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Appendices
A. Proof of Theorem 4

Theorem 4. (Restate) For Algorithm 2, we have

Regµ,α,β(T ) 6 O

 ∑
i∈[m],∆i

min>0

B2
∞ lnT

ε2∆i
min

 (6)

Proof. Suppose Gt denote the event that the oracle fails to produce an α-approximate answer with respect to the input vector
in step t. We have P[Gt] ≤ 1− β. The number of times Gt happens in expectation is at most (1− β)T . The cumulative
regret in these steps is at most Rfail ≤ (1− β)T∆max

Now we only consider the steps Gt doesn’t happen. We maintain counters Ni in the proof, and denote its value in step t as
Nt,i. The initialization of Nt,i is the same as Tt,i, i.e. N0,i = 0. In step t, if Gt doesn’t happen, and the oracle selects a
sub-optimal super arm, we increment NIt by one, i.e. Nt,It = Nt−1,It + 1, where It = argmini∈St Tt−1,i, otherwise we
keep Ni unchanged. This indicates that Nt,i ≤ Tt,i. Notice that if a sub-optimal super arm St is pulled in step t, exactly one
counter NIt is incremented by one, and It ∈ St. As a result, we have:

Regµ,α,β(T ) ≤Tαβ optµ−E
T∑
t=1

rµ(St)

≤Rfail + Tαβ optµ−

Tα optµ−
∑

i∈[m],∆i
min>0

NT,i∑
j=1

∆i,j


≤

∑
i∈[m],∆i

min>0

NT,i∑
j=1

∆i,j (7)

Here ∆i,j denote the suboptimal gap α · optµ−r(St) when Ni incremented from j − 1 to j in a certain step t.

Now we only need to bound NT,i and ∆i,j . We denote the following event as Λt,i: For a fixed step t ∈ T and a fixed base
arm i ∈ [m],

|µ̃t(i)− µi| ≤ 4

√
2 lnT

ε2Tt,i
.

The noise in µ̃t(i) comes from two parts: the Laplacian noise added for privacy and the randomness of Xt,i. For the first

part, by Bernstein’s Inequality over Tt,i i.i.d Laplace distribution, the confidence bound is 2
√

2 lnT
ε2Tt,i

with prob. at least

1 − 2/T 2. For the second part, since Xt,i is [0, 1] bounded, the confidence bound is 2
√

2 lnT
Tt,i

≤ 2
√

2 lnT
ε2Tt,i

with prob. at

least 1− 2/T 2 by Hoeffding’s inequality. This shows that Λt,i happens with prob. 1− 4/T 2. By union bounds over all
steps, Λt,i happens for all t and i with prob. 1− 4/T . We denote this event as Λ.

Suppose Λ happens, we have µ(i) ≤ µ̄t(i) ≤ µ(i) + 4
√

2 lnT
ε2Tt,i

. If a sub-optimal arm St is pulled in step t. we have

αrµ(S∗µ)− rµ(St) ≤αrµ̄t(S∗µ)− (rµ̄t(St)−B∞‖µ̄t − µ‖∞)

≤B∞‖µ̄t − µ‖∞
≤B∞(‖µ̄t − µ̃t‖∞ + ‖µ̃t − µ‖∞)

≤B∞8 max
i∈St

{√
2 lnT

ε2Tt−1,i

}

≤B∞8 max
i∈St

{√
2 lnT

ε2Nt−1,i

}
(8)
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The first inequality is due to monotonicity and B∞-bounded smoothness assumption. The second inequality is because
the oracle returns St which satisfies rµ̄t(St) ≥ αrµ̄t(S

∗
µ). The third inequality is due to the definition of µ̄t and the

concentration bound for µ̃t. The last inequality is due to Nt,i ≤ Tt,i.

Define ∆̄S = maxi∈S ∆i
min. If Nt−1,i >

128B2
∞ lnT

ε2∆̄2
St

for any i ∈ St, we have αrµ(S∗µ)− rµ(St) < maxi∈St ∆i
min by Equ.

8. On the other hand, by the definition of ∆i
min, αrµ(S∗µ)− rµ(St) = α optµ−rµ(St) ≥ maxi∈St ∆i

min, which leads to a
contradiction. This means that if sub-optimal arm St is pulled in step t, and St contains base arm i, the counter Nt−1,i is at

most 128B2
∞ lnT

ε2∆̄2
St

≤ 128B2
∞ lnT

ε2(∆i
min)2

. That is, under high probability event Λ, the counter Ni is at most 128B2
∞ lnT

ε2∆̄2
St

.

