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Abstract
In this paper, we study Combinatorial Semi-
Bandits (CSB) that is an extension of classic
Multi-Armed Bandits (MAB) under Differential
Privacy (DP) and stronger Local Differential Pri-
vacy (LDP) setting. Since the server receives
more information from users in CSB, it usually
causes additional dependence on the dimension
of data, which is a notorious side-effect for pri-
vacy preserving learning. However for CSB under
two common smoothness assumptions (Kveton
et al., 2015; Chen et al., 2016), we show it is pos-
sible to remove this side-effect. In detail, for B∞-
bounded smooth CSB under either ε-LDP or ε-DP,
we prove the optimal regret bound is Θ(

mB2
∞ lnT

∆ε2 )

or Θ̃(
mB2
∞ lnT
∆ε ) respectively, where T is time pe-

riod, ∆ is the gap of rewards and m is the number
of base arms, by proposing novel algorithms and
matching lower bounds. For B1-bounded smooth
CSB under ε-DP, we also prove the optimal regret
bound is Θ̃(

mKB2
1 lnT

∆ε ) with both upper bound
and lower bound, where K is the maximum num-
ber of feedback in each round. All above results
nearly match corresponding non-private optimal
rates, which imply there is no additional price
for (locally) differentially private CSB in above
common settings.

1. Introduction
Stochastic Multi-Armed Bandits (MAB) (Bubeck et al.,
2012) is a fundamental problem in machine learning with
wide applications in real world. In stochastic MAB, there
is an unknown underlying distribution over [0, 1]m for m
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base arms and a learner (or called a server) interacts with
the environment for T rounds. At each round, the environ-
ment draws random rewards from the distribution for m
base arms. At the same time, the learner chooses one of m
base arms based on previously collected information, and
receives the reward of chosen arm. The goal of the learner is
to minimize the regret, measured as the difference between
the reward of best fixed base arm and the learner’s total
reward in expectation. Multi-Armed Bandits has been used
in recommendation systems, clinical trial, etc. However,
many of these applications rely heavily on users’ sensitive
data, which raise great concerns about data privacy. For
example, in recommendation systems, observations at each
round represent some preferences of the user over the rec-
ommended item set, which is the personal information of
user t and should be protected.

Since first proposed in 2006, Differential Privacy (DP)
(Dwork et al., 2006) has become a gold-standard in pri-
vacy preserving machine learning (Dwork & Roth, 2014).
We say an algorithm protects differential privacy if there
is not much difference between outputs of this algorithm
over two datasets with Hamming distance 1 (see Section 2
for the rigorous definition in the streaming setting). For ε-
differentially private stochastic Multi-Armed Bandits, there
has already been extensive studies (Mishra & Thakurta,
2015; Tossou & Dimitrakakis, 2016; Sajed & Sheffet, 2019).
Based on classic non-private optimal UCB algorithm (Auer
et al., 2002), as well as the tree-based aggregation tech-
nique to calculate private summation (Dwork et al., 2010),
both Mishra & Thakurta (2015) and Tossou & Dimitrakakis
(2016) designed algorithms under DP guarantee but with
sub-optimal guarantee 1. Recently, Sajed & Sheffet (2019)
proposed a complex algorithm based on non-private Succes-
sive Elimination (Even-Dar et al., 2002) and sparse vector
technique (Dwork & Roth, 2014) to achieve the optimal
O(m lnT

ε∆ ) regret bound, where ∆ is the minimum gap of re-
wards, and it matches both the non-private lower bound (Lai
& Robbins, 1985) and the differentially private lower bound
(Shariff & Sheffet, 2018) in common parameter regimes.

However, stochastic MAB is the simplest model for sequen-

1In fact, (Tossou & Dimitrakakis, 2016) achieved a better util-
ity bound but under a weaker privacy guarantee compared with
common differential privacy in the streaming setting.
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tial decision making with uncertainty. There are many prob-
lems in real world that have a combinatorial nature among
multiple arms and maybe even non-linear reward functions,
such as online advertising, online shortest path, online so-
cial influence maximization, etc, which can be modeled
via Combinatorial Semi-Bandits (CSB) (Chen et al., 2013;
2016; Lattimore & Szepesvári, 2018). In CSB, the learner
chooses a super arm which is a set of base arms instead of a
single base arm in MAB, and then observes the outcomes
of the chosen arms as the feedback, and receive a reward
determined by the chosen arms’ outcomes. The reward
can be a non-linear function in terms of these observations.
Since many applications modeled via CSB also have is-
sues about privacy leakage, in this paper, we study how to
design private algorithms for Combinatorial Semi-Bandits
under two common assumptions about non-linear rewards:
B∞-bounded smoothness and B1-bounded smoothness (see
section 2 for definitions.), which contain social influence
maximization and linear CSB as important examples respec-
tively (Kveton et al., 2015; Chen et al., 2016; Wang & Chen,
2017).

Main Difficulty: Compared with simple stochastic MAB,
it is more difficult to design differentially private algorithms
for CSB, due to its large action space and non-linear rewards.
Though each super arm in CSB can be regarded as a base
arm in stochastic MAB, a straightforward implementation
of differentially private algorithms for stochastic MAB will
lead to a dependence over the size of decision set for super
arms, which can be exponentially large in terms of m. Be-
sides above two differences, we receive observations of a
set of base arms contained in the chosen super arm at each
round, instead of a single base arm in MAB. Denote the
maximum cardinality of a super arm as K, which means
the sensitive data collected at each round is roughly in a
K-dimensional L∞ ball.

