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Abstract

Derivative-free optimization (DFO) has recently
gained a lot of momentum in machine learning,
spawning interest in the community to design
faster methods for problems where gradients are
not accessible. While some attention has been
given to the concept of acceleration in the DFO
literature, existing stochastic algorithms for ob-
jective functions with a finite-sum structure have
not been shown theoretically to achieve an accel-
erated rate of convergence. Algorithms that use
acceleration in such a setting are prone to instabil-
ities, making it difficult to reach convergence. In
this work, we exploit the finite-sum structure of
the objective in order to design a variance-reduced
DFO algorithm that provably yields acceleration.
We prove rates of convergence for both smooth
convex and strongly-convex finite-sum objective
functions. Finally, we validate our theoretical
results empirically on several tasks and datasets.

1. Introduction

While gradient-based techniques are extremely popular in
machine learning, there are applications where derivatives
are too expensive to compute or might not even be accessi-
ble (black-box optimization). In such cases, an alternative is
to use derivative-free methods which rely on function values
instead of explicitly computing gradients. These methods
date to the 1960’s, including e.g. (Matyas, 1965; Nelder &
Mead, 1965) and have recently gained more attention in
machine learning in areas such as black-box adversarial at-
tacks (Chen et al., 2017), reinforcement learning (Salimans
et al., 2017), online learning (Bubeck et al., 2012), etc.

We focus our attention on optimizing finite-sum objective
functions which are commonly encountered in machine
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learning and which can be formulated as:

min lf(a:) = 1 Zfz(x)l , (1)

z€RC

where each function f; : R¢ — R is convex and differen-
tiable, but its derivatives are not directly accessible.

The problem of optimizing Eq. (1) has been addressed in a
seminal work by (Nesterov & Spokoiny, 2011) who intro-
duced a deterministic random' gradient-free method (RGF)
using a two-point Gaussian random gradient estimator. The
authors derived a rate of convergence for RGF for both
convex and strongly-convex functions and they also intro-
duced a variant with a provably accelerated rate of conver-
gence. Subsequently, (Ghadimi & Lan, 2013) developed a
stochastic variant of RGF, proving a nearly? optimal rate of
convergence for convex functions.

In the field of first-order gradient-based methods, gradient
descent has long been known to achieve a suboptimal con-
vergence rate. In a seminal paper, Nesterov (1983) showed
that one can construct an optimal — i.e. accelerated — al-
gorithm that achieves faster rates of convergence for both
convex and strongly-convex functions. Accelerated meth-
ods have attracted a lot of attention in machine learning,
pioneering some popular momentum-based methods such
as Adam (Kingma & Ba, 2014) which is commonly used
to train deep neural networks. It therefore seems natural
to ask whether provably accelerated methods can be de-
signed in a derivative-free setting. While this question has
been considered in a deterministic setting in (Nesterov &
Spokoiny, 2011) as well as in a stochastic setting (Gorbunov
et al., 2018; 2019), none of these works provably derived
an accelerated rate of convergence for the finite-sum setting
presented in Eq. (1).

The inherent difficulty of designing a stochastic algorithm
with an accelerated rate of convergence is due to the insta-
bility of the momentum term (Allen-Zhu, 2017; Orvieto
et al., 2019). One way to reduce instabilities is to rely on
stochastic variance reduction (Johnson & Zhang, 2013; De-
fazio et al., 2014) which allows to achieve a linear rate of
convergence for smooth and strongly convex functions in
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a gradient-based setting and then extended to nonconvex
functions (Fang et al., 2018; Zhou et al., 2020). This rate
is however still suboptimal (see e.g. (Lan & Zhou, 2018))
and there has been some recent effort to design an optimal
variance-reduced method, including (Lin et al., 2015; Allen-
Zhu, 2017; Lan & Zhou, 2018; Lan et al., 2019). We will
build on the approach of (Lan et al., 2019) as it relies on less
restrictive assumptions than other methods (see discussion
in Section 2). We design a novel algorithm that estimates
derivatives using the Gaussian smoothing approach of (Nes-
terov & Spokoiny, 2011) as well as the coordinate-wise
approach of (Ji et al., 2019). We prove an accelerated rate
of convergence for this algorithm in the case of convex
and strongly-convex functions. Our experimental results on
several datasets support our theoretical findings.

2. Related Work

Momentum in gradient-based setting. The first acceler-
ated proof of convergence for the deterministic setting dates
back to Polyak (1964) who proved a local linear rate of
convergence for Heavy-ball (with constant momentum) for
twice continuously differentiable, 7-strongly convex and
L-smooth functions, with a constant of geometric decrease
which is smaller than the one for gradient descent. A similar
method, Nesterov’s Accelerated Gradient (NAG), was intro-
duced by (Nesterov, 1983). It achieves the optimal O(1/t?)
rate of convergence for convex functions and, with small
modifications, an accelerated linear convergence rate for
smooth and strongly-convex functions.

