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Abstract

Deep neural networks have been proven to be
vulnerable to the so-called adversarial attacks.
Recently there have been efforts to defend such
attacks with deep generative models. These de-
fenses often predict by inverting the deep genera-
tive models rather than simple feedforward propa-
gation. Such defenses are difficult to attack due
to the obfuscated gradients caused by inversion.
In this work, we propose a new white-box attack
to break these defenses. The idea is to view the
inversion phase as a dynamical system, through
which we extract the gradient w.r.t the image by
backtracking its trajectory. An amortized strategy
is also developed to accelerate the attack. Exper-
iments show that our attack better breaks state-
of-the-art defenses (e.g DefenseGAN, ABS) than
other attacks (e.g BPDA). Additionally, our empir-
ical results provide insights for understanding the
weaknesses of deep generative model defenses.

1. Introduction

How to make deep neural network (DNN) more robust?
This has been a hot research problem with a long history
and has been recently re-emphasized due to the discovery
of adversarial samples (Szegedy et al., 2014; Goodfellow
et al., 2014). In short, adversarial samples are synthetic im-
ages that are perceptually similar to natural images, but can
dramatically yield sub-optimal or even completely wrong
decisions in a DNN. Such samples clearly reflect the frangi-
bility of DNN and call for robustification solutions.

Many efforts have been devoted to defend DNN from ad-
versarial samples. This includes regularization (Lyu et al.,
2015; Ross & Doshi-Velez, 2018; Zhang et al., 2019), ad-
versarial training (Goodfellow et al., 2014; Madry et al.,
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2018), feature denoising (Liao et al., 2018; Xie et al., 2019),
randomized smoothing (Salman et al., 2019; Cohen et al.,
2019), etc. Recently, a new line of research has focused on
the use of deep generative model in defense (Samangouei
et al., 2018; Schott et al., 2019; Ghosh et al., 2019). These
defenses do not perform prediction by feedforward propaga-
tion. Rather, they first invert the generative model G to find
the most plausible latent representation z* that could have
generated the image x (e.g by solving an optimization prob-
lem), then use z* to predict. Compared to other defenses,
deep generative model-based defenses are attractive as they
provide a natural way to realize the on-manifold conjecture.
However, they also bring new challenges to how to correctly
evaluate their robustness, as the gradients in these defenses
are obfuscated (Athalye et al., 2018) due to the inversion.

In this work, we propose a new white-box attack to break
deep generative model-based defenses. We find that existing
attacks for breaking these defenses like Backward Pass Dif-
ferential Approximation (BPDA, (Athalye et al., 2018)) are
indeed sub-optimal and might overestimate the robustness.
We then develop a new attack based on a novel gradient
estimation mechanism. Our contributions are two-folds:

e We develop a new white-box attack for breaking deep
generative model defenses. Compared to BPDA, our
attack can find adversarial samples with lower distortion
and higher efficiency. Our attack can be applied to a
wide range of deep generative model defenses including
DefenseGAN (Samangouei et al., 2018), ABS (Schott
et al., 2019) and (Ghosh et al., 2019; Lin et al., 2019).

e With our attack, we also analyze factors that cause deep
generative model defenses to fail. For example, we find
that there are ‘holes’ in the latent space of these defenses
that can generate samples outside of the data distribution
or even belonging to unseen classes, which make them
vulnerable. The detection of these holes are difficult. We
also provide some suggestions to improve these defenses.

2. Background

Throughout this paper, we denote the normal image by
x € X, the class label by y € ) and the classifier by F' :
X — Y. In this work, we mainly consider the case where
the classifier F' (or part of F) is a deep neural network.
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Figure 1. A comparison between conventional DNN and the deep generative model-based defenses. Left: conventional DNN, where
classification is done by feedforward propagation in which the representation z and the label y are computed sequentially. Right: deep
generative model-based defense, where we first invert the generative model to find z* that best matches with x, then uses z* to predict y.