However, protecting differential privacy usually causes an
additional dependence on the dimension of data for utility
guarantee compared with corresponding non-private result,
which is a notorious side-effect of DP, such as in differen-
tially private empirical risk minimization (ERM) (Bassily
et al., 2014), bandits linear optimization (Agarwal & Singh,
2017), online convex optimization and bandits convex op-
timization (Thakurta & Smith, 2013), etc. On one hand,
in some cases such as differentially private ERM (Bassily
et al., 2014), this additional dependence on the dimension
is unavoidable. On the other hand, some researchers show
it is possible to eliminate this side-effect if there are some
extra structures, such as assumptions about restricted strong
convexity, parameter set in L1 norm, or generalized linear
model with data bounded in L2 norm, etc (Kifer et al., 2012;
Smith & Thakurta, 2013; Jain & Thakurta, 2014; Talwar
et al., 2015). In general, it is unclear whether it is possible
to eliminate the side-effect about dimensional dependence

brought by privacy protection, let alone that our CSB setting
does not have any extra structure mentioned above.

Besides, compared with differential privacy that admits the
server to collect users’ true data, local differential privacy
(LDP) is a much stronger notion of privacy, which requires
protecting data privacy before collection. Thus LDP is more
practical and user-friendly compared with DP (Cormode
et al., 2018). Intuitively, learning under LDP guarantee is
more difficult as what we collect is already noisy. Moreover,
eliminating the side-effect on the dimension is also more
difficult under LDP guarantee even when we have some
extra assumptions. For example, there are some negative re-
sults for locally differentially private sparse mean estimation
(Duchi et al., 2016).

Our Contributions: Given above discussions, it seems
hard to obtain nearly optimal regret for CSB under DP and
much stronger LDP guarantee. Somewhat surprisingly, with-
out any additional structure assumption such as sparsity, we
show that it is indeed possible to achieve nearly optimal re-
gret bound, by designing private algorithms with theoretical
upper bounds and proving corresponding lower bounds in
each case. Our upper bounds (nearly) match both our private
lower bounds and non-private lower bounds (see Table 1
for an overview, where ∆ is some gap defined in Section
3, O(·) represents the upper bound, Θ represents both the
upper bound and lower bound, and for Õ, Θ̃, we hide the
poly-logarithmic dependence such as lnT, lnm). The main
contributions of this paper are summarized as the follows:

(1) For B∞-bounded smooth CSB under ε-LDP and ε-
DP, we propose novel algorithms with regret bounds
O(

mB2
∞ lnT
ε2∆ ) and Õ(

mB2
∞ lnT
ε∆ ) respectively, and prove

nearly matching lower bounds;

(2) For B1-bounded smooth CSB under ε-DP, we propose
an algorithm with regret bound Õ(

mKB2
1 lnT

ε∆ ) and nearly
matching lower bound.

In Section 2, we provide some backgrounds in Combinato-
rial Semi-Bandits and (Local) Differential Privacy. Then in
Section 3 and Section 4, we study both upper and lower
bounds for (locally) differentially private B∞-bounded
smooth and B1-bounded smooth CSB respectively. Finally,
we conclude our main results in Section 5.

1.1. Other Related Work

Besides differentially private stochastic MAB, there are also
some works considering adversarial MAB with DP guaran-
tee (Thakurta & Smith, 2013; Tossou & Dimitrakakis, 2017;
Agarwal & Singh, 2017). Later, Shariff & Sheffet (2018)
study contextual linear bandits under a relaxed definition of
DP called Joint Differential Privacy. Compared with DP,
bandits learning with LDP guarantee is paid less attention to.
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Problem ε-LDP ε-DP Non-Private Result

B∞-Smooth CSB Θ(
mB2
∞ lnT
ε2∆ ) Θ̃(

mB2
∞ lnT
ε∆ ) Θ(

mB2
∞ lnT
∆ ) (Chen et al., 2016; Wang & Chen, 2017)

B1-Smooth CSB O(
mK2B2

1 lnT
ε2∆ ) Θ̃(

mKB2
1 lnT

ε∆ ) Θ(
mKB2

1 lnT
∆ ) (Kveton et al., 2015; Wang & Chen, 2017)

Table 1. Summary of Our Results for Private CSB. Θ represents matching upper bounds and lower bounds. O represents upper bounds.
Our lower bound in DP setting is actually in an additive form, see Theorem 9. Here, we write it in a multiplicative form for simplicity,
which is natural in common parameter regimes.

Only Gajane et al. (2018) study stochastic MAB under LDP
guarantee. Recently, Basu et al. (2019) investigate relations
about several variants of differential privacy in MAB setting,
and prove some lower bounds. For non-private Combinato-
rial Semi-Bandits, there is an extension of study (György
et al., 2007; Chen et al., 2013; 2016; Kveton et al., 2015;
Combes et al., 2015; Wang & Chen, 2017; 2018).