Besides, by Equ. 8, we know that ∆i,j ≤ 8B∞

√
2 lnT
ε2j−1 , since Nt−1,i is the minimum counter in {Nt−1,i, i ∈ St} and

increments by one in step t.

Combining with Equ. 7, we have

Regµ,α,β(T ) ≤
∑

i∈[m],∆i
min>0

NT,i∑
j=1

∆i,j

≤
∑

i∈[m],∆i
min>0

NT,i∑
j=1

8B∞

√
2 lnT

ε2j
+ 2m∆max

≤
∑

i∈[m],∆i
min>0

∫ NT,i

0

8B∞

√
2 lnT

ε2j
dj + 2m∆max

≤
∑

i∈[m],∆i
min>0

128B2
∞ lnT

ε2∆i
min

+ 2m∆max

Considering T as the dominant term, we reach the result.

B. Proof of Theorem 5

Theorem 5. For any m and K, and any ∆ satisfying 0 < ∆/B∞ < 0.35, the regret of any consistent ε-locally private
algorithm π on the CSB problem with B∞-bounded smoothness is bounded from below as

lim inf
T→∞

Reg(T )

log T
≥ B2

∞(m− 1)

64(eε − 1)2∆

Specifically, for 0 < ε ≤ 1/2, the regret is at least

lim inf
T→∞

Reg(T )

log T
≥ B2

∞(m− 1)

128ε2∆

Proof. We slightly modify the MAB instance in Basu et al. (2019). Suppose there are m arms in a MAB problem. Each arm
i ∈ [m] is associated with an i.i.d Bernoulli random variable µ with mean µ̄i. If arm i is pulled in a certain step t, instead
of receiving reward µ̃(i) sampled from the distribution of µ, we receive a reward of B∞ · µ̃(i). Denote the sub-optimality
gap of pulling a sub-optimal arm as ∆. Following the argument in Basu et al. (2019), we consider two ”MAB” instance:
ν1 with mean weight µ̄ = {∆/B∞, 0, ..., 0} and ν2 with µ̄ = {∆/B∞, ..., 0, 2∆/B∞}. Similarly, we can show that each
supoptimal arm need to be pulled at least

1

2 min{4, e2ε}(eε − 1)2D(fa‖f∗)
,
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where fa and f∗ denote the weight distribution of arm a and optimal arm. Since D(fa‖f∗) ≤ 4∆2/B2
∞, we have

lim inf
T→∞

Reg(T )

lnT
≥(m− 1)

1

2 min{4, e2ε}(eε − 1)2D(fa‖f∗)
∆

≥(m− 1)
B2
∞

64(eε − 1)2∆

≥(m− 1)
B2
∞

128ε2∆

The second inequality is due to D (p‖q) ≤ (p−q)2
q(1−q) and ∆/(B∞) ≤ 0.35 ≤

√
2

4 . The last inequality is for the case that
0 < ε ≤ 1/2.

This special ”MAB” problem can reduce to the stochastic CSB problem with B∞-bounded smoothness. We prove the lower
bound by reduction.

C. Proof of Theorem 6

Theorem 6. (Restate) For any m and K such that m/K is an integer, and any ∆ satisfying 0 < ∆/(B1K) < 0.35, the
regret of any consistent ε-locally private algorithm π on the CSB problem with B1-bounded smoothness is bounded from
below as

lim inf
T→∞

Reg(T )

log T
≥ B2

1(m−K)K

64(eε − 1)2∆

Specifically, for 0 < ε ≤ 1/2, the regret is at least

lim inf
T→∞

Reg(T )

log T
≥ B2

1(m−K)K

128ε2∆

Our lower bound is derived on the K-path semi-bandit problem (Kveton et al., 2015): There are m base arms. The feasible
super arms are m/K paths. That is, path i (super arm i) contains base arms (i− 1)K + 1, ..., iK. Suppose the return of
choosing super arm S is B1 times the sum of the weight ŵi for i ∈ S. The weights of different base arms in the same super
arm are identical, and the weights of base arms in different paths are distributed independently. Denote the best super arm as
S∗. The weight of each base arm is a Bernoulli random variable with mean:

w̄(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise

To prove the lower bound, we adopt general canonical bandit model (Lattimore & Szepesvári, 2018). Denote the privacy-
preserving algorithm as π, which maps the observation history to the probability of choosing each super arm, and the
CSB instance as ν,. The interaction between the algorithm and the instance in a given horizon T can be denoted as the
observation historyHT , {(St,Zt)}Tt=1. An observed historyHT is a random variable sampled from the measurable space(
([m]k × Rk)T ,B([m]k × Rk)T

)
and a probability measure Pπν . Pπν is defined as follow:

• The probability of choosing a super arm St = S in step t is dictated only by the algorithm π(S|Ht−1).

