
Supplementary Material

Yanzhi Chen 1 Renjie Xie 2 Zhanxing Zhu 3

A. Theory: Proof of Theorem
Theorem 1. Let T ′ be the number of backtracking steps. Assuming that (a) the solved z∗ is optimal in each z-step (b) the
backtracking learning rate η′ satisfies η′‖H‖ ≤ 1 where H = ∇2

z∗z∗ lG is the Hessian of lG at (z∗,x′) and (c) z0new is not
far away from z∗ and lG is smooth w.r.t z. Then∇x′Q(x′) is approximately a T ′-order approximation to ∇x′z

∗:

∇x′z
∗ =

∞∑
t=0

BAt, ∇x′Q(x′) ≈
T ′∑
t=0

BAt

where A and B is some matrix with ‖A‖ ≤ 1.

Proof : We first prove∇x′z
∗ =

∑∞
t=0 BAt, then∇x′Q(x′) ≈

∑T ′

t=0 BAt. This proof is inspired by (Shaban et al., 2019).

Lemma 1. Given conditions (a)(b) in Theorem 1, we have

∇x′z
∗ =

∞∑
t=0

BAt

where
A = I− η′∇2

z∗,z∗ lG(x
′, z∗), B = −η′∇x′,z∗ lG(x

′, z∗)

Proof : it can be easily shown by the technique of implicit differentiation that (Gould et al., 2016):

∇x′z
∗ = −∇x′,z∗ lG(x

′, z∗)∇2
z∗,z∗ lG(x

′, z∗)︸ ︷︷ ︸
H−1

−1 (1)

Remark that for a matrix M that ‖M‖ ≤ 1, we have (Horn & Johnson, 2012):

(I−M)−1 =

∞∑
t=0

Mt (2)

then, since η′‖H‖ ≤ 1,

H−1 = η′ · (I− (I− η′H))−1 = η′
∞∑
t=0

(I− η′H)t (3)

substituting this back to (1):

∇x′z
∗ = −η′∇x′,z∗ lG(x

′, z∗)︸ ︷︷ ︸
B

∞∑
t=0

(I− η′H)︸ ︷︷ ︸
A

t (4)

which completes the proof.

*Equal contribution 1School of Informatics, The University of Edinburgh, UK 2School of Information Engineering, Southeast University,
China 3School of Mathematical Sciences, Peking University, China. Correspondence to: Zhanxing Zhu <zhanxing.zhu@pku.edu.cn>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).



On breaking deep generative model-based defenses and beyond

Lemma 2. Given conditions (a)(c) in Theorem 1, we have

∇x′Q(x′) ≈
T ′∑
t=0

BAt

where A and B are the same matrices as in Lemma 1.

Proof : remark that
Q(x′) := Qx′(z

0) = qx′ ◦ qx′ ... ◦ qx′(z0)︸ ︷︷ ︸
T ′

qx′(z) = z− η′ · ∇zlG(z;x
′)

(5)

For clarity let us write qx′(z) = q(z,x′) from now on. The total derivative w.r.t x′ in q(z,x′) is then

∇x′q(z,x
′) = ∇zq(z,x

′)
∣∣∣
x′
∇x′z+∇x′q(z,x

′)
∣∣∣
z

(6)

Remark that zt+1 = qx′(z
t) = q(zt,x′). Then

∇x′z
t+1 = ∇ztzt+1

∣∣∣
x′︸ ︷︷ ︸

αt

∇x′z
t +∇x′z

t+1
∣∣∣
zt︸ ︷︷ ︸

βt

(7)

Unfolding this recursive expression, we obtain

∇x′z
T ′ =

T ′∑
t=0

βtαt+1αt+2 ... αT ′ (8)

Now, since zT
′
= z∗ (condition (a)), we have

αT ′ = ∇zT ′zT
′+1
∣∣∣
x′

= ∇zT ′zT
′
− η′∇zT ′∇zT ′ lG(z

T ′ ;x′) = I− η′∇2
z∗,z∗ lG(x

′, z∗) = A

βT ′ = ∇x′z
T ′+1

∣∣∣
zT ′

= 0− η′∇x′∇zT ′ lG(z
T ′ ;x′) = −η′∇x′,z∗ lG(x

′, z∗) = B
(9)

Importantly, since z0new is close to z∗ and lG is smoothed enough (condition (c)), we have

α0 ≈ α1... ≈ αT ′ = A, β0 ≈ β1... ≈ βT ′ = B (10)

which yields

∇x′z
T ′ ≈

T ′∑
t=0

BAt (11)

substituting z∗ = zT
′

completes the proof.

Unifying Lemma 1 and Lemma 2 immediately yields Theorem 1.

B. Experiments: more details and results
B1. Detailed defense settings

The detailed network architectures for the deep generative models used in DefenseGAN and ABS are summarized in Table
1. Here, C is the number of channels in the image (e.g C = 3) and d is the dimensionality of the latent representation.