2. Preliminaries
Now we detail the concrete setting studied in this paper.

2.1. Combinatorial Semi-Bandits

In a Combinatorial Semi-Bandits (CSB), there are m base
arms (denote [m] = {1, 2, . . . ,m}), and a predefined deci-
sion set S ⊂ 2m, each element of which is a subset of [m]
with at most K base arms and is called a super arm or an
action, i.e. |S| 6 K for any S ∈ S and | · | represents the
cardinality of a set. D is an underlying unknown distribution
supported on [0, 1]m with expectation µ = (µ1, . . . , µm).
There are T rounds in total. At each round, the player
chooses a super arm St ∈ S, and the environment draws
a fresh random outcome Xt = (Xt,1, . . . , Xt,m) from D
independently of any other variables. Then the player re-
ceives a reward Rt = R(St,Xt) and observes the feedback
{(i,Xt,i)|i ∈ St)}. We assume the reward function R(·, ·)
satisfies following assumptions, which are common in either
real applications or previous literature (Chen et al., 2016;
Wang & Chen, 2018), such as Linear CSB, social influence
maximization.

Assumption 1. There exists a reward function rµ(S) such
that E[R(S,X)] = rµ(S) for any S ∈ S, where the expec-
tation is over the randomness of outcomeX and µ = E[X].

Under above assumption, define optµ = maxS∈S rµ(S) as
the optimal reward if we know µ in advance.

Assumption 2 (Bp-bounded smoothness). There exists a
constant Bp, such that for arbitrary super arm S, and
two mean vectors µ,µ′, there is |rµ(S) − rµ′(S)| 6
Bp ‖µS − µ′S‖p), where µS represents the truncated vec-
tor of µ on subset S.

Assumption 3 (Monotonicity). For any µ,µ′ such that

µ 6 µ′ (element-wise compare), we have rµ(S) 6 rµ′(S).

Intuitively, Assumptions 2 and 3 are about the smoothness
and monotonicity of expected reward function rµ(·), which
are critical to deal with non-linear rewards rµ(S).

In this paper, we mainly consider two norms: L∞ norm
‖·‖∞ and L1 norm ‖·‖1. Important examples that satisfy
B∞-bounded smoothness include social influence maxi-
mization and Probabilistic maximum coverage bandit (Chen
et al., 2013). For B1-bounded smooth CSB, online shortest
path and online maximum spanning tree are typical appli-
cations (Wang & Chen, 2018). Obviously, Linear combi-
natorial semi-bandits is B1-bounded smooth. We regard
B∞ and B1 as constants in the whole paper. Apparently,
B1-bounded smoothness is a weaker assumption compared
with B∞-bounded smoothness, and we have the following
fact:

Fact 1. Suppose a reward function is B∞-bounded smooth,
then it is also B1-bounded smooth with B1 = B∞. On the
contrary, suppose a reward function is B1-bounded smooth,
then it is B∞-bounded smooth with B∞ = KB1.

For many combinatorial problems such as MAX-CUT, Min-
imum Weighted Set Cover etc, there are only efficient ap-
proximation algorithms. Therefore, it is natural to model
them as a general approximation oracle defined as below:

Definition 1. For some α, β 6 1, (α, β)-approximation
oracle is an oracle that takes an expectation vector µ
as input, and outputs a super arm S ∈ S, such that
Pr[rµ(S) > α · optµ] > β. Here α is the approximation
ratio and β is the success probability of the oracle.

With approximation oracle, we should then consider corre-
sponding approximation regret as we can only solve offline
problem approximately:

Definition 2. (α, β)-approximation regret of a CMAB al-
gorithm A after T rounds using an (α, β)-approximation
oracle under the expectation vector µ is defined as
Regµ,α,β(T ) := T · αβ · optµ − E

[∑T
t=1 rµ(St)

]
.
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2.2. (Local) Differential Privacy

Now we give definitions of DP and LDP, as well as a basic
building block.

Definition 3 (Differential Privacy (Dwork et al., 2006; Jain
et al., 2012)). Let D = 〈x1, x2, . . . , xT 〉 be a sequence
of data with domain X T . Let A(D) = Y , where Y =
〈y1, y2, . . . , yT 〉 ∈ YT be T outputs of the randomized
algorithmA on input D. A is said to preserve ε-differential
privacy, if for any two data sequences D,D′ that differ in
at most one entry, and for any subset U ⊂ YT , it holds that

Pr(A(D) ∈ U) ≤ eε · Pr(A(D′) ∈ U).

Compared with DP, Local Differential Privacy (LDP) is a
stronger notion of privacy than DP, see Kasiviswanathan
et al. (2011); Duchi et al. (2013). Since LDP requires to
encrypt each user’s data to protect privacy before collection,
there is no need to define corresponding streaming version.
Here we adopt the LDP definition given in (Bassily & Smith,
2015).

Definition 4 (LDP). A mechanismA : X → Y is said to be
ε-local differential private or ε-LDP, if for any x, x′ ∈ X ,
and any (measurable) subset U ⊂ Y , there is

Pr(A(x) ∈ U) 6 eε · Pr(A(x′) ∈ U).

To protect ε-LDP, the most commonly used method is Lapla-
cian mechanism. Suppose the output domain Y of an algo-
rithm A is bounded by a d-dimensional L1 ball with radius
R, Laplacian mechanism just injects a d-dimensional ran-
dom noise to the true output A(x), and each entry of noise
is sampled from Lap(R/ε) independently 2. It is easy to
prove the Laplacian mechanism guarantees ε-LDP (Dwork
& Roth, 2014).

3. B∞-Bounded Smooth CSB with Privacy
Guarantee

Since learning under LDP is much more difficult compared
with DP, we mainly consider how to design an optimal al-
gorithm for B∞-Bounded Smooth CSB under ε-LDP guar-
antee. As we can see, based on our observation for locally
differentially private CSB, it is then easy to obtain results
for differentially private CSB.

