σw) =
1

ρ
ln tr(exp(ρΣw)) for ρ =

ln d

ε
, (7)

where X ∈ Rd×N is the sample matrix, and Σw = X diag(w)X> − Xww>X> is the weighted empirical covariance
matrix.

The structure of this section is as follows: In Section C.1, we start by recording some useful properties of the softmax
objective. In Section C.2, we prove our key structural result for this section (Theorem C.5), establishing that any approximate
stationary point w of f(w) provides a good estimate µw of the true mean µ? . In Section C.3, we present our algorithmic
result (Theorem 1.4), which states that we can efficiently find an approximate stationary point of f(w) via projected gradient
descent.

C.1. Basic Properties of Softmax

Lemma C.1 (Duality of softmax). For any Z ∈ Rn×n and ρ > 0, let smaxρ(Z) := 1
ρ ln tr(exp(ρZ)). We have the

following identity

smaxρ(Z) = max
Y ∈∆n×n

(
Y • Z − 1

ρ
Y • log Y

)
.

Proof. Fix Z ∈ Rn×n. Let f(Y ) = Y •Z− 1
ρY • log Y . Using the KKT conditions, we know that when f(Y ) is maximized,

we have ∂f
∂Y = λI , for some λ ∈ R. Combining this with ∂f

∂Y = Z − 1
ρ (log Y + I), it follows that f(Y ) is maximized at

Y ? = exp(ρZ − (ρλ+ 1)I) =
exp(ρZ)

tr(exp(ρZ))
,
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where the second equality holds because Y ? ∈ ∆n×n. One can substitute Y ? into the definition of f(Y ) and verify that
f(Y ?) = smaxρ(Z).

Corollary C.2 (Softmax and max). For any PSD matrix Z ∈ Rn×n and ρ > 0, we have that λmax(Z) ≤ smaxρ(Z) ≤
λmax(Z) + lnn

ρ . Moreover, for Y = exp(ρZ)
tr(exp(ρZ)) , we have that Y • Z ≥ smaxρ(Z)− lnn

ρ .

Proof. Observe that

smaxρ(Z) =
1

ρ
ln tr(exp(ρZ)) ≥ 1

ρ
lnλmax(exp(ρZ)) = λmax(Z) ,

and

smaxρ(Z) =
1

ρ
ln tr(exp(ρZ)) ≤ 1

ρ
ln(n · λmax(exp(ρZ))) = λmax(Z) +

lnn

ρ
.

For the second claim, by Lemma C.1, we know that smaxρ(Z) = Y • Z − 1
ρY • log Y . The claim then follows from the

fact that Y • log Y ≥ − lnn for all Y ∈ ∆n×n.

When working with the matrix exponentials in our softmax objective function f , the following chain rule formula will be
useful to compute the Hessian of f (see, e.g., (Wilcox, 1967)).

Lemma C.3 (Derivative of matrix exponential). For a symmetric matrix function X(t) that depends on a scalar t, we have
that

d

dt
exp(X(t)) =

∫ 1

0

exp(αX(t))
dX(t)

dt
exp((1− α)X(t))dα .

C.2. Structural Result: Any Approximate Stationary Point Suffices

The gradient of our softmax objective function is

∇f(w) = diag(X>Y X)− 2X>Y Xw , where Y =
exp(ρΣw)

tr(exp(ρΣw))
. (8)

Notice that Y ∈ ∆N×N is a convex combination of directions. That is, we can write Y =
∑d
k=1 λkuku

>
k , where uk ∈ Rd

and
∑
k λk = 1. The gradient ∇f(w) is the same as the gradient of w for the one-dimensional problem, where the input

samples are (X>i Y
1/2)Ni=1. Equivalently, ∇f(w) tries to move w towards minimizing the average variance

∑
k

λk

∑
i

wi(X
>
i uk)2 −

(∑
i

wi(X
>
i uk)

)2


of the projections of X along the directions {uk}.