2.1. Adversarial sample

Given an image x with true label y, an adversarial sample
x’ is the minimal modified version of x that can cause the
classifier F' to misclassify:

argmin ||x — x'[|, (1)
x":F(x')#y
where ||x — x'||,, is the modification/distortion between
x and x’. Typical choices of p include p = oo or p =
2. Adversarial samples are often found by the so-called
adversarial attacks, which are classified into two categories:

/
X =

White-box attacks. This type of attack assumes full knowl-
edge of the model. It typically finds x’ by gradient descent
method: x’ < x" — Vx L(x') with £ being some classifica-
tion loss. Well known instances in this attack include FGSM
(Goodfellow et al., 2014), PGD, MIM variants (Dong et al.,
2018) (Kurakin et al., 2016), CW (Carlini & Wagner, 2017),
etc. White-box attacks are known to be fast, accurate and
easy to implement. However, they can not be readily applied
to cases where (a) part of the model is unknown or (b) the
gradient in the model is not analytical (Athalye et al., 2018).

Black-box attacks. As complement to white-box attacks,
this type of attack needs only partial access to the model.
Generally speaking, it first samples a population of modifica-
tions €; ~ p(e;) from a proposal distribution p, then modify
the sample x according to F'(x + ¢;). Popular instances
include boundary attack (Brendel et al., 2018), evolutionary
strategy-based attack (Ilyas et al., 2018) and their extensions
(Guo et al., 2019; Li et al., 2019). Black-box attacks are
useful in that they not only need not to know the model fully,
but can also be applied to cases without analytical gradients.
However, they are typically less efficient and accurate.

A well-known hypothesis about adversarial samples is the
on-manifold conjecture, which states that normal data lies
on a low-dimensional manifold but adversarial samples are
off this manifold. If this hypothesis were to hold true, we
might resist adversarial attacks with deep generative models,
as they naturally provide us with a way to parameterize the
data manifold (Samangouei et al., 2018; Schott et al., 2019).
Below, we review a line of defenses building upon this idea.

2.2. Deep generative model-based defenses

To defend adversarial attacks, one recent line of research has
utilized the power of a deep generative model G in defense.
These defenses assume that the clean data x is generated by
some latent representation z: x = G(z),z ~ p(z). To make
prediction, they first invert G to find the representation z*
that best matches with the input x, then use z* to predict:
y* = h(z";x), z* = arg minlg(z; x) )
z
where h is a classification function, /¢ is a loss function
measuring how well x and z matches with each other. Typ-
ical choice of I is the reconstruction error: l;(z;x) =
|G(z) — x||3. We revisit three representative works below.

DefenseGAN (Samangouei et al., 2018). This GAN-based
approach works by first projecting the input x back to the
range of GAN before classification. In this setting, the
loss I is lg(z;x) = ||G(z) — x||3, and the function h is
h(z*;x) = C(G(z*)) with C a conventional deep classifier.

Analysis by Synthetics (ABS) (Schott et al., 2019). This
VAE-based approach classifies by inferring which class y
could have generated the input x. It first trains a set of VAE:
{G1, ...G}} for each class y, then seeks which G, can best
reconstruct x. In this setting, the loss lg is g, (z;x) =
%1|Gy(z) —x||3+ K LN (2,1); N'(0,I)], and the function
his h = arg max, h, where h,(z*;x) = lg, (z*;X).

MoG-VAE (Ghosh et al., 2019). This VAE-based approach
utilizes a VAE whose latent distribution p(z) is modelled
as a mixture of Gaussian (MoG), with each of its mode
corresponding to one class. Classification is done by seeking
which mode z* belongs to the most likely. In this setting,
the loss I is I (z;x) = ||G(z) — x||3, and the function h
is h = arg max, h, where hy(z*;x) = N (2*; f1,, Zy).

As one can see, due to the arg min operator in (2), the gradi-
ent w.r.t x in the classification routine is no more analytical
— a phenomenon known as obfuscated gradient (Athalye
et al., 2018). This makes evaluating the robustness of these
defenses by conventional attacks like PGD or CW difficult.
Next, we develop a novel attack for breaking such defenses.
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Figure 2. Demonstrating the proposed inversion attack for breaking deep generative model-based defense.

3. Attack

In this section, we develop a new attack tailored to break the
above deep generative model-based defenses. Without loss
of generality we assume that the clean image x belongs to
class y, and denote the prediction scores for class ¢ and class
y' (here y' # y) by hy(z*;x) and h, (z*; x) respectively.
Here z* = arg min, l¢(z;x’) as previously defined in (2).