As a warm-up, we show that a simple mechanism can
achieve non-trivial regret with LDP guarantee, but the de-
pendence on dimension K is sub-optimal. Next, we design
an improved version with optimal utility bound, and the
matching lower bound is proved in Subsection 3.3.

2Lap(b) represents The Laplace distribution centered at 0 with
scale b, and its p.d.f is Lap(x|b) = 1

2b
exp(− |x|

b
). The corre-

sponding variance is 2b2.

Algorithm 1 CUCB-LDP1

1: Input: Privacy budgets ε, δ
2: Initialize: ∀i ∈ [m], T0,i = 0, empirical mean µ̃0(i) =

0.
3: for t = 1, 2, . . . do
4: ∀i, µ̄t−1(i) = min{µ̃t−1(i) + 4

√
2K lnT
ε2Tt−1,i

, 1} 3

5: Play St = Oracle(µ̄t−1) if µ̄t−1 > 0 else ∀S ∈ S
6: User generates outcome Xt,i for i ∈ St, and sends

Xt,i + zt,i to the server, where zt,i ∼ Lap(K/ε)
7: Server updates Tt,i = Tt−1,i + 1, µ̃t,i =

Tt−1,iµ̃t−1,i+Xt,i+zt,i
Tt,i

, for i ∈ St, and keep others
unchanged.

8: end for

3.1. A Straightforward Algorithm with Sub-Optimal
Guarantee

Our private algorithm is based on previous non-private CSB
algorithm, Combinatorial UCB (CUCB) (Chen et al., 2013;
2016). Though the reward function is non-linear in terms of
super arm S and we only have access to some approximation
oracle, which make our setting more complicated compared
with previous private stochastic MAB (Mishra & Thakurta,
2015; Tossou & Dimitrakakis, 2016; Sajed & Sheffet, 2019),
we show that the most straightforward method described in
Algorithm 1 (denoted as CUCB-LDP1), i.e. using Laplacian
mechanism with respect to each user’s data before collection,
is enough to guarantee LDP and corresponding regret.

The key observation is that, the mean estimation of each
base arm lies at the core of CUCB algorithm, and adding
a Laplacian noise with respect to each observation causes
additional variance to these estimations, which can be han-
dled by relaxed upper confidence bounds. Injecting noise
to the reward is used both in Tossou & Dimitrakakis (2017)
and Agarwal & Singh (2017) for differentially private ad-
versarial MAB. The idea about relaxed UCB also appears
before for differentially private stochastic MAB (Mishra &
Thakurta, 2015), whereas we study more general locally
differentially private CSB with non-linear reward and ap-
proximation oracle. Given the Laplacian mechanism, the
privacy guarantee of Algorithm 1 is obvious:

Theorem 1. Algorithm 1 guarantees ε-LDP.

Before stating the regret bound, we define some necessary
notations. We say a super arm S is bad if rµ(S) < α ·
optµ, and denote the set of bad super arms as SB := {S ∈
S|rµ(S) < α · optµ}. For any base arm i ∈ [m], define

∆i
min := α · optµ −max{rµ(S)|S ∈ SB , i ∈ S}, (1)

∆i
max := α · optµ −min{rµ(S)|S ∈ SB , i ∈ S}, (2)

3If a denominator is 0, we define corresponding constant as
+∞.
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and ∆ := mini∈[m] ∆i
min.

Now, we state the utility guarantee of Algorithm 1:
Theorem 2. Under B∞-bounded smoothness and mono-
tonicity assumptions, the regret of Algorithm 1 is upper
bounded by

Regµ,α,β(T ) 6 O

 ∑
i∈[m],∆i

min>0

K2B2
∞ lnT

ε2∆i
min

 . (3)

Compared with corresponding non-private CUCB that
achieves O

(∑
i∈[m],∆i

min>0
B2
∞ lnT

∆i
min

)
regret (Chen et al.,

2013; 2016), one can see the regret bound of Algorithm
1 has an extra multiplicative factor K

2

ε2 , which is the price
we pay for protecting LDP. According to our lower bound
proved in Subsection 3.3, the dependence on the privacy
parameter ε is optimal. However the additional term K2

brought by privacy protection is undesirable and will hurt
final performance for large K. In the next subsection, we
show how to eliminate this additional K2 factor.

3.2. An Improved Algorithm with the Best Guarantee

Compared with the previous studies that try to eliminate
the side-effect of dimension brought by privacy protection
under either sparsity or low complexity assumptions (Jain
& Thakurta, 2014; Talwar et al., 2015; Zheng et al., 2017),
in our general CSB setting, the information at each round
is contained in a K-dimensional L∞ ball, and we do not
have any sparsity assumption, which makes the additional
K2 factor seem unavoidable.

Somewhat surprisingly, after a careful analysis, we find
that there is some redundant information implicitly even
without any sparsity assumption. In detail, in the analysis
of Algorithm 1, the instant regret of choosing super arm
St at round t is controlled by the largest mean estimation
error among all base arms in St, which implies that we do
not need to require all the observation of base arms in St
of user t to update corresponding empirical means. Instead,
we only use the observation of least pulled base arm in St
to update its empirical mean and keep others unchanged,
as it is the weakest one in St and causes largest estimation
error. Since the user only sends the information of one entry
to server now, it is enough to add noise in O(1/ε) order to
protect it, which then gets rids of the annoying additional
K2 factor in the regret guarantee. Denote this variant as
CUCB-LDP2, as shown in Algorithm 2.

Again, the privacy guarantee follows directly from the clas-
sic Laplacian mechanism:
Theorem 3. Algorithm 2 guarantees ε-LDP.