The intuition is as follows: The goal is to show that λmax(Σw) is small at any stationary point w of smaxρ(Σw). Now
fix some w ∈ ∆N,2ε, where λmax(Σw) is large. Then smaxρ(Σw) must be large. By the duality of softmax, there is a
combination of directions Y such that: (1) the one-dimensional samples (X>i Y

1/2)Ni=1 weighted by w have large variance,
and (2) the derivative of smaxρ(Σw) is the same as the derivative for minimizing variance on this one-dimensional instance.
We proceed by examining this one-dimensional instance, which is easier to analyze. We show that w cannot be a stationary
point, because we can always reduce the variance by increasing the weight on one of the good samples and reducing the
weight on one of the bad samples.

Formally, we use the following notion of approximate stationarity for our constrained non-convex minimization problem.

Definition C.4. Fix a convex set K. For δ > 0, we say x ∈ K is a δ-stationary point of f if the following condition holds:
For any unit vector u where x+ αu ∈ K for some α > 0, we have u>∇f(x) ≥ −δ.

Our main structural result in this section is the following theorem.
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Theorem C.5 (Any stationary point of f(w) is a good solution). Let S be an ε-corrupted set of N = Ω̃(d/ε2) samples
drawn from a d-dimensional Gaussian N (µ?, I) with unknown mean µ?. Suppose S satisfies Condition (3) and Lemma 2.1.

Let f(w) be the softmax objective as defined in Equation (7). Let δ = c ln(1/ε) for some universal constant c. For any
w ∈ ∆N,2ε that is a δ-stationary point of f(w), we have ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

Theorem C.5 follows directly from Lemmas C.6, C.7, and C.8.

For the rest of this subsection, we assume the input samples satisfy Condition (3) and Lemma 2.1, and we fix an approximate
stationary point w ∈ ∆N,2ε of the softmax objective. We establish the following bimodal sub-gradient property which holds
at all (approximate) stationary points.

Lemma C.6 (Bimodal sub-gradient property at stationary points). Fix w ∈ ∆N,2ε. Let S− = {i : wi > 0} and
S+ = {i : wi <

1
(1−2ε)N } denote the set of coordinates of w that can decrease and increase respectively. If w is a

δ-stationary point of f(w), then∇f(w)i ≤ ∇f(w)j +
√

2δ for all i ∈ S− and j ∈ S+.

Proof. Suppose there is some i ∈ S− and j ∈ S+ such that ∇f(w)i > ∇f(w)j +
√

2δ.

Consider the unit vector u = 1√
2
(ej − ei), where ei is the i-th basis vector. We have w + αu ∈ ∆N,2ε for α =

min(wi,
1

(1−2ε)N − wj) > 0, but

u>∇f(x) =
∇f(w)j −∇f(w)i√

2
< −δ ,

which violates the assumption that w is a δ-approximate stationary point (Definition C.4).

At a high level, we prove Theorem C.5 by showing that if µw is far from µ?, then w violates Lemma C.6. More specifically,
if µw is far from µ?, then there exists a bad sample with index j ∈ S− whose gradient is large (Lemma C.7). Meanwhile,
the concentration bound in Condition (3) guarantees that there exists a good sample with index i ∈ S+ whose gradient is
small (Lemma C.8).

We frequently use the partial derivative of f(w) with respect to wi in our analysis:

∇f(w)i = X>i Y Xi − 2X>i Y µw

= (Xi − µ?)>Y (Xi − µ?)− 2(Xi − µ?)>Y (µw − µ?)

+ µ?>Y (µ? − 2µw) .

Notice that the last term in ∇f(w)i is the same for all i. Since our goal is to identify i ∈ S− and j ∈ S+ such that
∇f(w)i > ∇f(w)j , we can focus on the first two terms.

We have the following lemmas:

Lemma C.7. Fix w ∈ ∆N,2ε and assume that Condition (3) and Lemma 2.1 hold. Let c2 and c3 be universal constants. Let
r = ‖µw − µ?‖2 and suppose r ≥ c2ε

√
ln(1/ε). Then, there exists i ∈ (B ∩ S−) such that

∇f(w)i − µ?>Y (µ? − 2µw) > 2c3 ·
r2

ε2
.