• The distribution of rewards Xt in step t is fνSt , which depends on St and conditionally independent on the history
Ht−1.

• In the case of local differential privacy, the algorithm cannot observe Xt directly, but a privated version of rewards Zt.
Zt only depends on Xt and is conditionally independent on the historyHt−1. Denote the conditional distribution of Z
as M(Z|X).
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As a result, the distribution of the observed historyHT is

PTπν (HT ) =

T∏
t=1

π (St|Ht−1) fνSt (Xt)M (Zt|Xt) .

Denote gνSt(Z) = fνSt (Xt)M (Zt|Xt). Before proving Theorem 6, we state following two lemmas.

Lemma 3. Given a stochastic CSB algorithm π and two CSB environment ν1 and ν2, the KL divergence of two probability
measure PTπν1 and PTπν2 can be decomposed as:

D
(
PTπν1‖P

T
πν2

)
=

T∑
t=1

Eπν1 [D (π (St|Ht−1, ν1) ‖π (St|Ht−1, ν2))] +
∑
S∈S

Eπν1 [NS(T )]D (gν1S ‖g
ν2
S ) ,

NS(T ) denotes the number of times S is chosen in T steps.

Proof.

D
(
PTπν1‖P

T
πν2

)
=

∫
HT

ln
dPTπν1(H)

dPTπν2(H)
dPTπν1(H)

=

∫
HT

T∑
t=1

ln
π(St|Ht−1, ν1)

π(St|Ht−1, ν2)
dπ(St|Ht−1, ν1) +

∫
HT

T∑
t=1

ln
gν1St(Z)

gν2St(Z)
d
(
gν1St(Z)

)
=

T∑
t=1

Eπν1 [D (π (St|Ht−1, ν1) ‖π (St|Ht−1, ν2))] +
∑
S∈S

[
T∑
t=1

EPTπ ν1 [1St=S ]D (gν1S (Z)‖gν2S (Z))

]

=

T∑
t=1

Eπν1 [D (π (St|Ht−1, ν1) ‖π (St|Ht−1, ν2))] +
∑
S∈S

Eπν1 [NS(T )]D (gν1S ‖g
ν2
S )

Lemma 4. [Theorem 1 in Duchi et al. (2016)] For any α ≥ 0, let Q be a conditional distribution that guarantees
α-differential privacy. Then for any pair of distributions P1 and P2, the induced marginal M1 and M2 satisfy the bound

Dkl (M1‖M2) +Dkl (M2‖M1) ≤ min
{

4, e2α
}

(eα − 1)
2 ‖P1 − P2‖2TV .

Based on these two lemmas, we are now ready to prove Theorem 6.

Proof. (Proof of Theorem 6) Suppose ν1 denote the stochastic CSB instance with weight vector:

w(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise

For any sub-optimal super arm S1, denote the CSB instance with the following weight vector as ν2:

w(i) =


0.5 i ∈ S∗

0.5 + ∆/(B1K) i ∈ S1

0.5−∆/(B1K) otherwise
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Denote the expected cumulative regret for a policy π on instance ν in T steps as Reg(π, ν, T ). Then we have,

Reg (π, ν1, T ) ≥ Pπν1 (NS1(T ) ≥ T/2)
T∆

2
,

Reg (π, ν2, T ) ≥ Pπν2 (NS1(T ) ≤ T/2)
T∆

2

Combining these two inequality, we have

Reg (π, ν1, T ) + Reg (π, ν2, T ) ≥ T∆

2
(Pπν1 (NS1(T ) ≤ T/2) + Pπν2 (NS1(T ) ≥ T/2))

≥ T∆

4
exp

(
−D

(
PTπν1‖P

T
πν2

))
(9)

The second inequality is due to probabilistic Pinsker’s inequality (Lattimore & Szepesvári, 2019).