Since we condense the information required from each user
significantly, which is reduced from K observations to one

Algorithm 2 CUCB-LDP2

1: Input: Privacy budgets ε, δ
2: Initialize: ∀i ∈ [m], T0,i = 0, empirical mean µ̃0(i) =

0.
3: for t = 1, 2, . . . do
4: ∀i, µ̄t−1(i) = min{µ̃t−1(i) + 4

√
2 lnT
ε2Tt−1,i

, 1}
5: Play St = Oracle(µ̄t−1) if µ̄t−1 > 0 else ∀S ∈ S
6: User generates outcome Xt,i for i ∈ St, and

sends Xt,It + zt,It to the server, where It =
argmini∈St Tt−1,i, zt,It ∼ Lap(1/ε)

7: Server updates Tt,It = Tt−1,It + 1, µ̃t,It =
Tt−1,It µ̃t−1,It+Xt,It+zt,It

Tt,It
, and keep others un-

changed.
8: end for

observation, now we can inject less noise and prove a much
better regret bound compared with the guarantee of Algo-
rithm 1:

Theorem 4. Under B∞-bounded smoothness and mono-
tonicity assumptions, the regret of Algorithm 2 is upper
bounded by

Regµ,α,β(T ) 6 O

 ∑
i∈[m],∆i

min>0

B2
∞ lnT

ε2∆i
min

 (4)

Compared with the non-private theoretical guarantee, the-
orem 4 implies that we can achieve optimal locally dif-
ferentially private B∞-bounded smooth CSB without any
additional price paid for privacy protection, which is a bit
surprising given the previous work about (locally) differen-
tially private learning. See section A in the supplementary
materials for the proof of theorem 4.

Multi-Armed Bandits (MAB) is a special case of CSB,
where S = {ei|i ∈ [m]} and K = 1. In this case, our
Algorithms 1 and 2) are exactly the same, and we obtain
an algorithm for MAB under ε-LDP with regret bound
O(
∑
i 6=i∗

lnT
∆iε2

), where i∗ is the optimal base arm, and ∆i

is the gap between arm i and optimal arm i∗. Apparently,
this regret bound is also optimal given the LDP lower bound
Ω(
∑
i 6=i∗

lnT
ε2∆i

) proved in Basu et al. (2019) and non-private
lower bound Ω(

∑
i6=i∗

lnT
∆i

) (Bubeck et al., 2012).

Finally, if one wants to protect ε-DP rather than ε-LDP,
based on the same observation as above, we can simply use
the tree-based aggregation technique (Dwork et al., 2010)
with respect to the least pulled base arm to calculate its
empirical mean estimation with DP guarantee. Since the
tree-based aggregation technique injects much less noise
compared with Algorithm 2 designed for LDP, it is not hard
to prove that this variant for DP can achieve regret bound
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Õ(
mB2
∞ lnT
ε∆ ).4

3.3. Lower Bounds

In this subsection, we prove the regret lower bound for
locally private CSB problem withB∞-bounded smoothness.
Like previous work (Kveton et al., 2015; Wang & Chen,
2017), we only consider lower bound with exact oracle, i.e.
α = β = 1.

First we define a class of algorithms that we are interested
in:

Definition 5. An algorithm is called consistent if for any
suboptimal super arm S, the number of times S is chosen
by the algorithm is subpolynomial in T for any stochastic
CSB instance, i.e. E [NS(T )] ≤ o(T p) for any 0 < p < 1.

Our lower bound is derived for the consistent algorithm
class, which is natural for the stochastic CSB and has been
used for lower bound analysis in many previous results (Lat-
timore & Szepesvári, 2018; Basu et al., 2019; Lai & Rob-
bins, 1985; Kveton et al., 2015).

Our analysis focuses on CSB instances where the sub-
optimality gap ∆ of any super arms are equal. Since general
CSB problem is harder than CSB problem with equal sub-
optimality gap (The latter problem can be reduced to the
former), our lower bound can be directly applied to general
CSB class, with ∆ replaced with ∆i

min for each base arm i.

Theorem 5. For any m and K, and any ∆ satisfying
0 < ∆/B∞ < 0.35, the regret of any consistent ε-locally
private algorithm π on the CSB problem with B∞-bounded
smoothness is bounded from below as

lim inf
T→∞

Reg(T )

log T
≥ B2

∞(m− 1)

64(eε − 1)2∆

Specifically, for 0 < ε ≤ 1/2, the regret is at least

lim inf
T→∞

Reg(T )

log T
≥ B2

∞(m− 1)

128ε2∆

The lower bound shows that Algorithm 2 achieves optimal
regret with respect to all the parameters of the CSB instance.
The proof of the theorem is an almost direct reduction from
private MAB. Previous result (Theorem 2 in Basu et al.
(2019) ) shows that the regret for any consistent ε-locally
private algorithm for MAB is at least Ω

(
m lnT
ε2∆

)
. Since any

MAB instance is a special case of CSB with B∞ = 1, the
regret lower bounds for stochastic CSB with B∞ = 1 fol-
lows directly by reduction. For general CSB problem with
B∞-bounded smoothness, we consider a similar instance

4The proof for this result is actually a combination of tech-
niques used in this subsection and what we will use in subsection
4.2, hence omitted.

with the reward of each arm in MAB instance multiplied by
B∞. See Section B in the supplementary materials for the
detailed analysis. For B∞-bounded smooth CSB under DP
setting, using nearly the same technique, it is not hard to
prove that the corresponding lower bound is Ω(

mB2
∞ lnT
ε∆ ).