Lemma C.8. Consider the same setting as in Lemma C.7. There exists j ∈ (G ∩ S+) such that

∇f(w)j − µ?>Y (µ? − 2µw) ≤ c3 ·
r2

ε2
.

We defer the proofs of Lemmas C.7 and C.8 to Section C.2.1, and we first use them to prove Theorem C.5.

Proof of Theorem C.5. Suppose thatw is a bad solution where ‖µw − µ?‖2 ≥ c2ε
√

ln(1/ε). Since we assume Condition (3)
and Lemma 2.1 both hold on the input samples, we can use Lemmas C.7 and C.8 to find two coordinates i ∈ S− and
j ∈ S+, such that the bimodal sub-gradient property in Lemma C.6 does not hold at w. Therefore, w is not a δ-approximate
stationary point for some δ =

√
2c3
‖µw−µ?‖22

ε2 ≥
√

2c3c
2
2 ln(1/ε), that is, we can set c =

√
2c3c

2
2.
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C.2.1. PROOFS OF LEMMAS C.7 AND C.8

In this section, we prove Lemmas C.7 and C.8.

The proofs of these lemmas are conceptually similar to the proofs of related lemmas (Lemmas 3.4 and 3.5) in Section 3. We
include their proofs here to make this section self-contained. The main difference is that we switch to the softmax objective,
and consequently, we need to work with multiple directions simultaneously. That is, we consider the projections using Y
instead of the projections along the maximum eigenvector of Σw.

Lemma C.7 states that when µw is far from µ?, there exists an index i ∈ (B ∩ S−) such that the gradient ∇f(w)i is
relatively large.

Recall that the gradient ∇f(w) in Equation (8) is the same as the gradient of the variance (weighted by w) of the one-
dimensional samples

(
X>i Y

1/2
)N
i=1

. For this one-dimensional problem, a sample far from the (projected) true mean must
have large gradient. Our objective is to find such a sample for which we can decrease its weight. More specifically, since
w is assumed to be a bad solution, and the softmax objective is close to the spectral norm of Σw, the weighted empirical
variance of the projected samples is very large. Because the good samples cannot have this much variance, most of the
variance comes from the bad samples. We prove that among these bad samples that contribute a lot to the variance, one of
them must be very far from the (projected) true mean and hence has a large gradient, which satisfies Lemma C.7.

We use c1, . . . , c4 to denote universal positive constants that are independent of N , d, and ε. These constants can be set in a
way that is similar to that in Section 3 (see Appendix A). The universal constant c in Theorem C.5 can be set as c =

√
2c3c

2
2

after we set c2 and c3.

Proof of Lemma C.7. We first show that Σw • Y is relatively large. By Lemma 2.1, we know that if ‖µw − µ?‖2 ≥ r and
r ≥ c2ε

√
ln(1/ε), then

λmax(Σw) ≥ 1 + c4 ·
r2

ε
.

By Corollary C.2, for Y = exp(ρΣw)
tr(exp(ρΣw)) and ρ = ln d

ε , we have

Σw • Y ≥ smaxρ(Σw)− ε ≥ λmax(Σw)− ε ≥ 1− ε+
c4r

2

ε
.

Recall that Σw =
∑N
i=1 wi(Xi − µw)(Xi − µ>w). If we replace µw with µ?, we have

N∑
i=1

wi(Xi − µ?)(Xi − µ?)> � Σw ,

and therefore, (
N∑
i=1

wi(Xi − µ?)(Xi − µ?)>
)
• Y ≥ Σw • Y ≥ 1− ε+

c4r
2

ε
.

Next we show that most of the variance is due to bad samples. By Condition (3),(∑
i∈G

wi(Xi − µ?)(Xi − µ?)>
)
• Y ≤ 1 + c1 · ε ln(1/ε) .