3.1. Main method

Objective function. We begin by setting up the objective
for seeking x’, the adversarial example for x. Our new
attack takes a CW-like form (Carlini & Wagner, 2017):

£(x) = x = x|} + A ReLU(hy (271 x') — by (2 x'))
3)
The first term in this objective aims to find the adversarial
sample with the minimal distortion whereas the second term
in the objective aims to cause a mis-classification. We can
in principle calculate the gradient to x’ in this objective as:
Vrhy(z*;x") = Vgehy (2" x")| Vixz"+Vyxhy(z*;x) )
“4)
Unfortunately, due to the absence of the analytical form
for z*, direct calculation of (4) is impossible. One way
to calculate the gradient V4 z* indirectly is by implicit
differentiation (Gould et al., 2016; Colson et al., 2007),
where one can compute V,,z* as Vo z* = —H ™ lg with
H = Vi.,.lg(z",x') and g = V' Vy-lg(z*,x'). How-
ever, this method requires to invert the Hessian H per every
update to x’, which is computationally heavy if (a) the di-
mensionality of z is high and (b) the number of updating
steps required to find x’ is large. We propose an alternative
light-weighted method to approximate Vy z* below.

x/

Gradient approximation. While we have no closed form
solution for z*, it can be approximated by T gradient steps:

5
t+1 = zt -1 VzlG(Z;X/”z:zt ( )

z
which can be seen as a dynamical system with parameter x':

z = qx’ (Z)a

6
ax(z2) =z — - V,la(z; X)) ©

with which we can now express z* as the output of a deter-

ministic function Q(x'):

7" = Q(x'),
QX)) = Qx(2") = gx o gx ...

T

o qx(2°) (D)

where z° is the initial value of z. Note that we have swapped
the roles of parameter and variable in the definition of Q(x’).
Now, we could have been able to substitute z* ~ Q(x’)
back to (3) to solve x’. However, evaluating the gradient
w.r.t. x’ through expanding the expression for Q is still
impractical even for moderately large T" (e.g T' = 50) due
to the high computational complexity. And even if we could
expand @, the gradient V. Q(x') in it is still likely to vanish
due to the long sequence when applying back-propagation
— an issue similar to that in recurrent neural networks.

Upon a closer look, the number of required gradient steps
T indeed depends on the initial value of z°. If z° is far
away from z*, then we may need a larger 7" to reach z*.
Conversely, if 70 has been near around z, a few steps could
have been enough. This inspires us to use a backtracking
strategy for reducing 7'. More specifically, we first find z*
via standard optimizer like Adam (purple routine in Fig-
ure 2). After that, we conduct 7" < T gradient ascent steps
to revert the optimization process and treat the result as the
new z’. We then re-implement gradient descent from this
new z° to reach z* again (red routine in Figure 2). Since the
new z° is much closer to z*, we can expect that we would
approach z* with small 7', addressing the large 7" problem.

In practice, we implement the above backtracking strategy
with 77 = 5 backtracking steps under learning rate 7', which
as we confirm empirically well balances between accuracy
and efficiency. 7’ is determined as:

‘ZG(dewm;X/) - lg(Z*;X/)‘

n' = arg max 8)
n ‘lg(z:ew’n;x’)—lg(z*;x')—i—T‘
where zgew’n is the result of gradient ascent under learning

*

rate 7) (i.e. the new z°) and Zpew,; 18 the result that we re-
implement gradient descent under 7 (i.e. the approximated
z*). Therefore we determine 7’ to be the largest learning
rate that would allow us to return to z* in the backtracking
procedure. The reason why we prefer a larger 7’ is that this
would allow us to visit the loss landscape of I (z;x’) as
much as possible within the 7" steps, which provides us with
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more information about x’ (remark that x’ is the parameter
of the loss function l(z; x”)). Note that we have introduced
a small constant 7 = 10~% in (8) to avoid dividing by zero.
The determination of 7’ can typically be done by a pilot run,
and its value could vary for different x’.

Algorithm. With the above gradient approximation mecha-
nism, we now elaborate our algorithm for finding x’. The
algorithm iterates between the following two steps:

e z-step. Fix ¥/, find the function z* =~ Q(x’) with the
gradient approximation technique above;

e x-step. With the found z* ~ Q(x'), update x’ by pro-
jected gradient descent: x" < proj(x’ — ¢ - Vi L(X')).

we call our method inversion attack as it can be applied to
defenses involving the inversion of deep generative models.