4. B1-Bounded Smooth CSB with Privacy
Guarantee

4.1. B1-Bounded Smooth CSB under LDP

Though our proposed Algorithm 2 is already optimal
for B∞-bounded smooth CSB, if we use it for B1-
bounded smooth CSB such as important linear CSB to
protect ε-LDP, we will obtain its regret bound in order
O
(∑

i∈[m],∆i
min>0

K2B2
1 lnT

ε2∆i
min

)
due to Fact 1. However, the

optimal non-private regret bound for B1-bounded smooth
CSB is Θ

(∑
i∈[m],∆i

min>0
KB2

1 lnT

∆i
min

·
)

(Kveton et al., 2015;
Wang & Chen, 2017), which implies a gap with our locally
differentially private upper bound. Is it possible to eliminate
this additional K just like in the previous locally differen-
tially private B∞-bounded smooth CSB? First we prove
a lower bound for B1-Bounded Smooth CSB under LDP
guarantee. Our result under B1-bounded smoothness as-
sumption can be applied to linear CSB problem by setting
B1 = 1.
Theorem 6. For any m and K such that m/K is an integer,
and any ∆ satisfying 0 < ∆/(B1K) < 0.35, the regret
of any consistent ε-locally private algorithm π on the CSB
problem satisfyingB1-bounded smoothness is bounded from
below as

lim inf
T→∞

Reg(T )

log T
≥ B2

1(m−K)K

64(eε − 1)2∆

Specifically, for 0 < ε ≤ 1/2, the regret is at least

lim inf
T→∞

Reg(T )

log T
≥ B2

1(m−K)K

128ε2∆

We borrow the hard instance from Kveton et al. (2015) to
prove the lower bound. Consider aK-path semi-bandit prob-
lem with m base arms. The feasible super arms are m/K
paths, each containing base arm (i− 1)K + 1, (i− 1)K +
2, ..., iK for i ∈ {1, ...,m/K}. The reward of pulling super
arm S is B1 times the sum of the weight w̃i for i ∈ S. The
weights w̃i of the different base arms in the same super arm
are identical, while the weights in the different paths are
i.i.d sampled. Denote the best super arm as S∗, The weight
of each base arm is a Bernoulli random variable with mean:

w̄(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise
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We use the general canonical bandit model (Lattimore &
Szepesvári, 2018) to prove above theorem. See Section C
in the supplementary materials for the detailed proof.

Though we can only prove a lower bound of Ω(
mKB2

1 lnT
ε2∆ )

in the same order as corresponding non-private optimal
guarantee, we conjecture our lower bound is loose and the
right lower bound is Ω(

mK2B2
1 lnT

ε2∆ ). In other words, maybe
there is indeed some side-effect for utility guarantee about
the dimension K if we hope to protect LDP. Intuitively, for
B1 bounded smooth CSB, we may have to update all arms
in a played super arm for the regret guarantee (instead of
only one arm as we did for B∞ bounded smooth CSB), and
this makes the privacy protection harder with an extra factor
of K.

Since differential privacy is a relatively weaker notion com-
pared with LDP, there may be some hope to further im-
prove the regret bound if we focus on the guarantee of
DP. In next two subsections, we show it is indeed true, by
designing an ε-differentially private algorithm with regret
bound Õ

(∑
i∈[m],∆i

min>0
KB2

1 ln2 T

∆i
min

+ mKB1 ln3 T
ε ·

)
, and

proving a nearly matching lower bound.

4.2. Upper Bound under DP

Compared with LDP, in which case the learning algorithm
(or the server) can only receives noisy information, DP only
has some restriction for the output of an algorithm, and the
server has authority to collect true data. Thus, it is possible
to inject much less noise under DP setting via an economic
allocation of privacy budget ε.

We use tree-based aggregation scheme (Dwork et al., 2009;
Chan et al., 2011) to protect ε-DP in our algorithm, which is
an effective method in releasing private continual statis-
tics over a data stream and frequently used in previous
work, such as stochastic MAB (Mishra & Thakurta, 2015;
Tossou & Dimitrakakis, 2016), Online Convex Optimiza-
tion (Thakurta & Smith, 2013). Consider a data stream
(X1, X2, ..., XT ) where Xi ∈ [0, 1]. In each step t, the
algorithm receives data Xt, and needs to output the sum
X̄t =

∑t
i=1Xi, while insuring that the output sequence

(X̄1, X̄2, ..., X̄T ) are ε-differentially private. Tree-based
mechanism solves this problem in an elegant way with a
binary tree. Each leaf node denotes data Xt received in
step t. Each internal node calculates the sum of data in the
leaf nodes rooted at it. Notice that one only needs access
to dlog te nodes and sums up the values on them in order
to calculate X̄t. Using the Laplacian mechanism, previous
results have shown that adding i.i.d Lap(‖X‖1 log T/ε) to
each node ensures ε-differential privacy for the scheme as
stated in the following lemma:

Lemma 1 (Dwork et al. (2010); Chan et al. (2011)). Tree-
based aggregation scheme with i.i.d Lap(‖X‖1 log T/ε)

Algorithm 3 CUCB-DP

1: Input: Privacy budgets ε, δ.
2: Initialize: ∀i ∈ [m], T0,i = 0, empirical mean µ̃0(i) =

0.
3: for t = 1 to T do
4: ∀i, µ̄t−1(i) = min{µ̃t−1(i) +

√
4 ln(mT )
Tt−1,i

+

12K ln3 T
Tt−1,iε

, 1}
5: Play St = Oracle(µ̄t−1) if µ̄t−1 > 0 else ∀S ∈ S
6: User generates outcome Xt,i for i ∈ St, and sends

Xt,i to the server
7: Server updates base arms in St: µ̃t,i =

TreeBasedAggregation({Xτ,i|τ∈[t],i∈Sτ})
Tt,i

,
Tt,i = Tt−1,i + 1, and keeps others unchanged

8: end for

noise added to each node is ε-differentially private.