Consequently, (∑
i∈B

wi(Xi − µ?)(Xi − µ?)>
)
• Y ≥ c4r

2

ε
− ε− c1ε ln(1/ε) ≥ 0.98 · c4 ·

r2

ε
.

The last step is because r ≥ c2 · ε
√

ln(1/ε) and we can choose c2 and c4 to be sufficiently large.

At this point, we know that when r = ‖µw − µ?‖2 is large, most of the variance is due to the bad samples. However, the
total weight wB on the bad samples is at most εN · 1

(1−2ε)N ≤ 2ε. Therefore, there must be some i ∈ B with wi > 0 and

(
(Xi − µ?)(Xi − µ?)>

)
• Y ≥ 0.98 · c4 · r2 · ε−1

wB
≥ 0.49 · c4 ·

r2

ε2
.
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By definition, i ∈ B ∩ S−. It remains to show that∇f(w)i is large.

∇f(w)i − µ?>Y (µ? − 2µw) =
(
(Xi − µ?)(Xi − µ?)>

)
• Y − 2

(
(Xi − µ?)(µw − µ?)>

)
• Y

≥
∥∥∥Y 1/2(Xi − µ?)

∥∥∥2

2
− 2

∥∥∥Y 1/2(Xi − µ?)
∥∥∥

2
·
∥∥∥Y 1/2

∥∥∥
2
· ‖µw − µ?‖2

≥ 0.49 · c4 · r2

ε2
− 2 ·

0.7 · √c4 · r
ε

· 1 · r

> 2c3 ·
r2

ε2
.

The first inequality is because Y ∈ ∆d×d. The last step uses the fact that c4 can be sufficiently large. This completes the
proof of Lemma C.7.

Lemma C.8 states that there exists an index j ∈ (G ∩ S+) such that the gradient ∇f(w)j is relatively small. Similar to
the proof of Lemma C.7, for the projected one-dimensional instance, a sample close to the (projected) true mean should
have small gradient. Our goal is to find such a sample for which we can increase its weight. Recall that S+ contains the
samples whose weight can be increased. We first prove that there are at least εN good samples in S+. Among these εN
good samples, the concentration bounds imply that there must exist some Xj that is close to the (projected) true mean. The
derivative∇f(w)j satisfies Lemma C.8.

Proof of Lemma C.8. Recall that S+ contains every coordinate i where wi < 1
(1−2ε)N . Since at most (1− 2ε)N samples

can have the maximum weight 1
(1−2ε)N , we know that |S+| ≥ 2εN . Combining this with |G| = (1− ε)N , we know that

|G ∩ S+| ≥ εN .

Fix a subset G+ ⊆ (G ∩ S+) of size |G+| = εN . We first show that, on average, samples in G+ do not contribute much to
the variance.

Let w′ be the uniform weight vector on G, i.e., w′i = 1
(1−ε)N for all i ∈ G and w′i = 0 otherwise. Since w′ ∈ ∆N,2ε, by

Condition (3), we have that ∥∥∥∥∥∑
i∈G

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

≤ c1 · ε ln(1/ε) .

Let w′′ be the uniform weight vector on S \ G+ = (G \ G+) ∪ B, i.e., w′′i = 1
(1−ε)N for all i ∈ ((G \ G+) ∪ B) and

w′′i = 0 otherwise. Since w′′ ∈ ∆N,2ε, again by Condition (3), we have that∥∥∥∥∥∥
∑

i∈G\G+

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥∥
2

≤ c1 · ε ln(1/ε) .

Combining the previous two concentration bounds, we obtain that∥∥∥∥∥∑
i∈G+

1

|G|
(Xi − µ?)(Xi − µ?)>

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i∈G

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈G\G+

1

|G|
(Xi − µ?)(Xi − µ?)> − I

∥∥∥∥∥∥
2

≤ 2c1 · ε ln(1/ε) .

As a result, because Y ∈ ∆d×d, it follows that(∑
i∈G+

1

|G|
(Xi − µ?)(Xi − µ?)>

)
• Y ≤ 2c1 · ε ln(1/ε) .