Prior work has shown that vanilla momentum methods lack
stability in stochastic settings, where the evaluation of the
gradients is affected by noise (see e.g. motivation in (Allen-
Zhu, 2017)). Various solutions have been suggested in the
literature, including using a regularized auxiliary objective
that enjoys a better condition number than the original objec-
tive (Lin et al., 2015) or applying variance-reduction to ob-
tain more stable momentum updates (Allen-Zhu, 2017; Lan
etal., 2019). We here build on the Varag approach presented
in (Lan et al., 2019) as it presents several advantages over
prior work, including the ability to accelerate for smooth
convex finite-sum problems as well as for strongly-convex
problems without requiring an additional strongly-convex
regularization term. Unlike Katyusha (Allen-Zhu, 2017),
Varag also only requires the solution of one, rather than two,
subproblems per iteration (discussed in (Lan et al., 2019)).

Variance-reduced DFO. In the finite-sum setting intro-
duced in Eq. (1), variance-reduction techniques have be-
come popular in machine learning. These techniques were
originally developed for gradient-based methods and later
adapted to the derivative-free setting in (Liu et al., 2018b)
and (Liu et al., 2018a). Various improvements were later
made in (Ji et al., 2019) such as allowing for a larger con-

stant stepsize, as well as extending the analysis of (Fang
et al., 2018) to a broader class of functions in a DFO set-
ting. Finally, (Ji et al., 2019) introduced a coordinate-wise
approach to estimate the gradients instead of the Gaussian
smoothing method. This yields a more accurate estimation
of the gradient at the price of a higher computational com-
plexity. We rely on this technique to estimate the gradient
at the pivot point in our analysis (see details in Section 4).

Momentum in DFO. As mentioned earlier, (Nesterov &
Spokoiny, 2011) proved a rate in a deterministic setting.
(Gorbunov et al., 2018), analyzes acceleration in a stochas-
tic setting for general objective functions without explicitly
exploiting any finite-sum structure (hence, assuming finite
variance). Closer to our setting, (Gorbunov et al., 2019)
analyzes a stochastic momentum DFO method based on
the three point estimation technique proposed in (Bergou
et al., 2019). Although they do theoretically analyze the
convergence of such algorithms, they only prove a subop-
timal rate of convergence instead of the accelerated rate of
convergence derived in our work.

3. Background and Notation

In this paper we work in R¢ with the standard Euclidean
norm || - || and scalar product (-,-). Our goal, as stated
in the introduction, is to minimize a convex function f =
% 2?21 fi (with f; : R® — R for each i = 1...n) without
using gradient information. For our theoretical analysis, we
will need the following standard assumption.

(A1) Each f; is convex, differentiable and L-smooth®.
Hence, also f = % >-iy fi is convex and L-smooth.

“for all z, y € R? we have |V fi(z) — Vfi(y)|| < Lz —y]|.

To estimate gradients, we will use and combine two different
gradient estimation techniques, with different properties.

Estimation by Gaussian smoothing. This technique was
first presented by Nesterov & Spokoiny (2011): let u be
the smoothing parameter, then f, : R? — R, the smoothed
version of f, is defined to be such that for all z € R¢

fulr) = ——

— L2
@)% e f(x+ pu)e 21 gy,

In our setting, it is easy to see that (see discussion in the
appendix) f,, is still convex and L-smooth. Crucially, the
integral in the definition of f, can be approximated by
sampling random directions u € R? with a Gaussian distri-
bution: f,(z) = E,[f(x + pu)]. Note that, for 1 < 1, we
have f,, = f.

The gradient of f,, can be written as

(f(z + pu) — f(x))u

vflt(x) =E, 1 = Eu[g#(x, u)]
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A stochastic estimate of g, (x, ©) using data-point ¢, which
we denote by g,,(z, u, 1), can be then calculated as follows:
~ file + pu) — fi(z)

gu(x,u,i) = . u. 2)

As we will see more in more detail in the next section,
this cheap estimate is not appropriate if we seek a solid
approximation. Fortunately, for such a task, we can use the
coordinate-wise finite difference method.

Estimation by coordinate-wise finite difference. This
approach, introduced in (Ji et al., 2019), estimates V f;(x)
without introducing a smoothing distortion, by directly eval-
uating the function value in each coordinate:

2v ]’

d
PR SEL AR (LA PEY
j=1

where e; is the unit vector with only one non-zero entry 1 at
its j*" coordinate. Note that, g, is d times more expensive
to compute compared to g,,. Besides, the coordinate-wise
estimator of V f(z) is denoted as g, () where we remove
the subscript ¢ from Eq. (3).