In our CSB setting, we store a vector Xt with support at
most K in the leaf nodes of step t. Each internal node
calculates the sum ofXt in the leaf nodes rooted at it. For
each node, we add i.i.d Lap(2K log T/ε) noise to each
dimension of the vector stored on the node to guarantee
ε-DP (See Algorithm 3). Based on Lemma 1, we have

Theorem 7. Algorithm 3 guarantees ε-DP.

In Algorithm 3, when we need to estimate the mean weight
µi based on the previous outcome Xt,i, we add additional
Laplace noise to the sum of Xt,i due to tree-based aggrega-
tion scheme. Note that the number of Laplace noises added
(the number of nodes we access to) is only logarithmic. This
means that the additional confidence bound due to Laplace
noise is only Θ̃(1/Tt−1,i) for base arm i when it is pulled
for Tt−1,i times. Compared with the original bound for the
sub-Gaussian noise which is of order Θ̃(

√
1/Tt−1,i), the

additional bound for Laplace noise enjoys better dependence
on Tt−1,i. This helps us to separate the term of ∆ and ε in
the regret via delicate analysis, and finally derive a nearly
optimal bound in the additive form.

Theorem 8. Under B1-bounded smoothness and mono-
tonicity assumptions, the regret of Algorithm 3 is upper
bounded by

Regµ,α,β(T ) 6 O

 ∑
i∈[m],∆i

min>0

KB2
1 ln2 T

∆i
min


+O

mKB1 ln3 T ln
(
B1K lnT
∆maxε

)
ε

 .

Note when privacy parameter ε is regarded as a constant
which is common in real applications, the second term in
the right hand side of above inequality is nearly dominated
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by the first term, which is almost the optimal regret bound
in non-private B1-bounded smooth CSB. Thus by relaxing
LDP to DP, we have shown that it is possible to eliminate
the side-effect on dimension induced by privacy protection
and nearly match corresponding non-private optimal bound
O(
∑
i∈[m],∆i

min>0
KB2

1 lnT

∆i
min

).

Before proving Theorem 8, we present the following lemma.
This lemma gives an upper bounds on the sub-optimal gap
in round t, which helps to treat the ∆ term and ε term sepa-
rately. We refer readers to Section D of the supplementary
materials for the proof of Lemma 2.

Lemma 2. Suppose ∆St = αrµ(S∗µ)− rµ(St). Denote

Ft =

{
∆St ≤ B1

∑
i∈St

(
4

√
lnT

Tt−1,i
+

24K ln3 T

Tt−1,iε

)}
.

Then the regret for Algorithm 3 is bounded by

Regµ,α,β(T ) ≤
∑
t∈[T ]

∆St1{Ft}+ 3
∑
i∈[m]

∆i
max (5)

Now we are ready to prove Theorem 8.

Proof. (proof of Theorem 8) We mainly analyze the first
term of the RHS in Inq. 5. Define R̂T =

∑
t∈[T ] ∆St1{Ft}.

In step t, we consider the case that Ft happens. Define
∆̄St = maxi∈St ∆i

min. Since ∆i
min ≤ ∆St ,∀i ∈ St, we

have ∆̄St ≤ ∆St . Then we have

∆St + ∆̄St ≤ 2∆St

≤ 2B1

∑
i∈St

(
4

√
lnT

Tt−1,i
+

24K ln3 T

Tt−1,iε

)

that is,

∆St ≤ 2∆St − ∆̄St

≤ 2B1

∑
i∈St

(
4

√
lnT

Tt−1,i
+

24K ln3 T

Tt−1,iε
− ∆̄St

2B1K

)

≤ 2B1

∑
i∈St

(
4

√
lnT

Tt−1,i
+

24K ln3 T

Tt−1,iε
− ∆i

min

2B1K

)

Let nimax = max
{

256B2
1K

2 lnT

(∆i
min)2

, 96B1K
2 ln3 T

ε∆i
min

}
. Denote

∆i(n) = 4B1

√
lnT
n + 24B1K ln3 T

nε − ∆i
min

2K . For base arm i,

if n ≥ nimax, we have ∆i(n) ≤ 0.