Now we know that, on average, samples in G+ do not contribute much to the variance. We continue to show that one of
these samples satisfies the lemma.
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Let j = arg mini∈G+

(
Y • (Xi − µ?)(Xi − µ?)>

)
. We have that(

(Xj − µ?)(Xj − µ?)>
)
• Y ≤ |G|

|G+|
· 2c1 · ε ln(1/ε) ≤ 2c1 ln(1/ε) .

Finally, because (Xj − µ?)>Y (Xj − µ?) ≤ 2c1 ln(1/ε), we can bound∇f(w)j from above as follows:

∇f(w)j − µ?>Y (µ? − 2µw) =
(
(Xj − µ?)(Xj − µ?)>

)
• Y − 2

(
(Xj − µ?)(µw − µ?)>

)
• Y

≤
∥∥∥Y 1/2(Xj − µ?)

∥∥∥2

2
+ 2

∥∥∥Y 1/2(Xj − µ?)
∥∥∥

2
·
∥∥∥Y 1/2

∥∥∥
2
· ‖µw − µ?‖2

≤ 2c1 ln(1/ε) + 2
√

2c1 ln(1/ε) · 1 · r

≤ c3
2
· r

2

ε2
+
c3
2
· r
ε
· r ≤ c3 ·

r2

ε2
.

The last step uses that c3 is sufficiently large, as well as the fact that ln(1/ε) ≤ r2

ε2 , because r ≥ c2ε
√

ln(1/ε). This
completes the proof of Lemma C.8.

C.3. Convergence Rate of Minimizing Softmax

Algorithm 2 Robust Mean Estimation via Projected Gradient Descent on the Softmax Objective
Input: ε-corrupted set of N samples {Xi}Ni=1 on Rd satisfying Condition (3), and ε < ε0.
Output: w ∈ RN with ‖µw − µ?‖2 ≤ O(ε

√
log(1/ε)).

Let ρ = ln d/ε.
Let β = Õ(Nd2/ε) be the smoothness parameter of the softmax objective f(w) = smaxρ(Σw).
Let w0 be an arbitrary weight vector in ∆N,2ε.
Let T = Õ(Nd3/ε) and η = 1/β.
for τ = 0 to T − 1 do
wτ+1 = P∆N,2ε

(wτ − η∇f(w)), where PK(·) is the `2-projection operator onto K.
end for
return wτ? where τ? = arg min 0≤τ<T ‖wτ+1 − wτ‖2.

In this section, we prove our algorithmic result for the softmax objective (Theorem 1.4). We show that the projected gradient
descent algorithm (Algorithm 2) on f can efficiently find an approximate stationary point w, and that w is a good solution to
our robust mean estimation task.

We first restate Theorem 1.4 (correctness and iteration count of Algorithm 2).

Theorem 1.4. Let S be an ε-corrupted set of N = Ω̃(d/ε2) samples drawn from a d-dimensional Gaussian N (µ?, I) with
unknown mean µ?. Suppose S satisfies Condition (3) and Lemma 2.1.

Let f(w) be the softmax objective as defined in Equation (7). After Õ(Nd3/ε) iterations, projected gradient descent on
f(w) outputs a point w such that ‖µw − µ?‖2 = O(ε

√
log(1/ε)).

Theorem 1.4 follows immediately from Lemmas C.9, C.10, and C.11.

Lemma C.9 analyzes the convergence rate of (nonconvex) projected gradient descent. The number of iterations in Lemma C.9
depends on the range and smoothness of the objective function. Lemmas C.10 and C.11 upper bounds these two parameters
for our softmax objective.