For the initial value of x’, we use two initializations: (a)
x' = x; (b) X' = G(u*) with u* being the minimizer of:

Ix — G()[3 + A ReLU(hy (z*; G(w)) — hy (25 G(w)))

€))
This objective is a variant of (3) with the adversarial sample
x’ lying exactly on the generative range of G. We now
update these two different initializations respectively, and
take the final x” as the one with smaller distortion.

To find x’ with the minimal distortion, we further apply the
same binary search strategy as in CW attack to determine .
The whole attack algorithm is summarized in Algorithm 1.

Algorithm 1 Inversion attack
Input: clean image x, generative model G
Output: adversarial sample x’
Hyperparam: learning rate ¢, range of A: [Amin, Amax)

Initialize x’ as described above;
repeat
for k =1to K do
determine 7’ for x’ as in (8) via pilot run;
z-step: find the expression z* =~ Q(x') with n/’;
x-step: with @, set X’ < proj(x’ — ¢ - Vi L(X));
end for
if attack success then
A %()\ + )\min)
else
A 5N+ Amax)
end if
until convergence
return x’

Finally, we have the following theorem telling that under
mild conditions, the approximated gradient V,/Q(x’) in
our attack would well approximate the true gradient V. z*.

Theorem 1. Let T’ be the number of backtracking steps
and H = V2.,.lg be the Hessian of the function lg at
(z*,x). Assuming that (a) the solved z* is optimal in each
z-step (b) the new learning rate 1/ satisfies n'|H|| < 1 and
(c) the new z° in the backtracking procedure namely z0,, is
not far away from z*. Then V Q(x') is approximately a

T'-order approximation to V xz*:

oo T
VX’Z* = Z BAta VX’Q(X/) ~ Z BAt
t=0 t=0

where A and B are some matrices with || A < 1.

Proof: see Appendix A. The proof is partially inspired by
(Shaban et al., 2019). O

3.2. Amortized extension

In this part, we further develop an amortized inference-
inspired strategy to accelerate the attack. During our attack,
we need to execute z-step for K times if we are to perform
K updates to find x’ (see Algorithm 1). This is compu-
tationally expensive if the underlying steps 7" required to
reach z* in each z-step is large (e.g 7" = 500). To reduce
the computational expense, we propose to train an auxiliary
encoder network E/(+):

E =argminEy.), . (x) [lg(E(X); X)} (10)
Ec&

where the distribution ppx(x) is (implicitly) defined as:

X pmix(x) & X = G(Zmix)7
Zmix = 21 + (1 - B)Z2 (11)
z) NP(Z)a B Nu(()?l)a Z3 Np(z)

That is, we randomly perform interpolation in the latent
space and train F/ with the samples generated from these
interpolations. One can imagine that with sufficient training
samples and powerful E, we can obtain a good initial value
for z* by taking

2’ = E(x) (12)

We found this strategy particularly useful for reducing the
number of required steps 7" to reach z*. We call this strategy
amortized attack because E could help us to partially solve
z* for different x, avoiding us to solve z* from scratch. The
training of E can typically be done offline before we attack.

Remark. One may wonder whether we could alternatively
take z* ~ E(x’) rather than z* ~ (Q(x’) in Algorithm 1.
However, such a strategy would yield inaccurate gradient
Vi z* since E(x') is typically not as close to z* as Q(x’)
(i.e |Q(x") — z*||2 < ||EF(X’) — z*||2). This could cause
the attack to fail. Nonetheless, using E(x’) as only an
initialization of z° is safe and would not weaken the attack.
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Figure 3. Comparing different attacks when applied to DefenseGAN. The horizontal axis denotes the /2 distortion and the vertical axis
denotes the classification accuracy. Theses results are reported on 100 images. Note that each pixel in the image is in the range [—1, 1].

4. Comparison to other attacks

Some attacks in the field were also applied to estimate the
gradients in deep generative model-based defenses. Here
we discuss two of them that are most relevant to our work.