By lemma 3, we have

D
(
PTπν1‖P

T
πν2

)
=

T∑
t=1

Eπν1 [D (π (St|Ht, ν1) ‖π (St|Ht, ν2))] +
∑
S∈S

Eπν1 [NS(T )]D (gν1S ‖g
ν2
S )

=
∑
S∈S

Eπν1 [NS(T )]D (gν1S ‖g
ν2
S )

=Eπν1 [NS1(T )]D
(
gν1S1‖gν2S1

)
(10)

The second equality is because π chooses St based on the observed historyHt. The third equality is because ν1 and ν2 only
differs in S1.

By combining Equ. 9 and Equ. 10 we get,

Eπν1 [NS1(T )] =D
(
PTπν1‖P

T
πν2

)
/D
(
gν1S1‖gν2S1

)
≥ ln(

T∆

4 (Reg (π, ν1, T ) + Reg (π, ν2, T ))
)/D

(
gν1S1‖gν2S1

)
≥ ln(T )/4− ln(8m/K)

D
(
gν1S1‖gν2S1

)
≥ ln(T )/4− ln(8m/K)

min {4, e2ε} (eε − 1)
2 ∥∥fν1S1 − fν2S1

∥∥2

TV

≥ ln(T )/2− 2 ln(8m/K)

min {4, e2ε} (eε − 1)
2
D
(
fν1S1‖fν2S1

)
≥K

2B2
1 (ln(T )/16− ln(8m/K)/8)

min {4, e2ε} (eε − 1)
2

∆2

The first inequality is due to Equ. 9. The second inequality is due to the consistent algorithm setting, i.e. Reg (π, ν1, T ) ≤
m
k ∆T p. Here we set p = 3/4. The third inequality is due to Lemma 4. The forth inequality is due to Pinsker’s inequality.

The last inequality is due to D (p‖q) ≤ (p−q)2
q(1−q) and ∆/(B1K) ≤ 0.35 ≤

√
2

4 .
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Now we can bound lim infT→∞
Reg(T )
log T :

lim inf
T→∞

Reg(T )

lnT
= lim inf

T→∞

∑
S∈S,S 6=S∗ ∆ · Eπν1 [NS(T )]

lnT

≥ lim inf
T→∞

B2
1 (m/K − 1) ∆K2 (ln(T )/16− ln(8m/K)/8)

min {4, e2ε} (eε − 1)
2

∆2 lnT

=
B2

1mK

16 min {4, e2ε} (eε − 1)
2

∆

≥B
2
1mK

128ε2∆

The last inequality is due to (eε − 1)
2 ≤ 2ε2 for 0 < ε ≤ 1/2.

D. Omitted Proof of Theorem 8

Before proving Theorem 8, we consider following two events, and show that these events happen with high probability.

Lemma 5. Let Sumt,i be the sum of previous outcome Xt,i without privacy noise for base arm i in the first t steps. We
denote the following event as Λ1: For any step t ∈ [T ] and any base arm i ∈ [m],

∣∣∣∣Sumt,i

Tt,i
− µi

∣∣∣∣ ≤
√

4 lnT

Tt,i

Then Pr[Λ1] ≥ 1− 2/T .

Proof. The result follows directly from Hoeffding’s inequality and union bounds for all steps t ∈ [T ].

Lemma 6. Let Noiset,i be the Laplace noise added to Xt,i in step t. We denote the following event as Λ2: For any step
t ∈ [T ] and any base arm i ∈ [m], ∣∣∣∣Noiset,i

Tt,i

∣∣∣∣ ≤ 12K ln3 T

Tt,iε

Then Pr[Λ2] ≥ 1− 1/(mT ).

Proof. From the argument of our algorithm, Noiset,i is the sum of at most log T i.i.d random variables drawn from
Lap(2K log T/ε). By the tail probability of Laplace distribution, we know that for any ν ∼ Lap(2K log T/ε), with prob.
1 − δ, |ν| ≤ 2K log T ln(1/δ)/ε. Set δ = 1/(m2T 2 log T ). By union bounds over log T random variables, we have
|Noiset,i | ≤ 4K log2 T ln(mT log T )/ε with prob. 1− 1/(m2T 2) for a fixed i and t. By union bound over all base arm i
and step t, we prove that

∣∣∣∣Noiset,i
Tt,i

∣∣∣∣ ≤ 4K log2 T ln(mT log T )

Tt,iε
≤ 12K ln3 T

Tt,iε

for any step t and base arm i for sufficiently large T with prob. 1− 1/(mT ).