We note that Lemma C.9 appears to be folklore in the optimization literature, see, e.g., (Beck, 2017). For the sake of
completeness, we provide a self-contained proof in the following subsection.
Lemma C.9. Fix a (possibly non-convex) function f and a convex set K. Suppose f is β-smooth on K and 0 ≤ f(x) ≤ B
for all x ∈ K. If we run projected gradient descent with step size η = 1

β starting from an arbitrary x0 ∈ K:

xτ+1 = ΠK (xτ − η∇f(xτ )) ,

where ΠK is the projection onto K, we can compute a δ-stationary point of f in O(β·Bδ2 ) iterations.
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Recall that the softmax objective is f(w) = smaxρ (Σw) = 1
ρ ln tr(exp(ρΣw)) with ρ = ln d

ε . A differentiable function f
is β-smooth on K if ‖∇f(x)−∇f(y)‖2 ≤ β ‖x− y‖2 for all x, y ∈ K.

Lemma C.10 (Smoothness of f ). The softmax objective f is β-smooth on ∆N,2ε for β = Õ(Nd2/ε).

Lemma C.11 (Range of f ). The softmax objective f satisfies that 0 ≤ f(w) ≤ Õ(d) for all w ∈ ∆N,2ε.

We defer the proofs of Lemmas C.9, C.10, and C.11 to the next subsections and first use them to prove Theorem 1.4.

Proof of Theorem 1.4. We first prove the correctness of Algorithm 2. Let c be the universal constant in Theorem C.5 and let
δ = c ln(1/ε). We run Algorithm 2 to obtain a δ-stationary point w. Since we assume the input samples satisfy Condition (3)
and Lemma 2.1, Theorem C.5 states that w is a good solution with ‖µw − µ?‖2 = O(ε

√
ln(1/ε)).

We now analyze the number of iterations T . By Lemma C.9, it is sufficient to set T = O(β·Bδ2 ), as in Algorithm 2.
Substituting the upper bounds on β and B from Lemmas C.10 and C.11, and our choice of δ, we get

T = O(β ·B · δ−2) = Õ(Nd2/ε) · Õ(d) ·O(log−2(1/ε)) = Õ(Nd3/ε) ,

as claimed.

C.4. Proof of Lemma C.9

In this section, we prove Lemma C.9.

Lemma C.9 analyzes the convergence rate of projected gradient descent, when we use it to minimize a smooth non-convex
function with constraints. Lemma C.9 follows directly from Lemmas C.12 and C.13.

Lemma C.12 defines a “truncated gradient” mapping g and relates the progress in the τ -th iteration with ‖g(xτ )‖22. Because
we cannot keep decreasing f(x), we know that after many iterations, there exists some τ such that ‖g(xτ )‖2 is very small.
Lemma C.13 shows that if ‖g(xτ )‖2 is very small, that is, if projected gradient descent moves very little between xτ and
xτ+1, then xτ+1 is an approximate stationary point.

Lemma C.12. Fix a convex set K. Suppose f is β-smooth on K and 0 ≤ f(x) ≤ B for all x ∈ K. Suppose we run
projected gradient descent with step size η = 1

β starting from an arbitrary x0 ∈ K, i.e.,

xτ+1 = ΠK (xτ − η∇f(xτ )) ,

where ΠK is the `2-projection onto K. Then we have that

min
0≤τ<T

1

η
‖ΠK (xτ − η∇f(xτ ))− xτ‖2 ≤

√
2βB

T
.

Proof. Define the mapping

g(x) =
x−ΠK(x− η∇f(x))

η
.

Let yτ+1 = xτ − η∇f(xτ ). Notice that xτ+1 = ΠK(yτ+1) = xs − ηg(xτ ).

By the convexity of K, we have

(xτ+1 − xτ )>(xτ+1 − yτ+1) ≤ 0 ,

which is equivalent to

∇f(xτ )>(xτ+1 − xτ ) ≤ g(xτ )>(xτ+1 − xτ ) .
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Using the quadratic upper bound combined with the above inequality, we have

f(xτ+1) ≤ f(xτ ) +∇f(xτ )>(xτ+1 − xτ ) +
β

2
‖xτ+1 − xτ‖22

≤ f(xτ ) + g(xτ )>(xτ+1 − xτ ) +
β

2
‖xτ+1 − xτ‖22

= f(xτ )− η ‖g(xτ )‖22 +
η2β

2
‖g(xτ )‖22

= f(xτ )− 1

2β
‖g(xτ )‖22 .