BPDA (Athalye et al., 2018). This white-box attack esti-
mates the gradient by replacing the non-differentiable part
in the defense with its differentiable approximation. When
applied to deep generative model-based defenses, it first
solves z* as usual, then treats it as a constant and estimates
the gradient w.r.r X’ by that w.r.t G(z*):

Vx’F‘(X/) ~ vG’(z)F(G(Z)) -

and there is now no need to compute V4 z* which is hard to
compute. However, such a method indeed induces a strong
assumption on x’ that x’ ~ G(z*) i.e the adversarial sample
must live near the range of the deep generative model. As we
will see later in the experiments, this assumption is indeed
impractical and might yield sub-optimal adversarial samples.
Our attack, by contrast, makes no assumption about x’.

NES (Ilyas et al., 2018). This black-box attack estimates
the gradient V F'(x’) from a set of random proposals:

1 &
Vx’-F(X/) ~ W ZQ’F(X/ + 61'), €; ~ N(070'21)
i=1

where o2 is the variance of the proposal distribution. While
this method provides us with a derivative-free way for esti-
mating gradient, it generally requires a large n to work well
(e.g n=50), which is prohibitive in deep generative model-
based defense as we would have to solve z* for n time per
each update to x’. Our attack only needs to solve z* once.

5. Experiments

In this section, we apply our attack to re-assess the robust-
ness of recent deep generative model-based defenses. Using
our attack, we also discover many interesting properties of
these defenses not identified by previous works. Codes are
available at https://github.com/cyz-ai/attack_ DGM.

Defenses. We focus on two state-of-the-art deep generative
model defenses in the field: DefenseGAN (Samangouei
et al., 2018) and Analysis-by-Synthesis (Schott et al., 2019).

Baselines. We compare our attack with the two attacks
mentioned in Section 4: the black-box NES attack, and
the white-box BPDA attack. For NES we use the default
setting as in the original literature (Ilyas et al., 2018). For
BPDA attack we use the version adapted to each defense
(see Section 5.4.2 in (Athalye et al., 2018) for DefenseGAN
and Section 5 ‘latent descent attack’ in (Schott et al., 2019)
for Analysis-by-Synthesis). For both attacks, we use the
same CW-like objective as in our attack to achieve smallest
distortion. We perform 75 gradient steps to x’ in all attacks.

Dataset. We conduct experiments on two common datasets:
MNIST and CIFAR10. For simplicity, we mainly consider
the binary classification scenario: digit 3 vs 5 in MNIST,
and plane vs horse in CIFAR10, however our analysis could
easily be extended to multi-class cases. All images x €
[—1, 1]¢*32%32 with C being the number of channels.

Detailed network settings. For all defenses, we adopt the
same convolutional/deconvolutional neural network as in
DCGAN (Radford et al., 2015), a popular deep generative
model in the field. We use a 32-dim latent representation
for MNIST and 64-dim latent representation for CIFAR10.
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Figure 4. A comparison between the adversarial samples found by BPDA attack (Athalye et al., 2018) and the proposed attack when
applied to DefenseGAN (Samangouei et al., 2018). Top row: clean sample. Middle row: adversarial sample found by BPDA. Bottom
row: adversarial sample found by our attack. Adversarial samples found by our attack are clearly more close to the original sample.

5.1. DefenseGAN

Effectiveness of the attack. In Figure 3, we show the
accuracy-distortion curve of DefenseGAN under the var-
ious attacks. One can see that on both datasets, the proposed
attack yields a lower model accuracy under the same dis-
tortion. Figure 4 further shows some adversarial samples
found by our attack and that by BPDA, from which one can
confirm that adversarial samples found by our attack are
visually closer to natural images (especially on CIFAR10).

To further illustrate the advantage of our attack over BPDA,
we also compare the distortion achieved by our attack and
that by BPDA under various latent dimensionality d. Higher
d corresponds to a more powerful generative model and
hence better satisfying the assumption G(z*) ~ x’ on which
BPDA relies to work well. Table 1 shows the results. Unsur-
prisingly, as d decreases, the distortion of BPDA increases
sharply. This is because the assumption G(z*) ~ x’ no
more holds in low d cases, which leads to biased gradients
in BPDA and hence sub-optimal adversarial sample. Our
attack, by contrast, is not sensitive to d and the power of
G. These results suggest that our attack might be a better
tool for evaluating the true robustness of Defense GAN (the
high efficacy of BPDA reported in (Athalye et al., 2018) for
DefenseGAN might be due to the very powerful generative
model used in the experiments where d was set to be 128).