R̂T

≤
∑
t∈[T ]

∆St1{Ft}

≤
T∑
t=1

∑
i∈St

2∆i(Ti,t)1{Ft}

≤
∑
i∈[m]

nimax∑
n=1

2B1

(
4

√
lnT

n
+

24K ln3 T

nε

)

≤
∑
i∈[m]

∫ nimax

0

8B1

√
lnT

n
dn

+
∑
i∈[m]

(
48B1K ln3 T

ε
+

∫ nimax

1

48B1K ln3 T

nε
dn

)

≤
∑
i∈[m]

16B1

√
lnT

(
256B2

1K
2 lnT

(∆i
min)2

+
96B1K2 ln3 T

ε∆i
min

)
+

∑
i∈[m]

(
48B1K ln3 T

ε

(
1 + ln

(
256K2B2

1 ln4 T

ε(∆i
min)2

)))

After simplifying the equation using basic inequalities such
as
√
ab ≥ 2

1/a+1/b and
√
a+ b ≤

√
a+
√
b (a, b ≥ 0), we

can show that

R̂T ≤

O

B2
1K ln2 T

∑
i∈[m]

1

∆i
min

+
mB1K ln3 T ln

(
B1K lnT
∆maxε

)
ε



4.3. Lower Bound under DP

In this subsection, we prove the lower bound for CSB al-
gorithm under ε-DP. Similar with the result of LDP lower
bound, we consider CSB algorithm with consistent property.
The lower bound stated below implies that our algorithm 3
can achieve near-optimal regret regardless of logarithmic
factors:

Theorem 9. For any m and K such that m ≥ 2K, and
any ∆ satisfying 0 < ∆/(B1K) < 0.35, the regret for
any consistent CSB algorithm guaranteeing ε-DP is at least
Ω
(
B2

1mK lnT
∆ + B1mK lnT

ε

)
.

The theorem is proved in section E of the supplementary
materials. We only sketch the proof here. Previous re-
sults have shown that for non-private stochastic linear CSB,
the regret lower bound is at least Ω(mK lnT

∆ ). By slightly
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modifying the hard instance, we can show that the re-
gret lower bound for non-private CSB with B1-bounded
smoothness is Ω(

B2
1mK lnT

∆ ). Since private CSB is strictly
harder than non-private CSB (by reduction), the regret
lower bound for private CSB is Ω(B1mK lnT

∆ ). We only
need to prove that the regret lower bound for private CSB
is Ω

(
B1mK lnT

ε

)
, from which we can prove that the re-

gret lower bound is Ω
(

max
{
B2

1mK lnT
∆ , B1mK lnT

ε

})
=

Ω
(
B2

1mK lnT
∆ + B1mK lnT

ε

)
.

Now we sketch the proof of Ω
(
B1mK lnT

ε

)
term. Note a

simple extension of Kveton et al. (2015) can only achieve
Ω
(
B1m lnT

ε

)
in our differentially private setting, which is

not satisfactory. It is thus necessary to construct some new
hard instance to prove Theorem 9.

To solve this problem, we design the following CSB prob-
lem as a special case of general CSB with B1-bounded
smoothness. Suppose there are m base arms, each asso-
ciated with a weight sampled from Bernoulli distribution.
These m base arms are divided into three sets, S∗, S̃ and
S̄. S∗ contains m base arms, which build up the optimal
super arm set. S̃ contains K − 1 “public” base arms for
sub-optimal super arms. These arms are contained in all
sub-optimal super arms. S̄ contains m− 2K + 1 base arms.
each base arm combined with K − 1 ”public” base arms
in S̃ builds up a sub-optimal super arm. Totally we have
m− 2K + 1 sub-optimal super arms and one optimal super
arm. The mean of the Bernoulli random variable associated
to each base arm is defined as follow:

w(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise

The weights of base arms in S̃ are identical, while other
weights are i.i.d sampled. The reward of pulling a super
arm S is B1 times the sum of weights of all base arm
i ∈ S. As a result, the sub-optimality gap of each sub-
optimal super arm is ∆. With the coupling argument in
Karwa & Vadhan (2017), we can prove that E(NS) is at
least Ω(mKB1 lnT

ε∆ ) for any sub-optimal super arm S with
high probability. Since there are θ(m) sub-optimal super
arm, we can reach the conclusion that the regret lower bound
for private CSB is Ω

(
B1mK lnT

ε

)
.

5. Conclusion and Future work
In this paper, we study (locally) differentially private al-
gorithm for Combinatorial Semi-Bandits under two com-
mon assumptions about reward functions. For B∞-bounded
smooth CSB under ε-LDP and ε-DP, we show the optimal

regret of these two settings are respectively Θ(
mB2
∞ lnT
ε2∆ )

and Θ̃(
mB2
∞ lnT
ε∆ ), by proving lower bounds and designing

(nearly) optimal private algorithms. For relatively weaker
B1-bounded smooth CSB, if we are required to protect
ε-DP instead of ε-LDP, we show the optimal regret is
Θ̃(

mKB2
1 lnT

ε∆ ), and give a differentially private algorithm
as well as a nearly matching lower bound. Moreover, above
optimal performance in our (locally) differentially private
CSB is nearly the same order as non-private setting (Kveton
et al., 2015; Chen et al., 2016; Wang & Chen, 2017).

Our Algorithm 2 is applicable for locally private CSB with
B1-bounded smoothness, with a regret upper bound of
O(

mK2B2
1 lnT

∆ε2 ) in this setting. However, the regret lower

bound we prove is just Ω(
mKB2

1 lnT
∆ε2 ). We conjecture that

our lower bound is loose and the Algorithm 2 is also near-
optimal for locally private CSB with B1-bounded smooth-
ness. How to improve the lower bound is left as future
work.

Recently, there are interesting results under Gini-weighted
smoothness assumptions (Merlis & Mannor, 2019; 2020).
Compared with general Lipschitz smoothness considered
in this work, this is a more refined smoothness assump-
tion, which leads to near optimal regret bounds with less
dependence on the dimension K. Directly applying our al-
gorithms to this setting will lead to an additional dependence
on K. How to remove this additional price for privacy pre-
serving, and how to prove the corresponding lower bounds,
are interesting problems for future work.
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