• conv(c,m, k, s, p) refers to convolution with c input channels, m feature maps, filter size k × k, stride s and padding p;

• conv>(c,m, k, s, p) refers to the transpose of convolution (sometimes called deconvolution) (Radford et al., 2015) with c
input channels, m feature maps, kernel k × k, stride s and padding p;



On breaking deep generative model-based defenses and beyond

Table 1. Discriminator / Encoder

Stage1 Stage2 Stage3 Stage4 out

conv(C, 256, 4, 2, 1) conv(256, 512, 4, 2, 1) conv(512, 1024, 4, 2, 1) conv(1024, 128, 4, 1, 0) FC(d)
LeakyReLU(0.2) LeakyReLU(0.2) LeakyReLU(0.2) LeakyReLU(0.2)

Table 2. Generator / Decoder

Stage1 Stage2 Stage3 Stage4 out

conv>(d, 1024, 4, 1, 0) conv>(1024, 512, 4, 2, 1) conv>(512, 256, 4, 2, 1) conv>(256, C, 4, 2, 1) Tanh
BatchNorm BatchNorm BatchNorm

ReLU ReLU ReLU

• LeaklyReLU(r) refers to the leaky version of ReLU unit (Maas et al., 2013) with parameter r;

• FC(d) denotes the fully connected layer with d outputs.

• BatchNorm refers to the batch normalization operation (Ioffe & Szegedy, 2015).

All the GANs are realized as Wasserstein GAN (Arjovsky et al., 2017) trained with gradient penalty (Gulrajani et al., 2017).

B2. Detailed attack settings

NES. We estimate the gradient from a population of n = 50 samples. These samples are drawn from a search distribution
with variance σ2 set to be σ = 0.5 in DefenseGAN and σ = 0.1 in ABS (we discover that the default σ = 0.1 is not
enough to break DefenseGAN in the experiments we consider). We then update the adversarial sample x′ with the estimated
gradient by the CW objective:

∇x′L(x′) ≈ ∇x′‖x′ − x‖22 + λ · ∇̂NES
x′ F (x

′) (12)

BPDA. For DefenseGAN (Samangouei et al., 2018), we adopt the same set up as in the original obfuscated gradient literature
(Athalye et al., 2018). A CW-like objective is applied so as to achieve minimal distortion. More specifically, it updates the
adversarial sample x′ in two steps: (a) forward step, where we find z∗ = argminz lG(z;x

′) = ‖G(z)− x′‖2; (b) backward
step, where we update x′ ← x′ − η · sign(∇x′L(x′)) with

∇x′L(x′) ≈ ∇x′‖x′ − x‖22 + λ · ∇x′′F (x
′′)
∣∣∣
x′=G(z∗)

(13)

the value of λ are determined by a 5-steps binary search. The value of η is set to be η = 0.04 · t/T where t is the current
iteration and T is the number of maximum iteration.

For ABS (Schott et al., 2019), we adopt the same ‘latent space attack’ as in the ABS literature (Schott et al., 2019), which is
variant of BPDA adapted to this defense. It updates the adversarial sample x′ in two steps: (a) forward step, where we find
z∗ = argminz lGc(z;x

′) = ‖Gc(z)− x′‖2 with c 6= y the wrong class; (b) backward step, where we update x′ by

x′ ← (1− η) · x′ + η ·Gc(z∗) (14)

that is, we make a step towards the best reconstruction in the wrong class. We set η = 0.02 and iterate until we have found
x′. To ensure that we can find an adversarial sample within the 75 update steps, we increase the value of η every 25 steps.
After we have found x′, a 5-step binary search between x and x′ is applied to reduce the distortion as much as possible.

B3. Comparison among different defenses

We also compares the robustness of DefenseGAN (Samangouei et al., 2018), ABS (Schott et al., 2019) and adversarial
training (ADVT) (Madry et al., 2018). Note that when applied to ADVT our attack degenerates to the original CW attack.



On breaking deep generative model-based defenses and beyond

(a) MNIST, d = 32 (b) CIFAR10, d = 64

Figure 1. Comparing the robustness of different defenses in the presence of the proposed attack. The horizontal axis denotes the l2
distortion and the vertical axis denotes the classification accuracy. Theses results are reported on 100 images only.

Figure 1 shows the accuracy-distortion curve of the various defenses under our attack. Interestingly, we see that despite
of our empowered attack, the two deep generative model-based defenses (DefenseGAN, ABS) do seem to be more
robust than adversarial training given the experimental setting. A possible explanation is that although DefenseGAN and
ABS do not realize the on-manifold conjecture perfectly as analyzed in the paper, they do to some extent exclude some
out-off-the-distribution samples, which yield a good protection. We conclude that this kind of defense is still very promising.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein generative adversarial networks. In International Conference on

Machine Learning, pp. 214–223, 2017.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to
adversarial examples. In International Conference on Machine Learning, pp. 274–283, 2018.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., and Guo, E. On differentiating parameterized argmin and
argmax problems with application to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of wasserstein gans. In
Advances in neural information processing systems, pp. 5767–5777, 2017.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge university press, 2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pp. 448–456, 2015.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml,
volume 30, pp. 3, 2013.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial
attacks. In ICLR, 2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-gan: Protecting classifiers against adversarial attacks using
generative models. In ICLR, 2018.



On breaking deep generative model-based defenses and beyond

Schott, L., Rauber, J., Bethge, M., and Brendel, W. Towards the first adversarially robust neural network model on mnist. In
ICLR, pp. 1–16, 2019.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Truncated back-propagation for bilevel optimization. In The 22nd
International Conference on Artificial Intelligence and Statistics, pp. 1723–1732, 2019.