Table 1. The average l2 distortion of DefenseGAN on MNIST
under different latent dimensionality d.

d=28 d=16 d=32
PROPOSED 5.76 5.64 .57
BPDA 11.60 9.24 7.13

In Table 2, we compare the computational expense of dif-
ferent attacks when applied to DefenseGAN. Compared to
NES, our attack only need to solve z* for one time per each
update to x’, whereas in NES we need to solve z* 50 times.

Compared to BPDA, the number of gradient steps required
to find z* in our attack is just half of that in BPDA owing to
the use of the amortized attack strategy. The overall cost in
our attack is approximately 1/2 of BPDA and 1/100 of NES.

Table 2. Comparing the computational expense of different attacks
per each update step to x” when applied to attack DefenseGAN.

PROPOSED BPDA NES
# WE NEED TO SOLVE z* 1 1 50
# GD STEPS TO REACH z* 150 300 300

Weakness of DefenseGAN. Leveraging our attack, we fur-
ther study what makes DefenseGAN vulnerable. Since
DefenseGAN works by first projecting the input image back
to the range of GAN, we look into the projected samples
i.e G(z*) of those adversarial samples found by our attack.
Ideally, if the on-manifold conjecture does be well realized
in DefenseGAN, the projected samples should highly re-
semble normal samples. We discover that this is not the
case. As shown in Figure 5, many of the projected samples
are semantically ambiguous and do not belong to any class.
Such ambiguous samples can clearly cause a misclassifica-
tion easily. This key fact indicates that DefenseGAN indeed
does not well achieve the on-manifold conjecture and may
explain why it is still vulnerable to our attack.

¥S8T 85§ 555

Figure 5. Visualizing some projected samples in DefenseGAN.

We now provide an explanation for why DefenseGAN
does not well realize the on-manifold conjecture. As
the GAN used in this defense is trained under the prior
z ~ N (z;0,1), it could be the case that for some specific z,
the generated sample x = G(z) would not look like normal
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Figure 6. Comparing different attacks when applied to ABS. The horizontal axis denotes the l> distortion and the vertical axis denotes the
corresponding classification accuracy. Theses results are reported on 100 images. Note that each pixel in the image is in the range [—1, 1].

sample. In other words, there may be some ‘holes’ in the
latent space of DefenseGAN that can be exploited by our
attack to generate off-manifold sample. One possible way to
evade these holes is to add a regularization term to l¢(z; X)
when solving z*:

la(z;x) = |G(z) — x||2 + 8- MM D(z,u),
u~ N(u;0,I)

where MMD denotes maximum mean discrepancy (Gretton
etal., 2012). This regularization term ensures that the solved
z* would look like as if it were sampled from the prior (re-
mark that if z ~ A/(z; 0, 1), each dimension of z namely
{21, 22, ...24} would form samples of a 1D standard normal
distribution). However, even under this strong restriction,
we found that the generative model in this defense can still
generate off-manifold samples. We conclude that the holes
may be ubiquitous in the latent space of vanilla GAN; these
holes could not be easily detected and avoided. Nonethe-
less this defense still provide a protection comparable to
adversarial training (Madry et al., 2018) (see Appendix B3).

5.2. Analysis-by-Synthesis (ABS)

Effectiveness of the attack. In Figure 6, we show the
accuracy-distortion curve of ABS under various attacks.
Again, we see that the distortion in our attack is much
smaller than that in other attacks. In Figure 8, we further
show some adversarial samples found by our attack and that
by BPDA. One can see that the adversarial samples found
by our attack are visually more closer to normal images.
(the unrealistic/blurry adversarial samples in BPDA might
be due to its assumption G(z*) ~ x’ with G being a vanilla
VAE whose reconstruction images are well-known blurry).

In Table 3, we further compare the distortion achieved by
our attack and BPDA under various latent dimensionality d.
Expectedly our attack yields a lower distortion under all d.

Table 3. The average [ distortion of ABS on MNIST under differ-
ent latent dimensionality d.

PROPOSED 4.85 4.14 3.90
BPDA 6.16 5.65 5.34

In Table 4, we compare the computational cost of different
attacks when applied to ABS, where one can see that the
overall cost of our attack is 4/7 of BPDA and 2/175 of NES.

Table 4. Comparing the computation expense of different attacks
per each update step to x’ when applied to attack ABS.