Proof. (Proof of Lemma 2) Suppose Gt denote the event that the oracle fails to produce an α-approximate answer with
respect to the input vector in step t. Similar with the proof of Theorem 4, the cumulative regret in the steps that Gt happens
is at most Rfail ≤ (1− β)T∆max.
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Then we have,

Regµ,α,β(T ) ≤Tαβ optµ−E
T∑
t=1

rµ(St)

≤Rfail + Tαβ optµ−

Tα optµ−
∑
t∈[T ]

∆t1{¬Gt}


≤
∑
t∈[T ]

∆t1{¬Gt}

Here ∆t denote the sub-optimal gap in step t.

This means that we only need to consider the steps that Gt doesn’t happen. Denote R̂(T ) as the regret if event Λ1 and Λ2

happen.

Regµ,α,β(T ) ≤Pr{Λ1 ∩ Λ2}R̂(T ) +
∑
i∈[m]

∆i
min

+ Pr{¬Λ1}T∆max + Pr{¬Λ1}T∆max

≤R̂(T ) + (m+ 2)∆max

If event Λ1 and Λ2 happen, we have

|µ̃t(i)− µi| =
∣∣∣∣Sumt,i

Tt,i
− µi +

Noiset,i
Tt,i

∣∣∣∣
≤

√
4 lnT

Tt,i
+

12K ln3 T

Tt,i

for step t ∈ [T ], if we choose a sub-optimal super arm with sub-optimality gap ∆St > 0, then we have

αrµ(S∗µ)− rµ(St) ≤αrµ̄t(S∗µ)− (rµ̄t(St)−B1‖µ̄t − µ‖1)

≤B1‖µ̄t − µ‖1
≤B1(‖µ̄t − µ̃t‖1 + ‖µ̃t − µ‖1)

≤B1

∑
i∈St

(
4

√
lnT

Tt−1,i
+

24K ln3 T

Tt−1,iε

)
(11)

The first inequality is due to L1 smoothness assumption. The second inequality is because the oracle returns St which
satisfies rµ̄t(St) ≥ αrµ̄t(S∗µ). The last inequality is due to the definition of µ̄t and the concentration bound for µ̃t.

This shows that if event Λ1 and Λ2 happen, and we choose a sub-optimal super arm with sub-optimality gap ∆St > 0 in
step t, Ft happens.

Then we have R̂(T ) ≤
∑
t∈[T ] ∆St1{Ft}, which finishes the proof.

E. Proof of Theorem 9

Theorem 9. For anym andK such thatm ≥ 2K,and any ∆ satisfying 0 < ∆/(B1K) < 0.35, the regret for any consistent

ε-DP algorithm on the CSB problem with B1 bounded smoothness is at least Ω
(
B2

1mK lnT
∆ + B1mK lnT

ε

)
.

Proof. Previous results have shown that the regret for any non-private CSB algorithm is at least Ω
(
mK lnT

∆

)
(Kveton et al.,

2015). They consider linear CSB problem, which is a special case of B1 bounded smoothness CSB with B1 = 1. We
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slightly modify the hard instance in Kveton et al. (2015) and prove the regret lower bound for B1 bounded smoothness CSB
in non-private setting.

The main difference is that we assume the reward of any super arms St is B1 times the sum of weights w(i) for i ∈ St. In
our hard instance, we also consider the K-path semi-bandit problem. There are m base arms. The feasible super arms are
m/K paths. Path i (Super arm i) contains base arms (i− 1)K + 1, (i− 1)K + 2, ..., iK. The weight of base arm i is a
Bernoulli random variable with mean w̄(i). Since ∆ in our setting is B1 times that of the instance in Kveton et al. (2015),
we slightly modify the mean of w(i) to make sure that the mean w̄(i) ∈ [0, 1]:

w̄(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise

With the same argument in Kveton et al. (2015), we can prove that each path need to be selected at least B2
1K

2 lnT
∆2

times. which means that the regret is at least B
2
1K

2 lnT
∆2 ∆ · (L/K − 1) = Ω

(
B2

1mK lnT
∆

)
. Since private CSB is harder

than non-private CSB (There is a reduction from non-private CSB to private CSB), the regret of private CSB is at least
Ω
(
B2

1mK lnT
∆

)
.

By the following lemma, we can show that the regret of any ε-DP consistent CSB algorithm is at least Ω
(
B1mK lnT

ε

)
.