Therefore, after T iterations, we have

min
0≤τ<T

‖g(xτ )‖22 ≤
1

T

T−1∑
τ=0

‖g(xτ )‖22 ≤
2β

T
(f(x0)− f(xT )) ≤ 2βB

T
.

Lemma C.13. Consider the same setting as in Lemma C.12. Define the tangent cone of K at a point x ∈ K as CK(x) =
cone(K − {x}). If for some τ we have

‖ΠK (xτ − η∇f(xτ ))− xτ‖2 ≤
δ

2
,

then for all unit vector u ∈ CK(x),
∇f(xτ+1)>u ≤ δ .

Proof. By the convexity of K, we know that for any z ∈ K,

(yτ+1 − xτ+1)>(z − xτ+1) ≤ 0 .

Consequently, for any u ∈ CK(xτ+1), we have

(yτ+1 − xτ+1)>u ≤ 0 ,

which is equivalent to
−∇f(xτ )>u ≤ −g(xτ )>u .

Using the fact that u is a unit vector together with the above inequality, we get

−∇f(xτ+1)>u ≤ −∇f(xτ+1)>u+∇f(xτ )>u− g(xτ )>u

≤ ‖f(xτ+1)−∇f(xτ )‖2 + ‖g(xτ )‖2
≤ β ‖xτ+1 − xτ‖2 + ‖g(xτ )‖2
= 2 ‖g(xτ )‖2 ≤ δ .

Proof of Lemma C.9. As in Algorithm 2, we run projected gradient descent, track the value of ‖g(xτ )‖2 in each iteration,
and return the xτ that has the minimum ‖g(xτ )‖2. Combining Lemmas C.12 and C.13, if we want a δ-stationary point, we
should set T such that

√
2βB/T ≤ δ/2, i.e., T ≥ 8βBδ−2 = O(βBδ−2).

C.5. Proofs of Lemmas C.10 and C.11

In this subsection, we bound from above the smoothness and maximum value of the softmax objective.

For these two lemmas, we can assume without loss of generality that no input samples have very large `2-norm. This
is because we can perform a standard preprocessing step that centers the input samples at the coordinate-wise median,
which does not affect our mean estimation task. We then throw away all samples that are Ω(

√
d log d) far from the

coordinate-wise median. With high probability, the coordinate-wise median and all good samples are O(
√
d log d) far

from the true mean. Assuming this happens, then no good samples are thrown away and all remaining samples satisfies
maxi ‖Xi‖2 = O(

√
d log d). Consequently, we have ‖µw‖2 = O(

√
d log d) for any w ∈ ∆N,ε.
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Proof of Lemma C.10. We proceed to bound from above the spectral norm of the Hessian of f . Recall that X ∈ Rd×N and
the partial derivative of f with respect to wi is

∇f(w)i = X>i Y Xi − 2X>i Y µw =
(
XiX

>
i −Xiµ

>
w − µwX>i

)
• Y,

where Y = exp(ρΣw)
tr exp(ρΣw) is a PSD matrix. Observe that Y � 0, tr(Y ) = 1, and Y depends on w.

We can compute the (i, j)-th entry in the Hessian matrix of f , as follows

∇2f(w)i,j =
df(w)i
dwj

=
(
XiX

>
i −Xiµ

>
w − µwX>i

)
• dY
dwj
−
(
XiX

>
j +XjX

>
i

)
• Y .

By the chain rule, we have

dY

dwj
=

1

tr(exp(ρΣw))2

[
d exp(ρΣw)

dwj
tr(exp(ρΣw))− d tr(exp(ρΣw))

dwj
exp(ρΣw)

]
=

1

tr(exp(ρΣw))

[
d exp(ρΣw)

dwj
− d tr(exp(ρΣw))

dwj
· Y
]
.