PROPOSED BPDA NES
# WE NEED TO SOLVE z* 1 1 50
# GD STEPS TO REACH z* 200 350 350

Weakness of ABS. As in the previous experiment, we fur-
ther leverage our attack to study what cause the weakness of
ABS. From Table 3, we observe an interesting phenomenon:
while the efficacy of our attack does not depend on the
power of the deep generative model, we do see ABS tend
to be more robust in low-dimensionality settings. To inves-
tigate this, we visualize the adversarial samples found by
our attack as well as their best reconstructions in each VAE
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Figure 8. A comparison between the adversarial samples found by BPDA attack (Athalye et al., 2018) and the proposed backtracking
attack when applied to ABS (Schott et al., 2019). Top row: the clean sample. Middle row: adversarial sample found by BPDA. Bottom
row: adversarial sample found by our attack. Adversarial samples found by our attack are clearly more close to the original sample.

(remark that ABS classifies x by seeking which VAE can
best reconstruct x). Figure 7 shows the results. From the
figure, we discover that when d is small, the VAE trained on
one class can not well reconstruct the image of another class,
but when d is large this becomes possible. This explains
why ABS tends to be less robust with large d: the deep
generative model in such cases becomes so flexible that it
can even generate samples in unseen class. These results
again confirm us the existence of the ‘holes’ in the latent
space of deep generative models, which could be exploited
by an attack to generate off-manifold samples, especially
for an overly powerful deep generative model.

original adv net3 net5

S5 355

original adv net3 net5
S5 55
55N S

(b) d = 32

(a) d =8

Figure 7. Visualizing the adversarial samples found by our inver-
sion attack and their best reconstruction in each VAE. Net3 denotes
the best reconstruction from the VAE trained on class 3 and net5
denotes the best reconstruction from the VAE trained on class 5.

As in DefenseGAN, we also try to evade the holes in the
latent space. One possible way is to restrict that the solved
representation z* for image x must be ‘common’. For exam-
ple, we can restrict that the density p(z*) is high. This can
be achieved by adding a regularization term to I, (z; X):

l, (2;%) = [|Gy(z) — x| + - ReLU(p — p(2)),
p(z) = N(z; pg, Xy).

where p(z) is estimated from the training set. p is a threshold
that ensures p(z*) to be high for z*. Here, p is set to be
the 90% quantile of the population of the p(z) values in
the training set. We hope this can get rid of some rare z*
that can generate off-manifold sample. Unfortunately, no
significant robustness gain is observed with this constraint.

We conclude that the holes are ubiquitous in the latent space
of vanilla VAE and are difficult to detect. Despite this
weakness, ABS still achieve a robustness comparable to
adversarial training (Madry et al., 2018) (see Appendix B3).

6. Conclusion

In this work, we propose a new white-box attack for break-
ing deep generative model-based defenses. A major chal-
lenge in attacking these defenses is how to estimate the
gradient both accurately and efficiently, as the gradient in
these defenses is not analytical due to the inversion of deep
generative model. We tackle this problem by a novel gradi-
ent approximation mechanism, which is further accelerated
by an amortized attack strategy. The proposed attack out-
performs state-of-the-art attack methods (e.g BPDA) largely
in both terms of minimal distortion and computational effi-
ciency. Our attack provides a generic tool for evaluating the
true robustness of deep generative model-based defenses.

Leveraging our attack, we also investigate what cause the
weakness of deep generative model-based defenses. We
discover that the vulnerability of these defenses originates
from the existence of the ‘holes’ in the latent spaces of the
deep generative models, which can be exploited by an attack
to generate off-manifold samples. These holes may not be
easily avoided or detected in vanilla deep generative models.
We further see that a more powerful deep generative model
does not necessarily lead to better robustness and could even
do harm to it, as could be seen from the case of ABS.

A potential way to improve deep generative model-based de-
fenses is to restrict the power of the deep generative models
appropriately. For example, we could choose the dimension-
ality of the latent space more carefully (e.g by setting it to
be the intrinsic dimensionality), or add some regularizations
to the latent representation like disentanglement (Chen et al.,
2016; Mathieu et al., 2019) or sparsity (Tonolini et al., 2019;
Zhou et al., 2020). By doing so, we might be able to pre-
vent deep generative models from generating off-manifold
samples or to detect them. We leave these to future works.
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