Combining both results, we can prove that the regret lower bound is Ω
(

max
{
B2

1mK lnT
∆ , B1mK lnT

ε

})
=

Ω
(
B2

1mK lnT
∆ + B1mK lnT

ε

)
.

Lemma 7. For any m and K such that m ≥ 2K, and any ∆ satisfying 0 < ∆/(B1K) < 0.35, the regret for any consistent
CSB algorithm guaranteeing ε-DP is at least Ω

(
B1mK lnT

ε

)
.

Now we only need to prove Lemma 7.

Proof. We consider the CSB instance: Suppose there are m base arms, each associated with a weight sampled from
Bernoulli distribution. These m base arms are divided into three sets, S∗, S̃, S̄. S∗ contains m base arms, which build up
the optimal super arm set. S̃ contains K − 1 “public“ base arms for sub-optimal super arms. These arms are contained in all
sub-optimal super arms. S̄ contains m− 2K + 1 base arms. each base arm combined with K − 1 ”public” base arms in S̃
builds up a sub-optimal super arm. Totally we have m− 2K + 1 sub-optimal super arms and one optimal super arm. The
mean of the Bernoulli random variable associated to each base arm is defined as follow:

w(i) =

 0.5 i ∈ S∗

0.5−∆/(B1K) otherwise

The weights of base arms in S̃ are identical, while other weights are i.i.d sampled. The reward of pulling a super arm S is
B1 times the sum of weights of all base arm i ∈ S. As a result, the sub-optimality gap of each sub-optimal super arm is ∆.
We denote this CSB instance as ν1.

Now we fix one certain sub-optimal super arm S1. Denote ES1
as the event that super arm S1 is pulled ≤ B1K lnT

400ε∆ := tS
times. Our goal is to show thatES1

happens with probability at most 1
2m . If this is true, by union bounds over all sub-optimal

super arms, all the sub-optimal super arms will be pulled at least tS times with prob. 1− 1
2 . This means the regret is at least

Ω
(
B1mK lnT

ε

)
.

Now we prove that Pν1(ES1
) ≤ 1/(2m). Our analysis is inspired by the work of Shariff & Sheffet (2018). Consider

another CSB instance with all the setting the same as ν1, except that the mean weights of base arms in S1 are increased
by 2∆/(B1K) each. We denote this instance as ν2. Consider the case that rewards are drawn from ν2. Due to consistent
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property, the regret of the algorithm is at most T 3/4m∆. For sufficiently large T , we have

T∆

2K
Pν2 [E] ≤ (T − tS)∆

K
Pν2 [E] ≤ T 3/4m∆

.

The first inequality is for sufficiently large T . The second inequality is because if E happens in ν2, the regret is at least
(T − ts) · ∆

K . This means that Pν2 [E] ≤ mK
T 1/4 .

Now we consider the influence of differential privacy. The result of Karwa & Vadhan (2017) (Lemma 6.1) states that the
group privacy between the case that inputs are drawn i.i.d from distribution P1 and P2 is proportional to 6εn · dTV(P,Q),
where n is the number of inputs data. We apply the coupling argument in Karwa & Vadhan (2017) to our setting. Suppose
the algorithm turns to an oracle when she needs to sample a reward of super arm S1. The oracle can generate at most tS
pairs of data. The left ones are i.i.d sampled from ν1, while the right ones are i.i.d sampled from ν2. Whether the algorithm
receive a reward sampled from the left or the right depends on the true environment. The algorithm turns to another oracle if
and only if the original oracle runs out of tS samples. By Lemma 6.1 in Karwa & Vadhan (2017), the oracle runs out of tS
samples, i.e. event ES1 happens with similar probability under ν1 and ν2. Indeed, the probability of event ES1 happens
under ν1 is less than exp (6εtS · dTV(P,Q)) times the probability of event ES1 happens under ν2.

That is, for sufficiently large T ,

Pν1 [ES1
] ≤ exp (6εtS · dTV(ν1, ν2))Pν2 [ES1

]

≤ exp

(
24εtS ·

∆

B1K

)
Pν2 [ES1 ]

≤ exp (0.06 lnT )
mK

T 1/4

=mKT−0.19 ≤ 1

2m
.

The second inequality is due to dTV(ν1, ν2) ≤
√

DKL(ν1‖ν2)
2 ≤ 4∆/(B1K) by Pinsker’s inequality and the setting that the

public base arms are identical.