Using Lemma C.3 to compute the derivative of matrix exponential, we have

dY

dwj
=

1

tr(exp(ρΣw))

[
d exp(ρΣw)

dwj
− d tr(exp(ρΣw))

dwj
Y

]
=

1

tr exp(ρΣw)

[∫ 1

α=0

exp(αρΣw)
d(ρΣw)

dwj
exp((1− α)ρΣw)dα−

(
d(ρΣw)

dwj
• exp(ρΣw)

)
Y

]
=

ρ

tr exp(ρΣw)

∫ 1

α=0

exp(αΣw)
dΣw
dwj

exp((1− α)ρΣw)dα− ρ
(
dΣw
dwj

• Y
)
Y .

Since dΣw
dwj

= XjX
>
j −Xjµ

>
w − µwX>j , putting it all together, we have,

∇2f(w)i,j = −
(
X>i Y (Xi − 2µw)

) (
X>j Y (Xj − 2µw)

)
− 2X>i Y Xj

+
ρ

tr exp(ρΣw)
·∫ 1

α=0

tr
((
XiX

>
i −Xiµ

>
w − µwX>i

)
exp(αρΣw)

(
XjX

>
j −Xjµ

>
w − µwX>j

)
exp((1− α)ρΣw)

)
dα .

Let R = max(‖µw‖2 ,maxi ‖Xi‖2). From the preprocessing step, we know that R = Õ(d1/2). Using this fact, we obtain∣∣∇2f(w)i,j
∣∣ ≤ 9R4 + 2R2 + 9ρR4 = Õ(ρd2) .

This is because the first term can be bounded from above by

−
(
X>i Y (Xi − 2µw)

) (
X>j Y (Xj − 2µw)

)
≤ ‖Xi‖2 ‖Y ‖2 ‖Xi − 2µw‖2 ‖Xj‖2 ‖Y ‖2 ‖Xj − 2µw‖2
≤ 9R4 .

Similarly, the second term is at most 2R2. The third term can be split into 9 terms of the form

ρ

tr exp(ρΣw)

∫ 1

α=0

tr
((
XiX

>
i

)
exp(αρΣw)

(
XjX

>
j

)
exp((1− α)ρΣw)

)
dα

=
ρ

tr exp(ρΣw)

∫ 1

α=0

(
X>i exp(αρΣw)Xj

) (
X>j exp((1− α)ρΣw)Xi

)
dα

≤ ρ

tr exp(ρΣw)

∫ 1

α=0

‖Xi‖2 ‖exp(αρΣw)‖2 ‖Xj‖2 ‖Xj‖2 ‖exp((1− α)ρΣw)‖2 ‖Xi‖2 dα

=
ρ

tr exp(ρΣw)
·R4 · ‖exp(ρΣw)‖2 ≤ ρR

4 .
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To conclude the proof, we bound from above the smoothness parameter by the spectral norm of the Hessian matrix. For any
w ∈ ∆N,2ε, ∥∥∇2f(w)

∥∥
2
≤ N ·max

ij

∣∣∇2f(w)ij
∣∣ ≤ O(Nρd2) = Õ(Nd2/ε) ,

where the last step uses that ρ = ln d/ε.

Proof of Lemma C.11. Fix any w ∈ ∆N,2ε. By Corollary C.2 and our choice of ρ = ln d
ε , we have

f(w) = smaxρ(Σw) ≤ λmax(Σw) + ε.

Therefore, it is sufficient to bound from above λmax(Σw) by O(d log d).

The preprocessing step guarantees that all samples have `2-norm at most Õ(d1/2), consequently, the weighted empirical
mean µw has `2-norm is at most Õ(d1/2) as well. Consequently,

‖Σw‖2 =

∥∥∥∥∥
N∑
i=1

wi(Xi − µw)(Xi − µw)>

∥∥∥∥∥
2

≤
N∑
i=1

wi
∥∥(Xi − µw)(Xi − µw)>

∥∥
2
≤ max
i∈[N ]

‖Xi − µw‖22 ≤ Õ(d) .

The proof is now complete.