4. Algorithm and Analysis

The method we propose is presented as Algorithm 1 (ZO-
Varag), and is an adaptation of Varag (Lan et al., 2019) to the
DFO setting. At it’s core, ZO-Varag has the same structure
of SVRG (Johnson & Zhang, 2013), but profits from the
mechanism of accelerated stochastic approximation (Lan,
2012) combined with the two different zero-order gradient
estimators presented in the last section. We highlight some
important details below:

1. At the beginning of epoch s, we compute a full zero-
order gradient §° at the pivotal point &°~* (i.e. the ap-
proximation of the solution provided by the preceding
epoch). Since the accuracy in §° drastically influences
the progress made in the epoch, we choose for its ap-
proximation the coordinate-wise estimator in Eq. (3).
The estimate ¢° will then be used to perform T inner-
iterations and to compute the next approximation 2° to
the problem solution.

2. Each inner-iteration (within an epoch) uses three se-
quences: {x:},{z,}, {Z:}. Each of these sequences
play an important role in the acceleration mechan-
ics (see discussion in (Lan et al., 2019)).

3. In the inner loop, at iteration ¢, a cheap variance-
reduced gradient estimate of V f,(z,) is computed
using the same technique as SVRG (Johnson & Zhang,
2013) combined with Gaussian smoothing (see Eq. (2))

Gi = gu(@y, ue, i) — 9u(Z,up, 1) +3°, (4

where u; is a sample from a standard multivariate Gaus-
sian, as required by the estimator definition and Z is
the pivotal point for this inner loop (epoch s).

4. The choice of the additional parameters {75}, {vs}.
{as}, {ps}, {0:} will be specified in the convergence
theorems depending on each function class being con-
sidered (smooth, convex or strongly-convex).

4.1. Variance of the Gradient Estimators

From our discussion above, it is clear the following error
term &; will heavily influence the analysis: the error in the
estimation of the per-iteration direction Gy.

0¢ := Gy — V fu(z,) (iteration gradient error).

The expectation of §;, over uy, i, is e® defined below:

e’ :=g° —Vf,(T) (pivotal gradient error).

This is different from the standard SVRG as the pivotal
gradient error e® vanishes for gradient-based methods. The
rest of this section is dedicated to the fundamental properties
of this error.

Pivotal gradient error bound. Crucially, note that e? is
measured with respect to f,, (the smoothed version of f).
This provides consistency with §;, at the price of a well-
behaved additional error coming from the smoothing distor-
tion. A necessary first step to start our analysis is to bound
|le®||? uniformly by a problem-dependent constant E:

le]* < [1g° — Vfu (25 1|1
<2[|lg° - Vf@EhH)?
+IVF@E ) = VY]

2L2 d 3
<2L2dv? + M

= F, (5)
where the last inequality is a combination of Lemma 3
from (Ji et al., 2019) and Lemma 3 from (Nesterov &
Spokoiny, 2011). Note that a similar inequality would not
be possible by using an estimate obtained from sampling
a random direction for pivotal g° — as the strength of the
error would depend on the gradient magnitude, i.e. can-
not be uniformly bounded (see Theorem 3 in (Nesterov &
Spokoiny, 2011)).

Iteration gradient error bound. Unfortunately, as ZO-
Varag is a DFO algorithm, the expectation of d; is not van-
ishing (in contrast to standard SVRG and Varag). However,
the next lemma shows that it is still possible to bound the
(trace of the) variance of G;.
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Algorithm 1 ZO-Varag
Require: 20 € R {T,}, {7s}, {as}, {ps}, {04}
Set 7 = 70 = 2°.
fors=1,2,...,5do
OptionI : 3 = 35!
Option II: & = 75!
Set xg = .138_1, Tog=1T.
Pivotal ZO gradient §° = g, () using the coordinate-wise approach by Eq. (3).
fort=1,2,...,T; do
Ly = [(]— + T’YS)(]- — Qs — ps)i'tfl +aszy1 + (]- + T'Ys)psi'}/[l + T'Vs(]- - as)}-
Pick i; € {1,...,m} uniformly and generate u; from N(0, I).

Gt = gu(&ta Ut, Zt) - gu(‘ia Ut, Zt) + gs.

zt = [vsGt + YsTZy + 2—1]/[1 + 75T

Ty = (1 — g — ps)Ty—1 + sy + ps.
end for

o = argmingegs {75 [(Gr, @) + |zt — 2|*] + Fllwe—1 — 2]}

Seta® = xp,, 7 = Ty, and ° = 312, (0,5,)/ (12, 0s).

end for
Output: 7°

Lemma 1. (Variance of G;) Assume (Al). Then, at any
epoch s > 1 and iteration 1 <t < Ty we have

Eutﬂ;tl]:t—l “|Gt - Eut,it\]‘_t71 [Gt] Hz} 6)
< 18u*L*(d +6)3
+8(d+ 4)L[fu(§3) = fulzy) = (Vfulzy), 2 — Qt”a

d - -
o Eu,iol7o 1 [0e] = ° = VIu(@) #0, (7)
where Fy is the o-algebra generated by the previous iterates
in the current epoch, i.e. Fy := {us,tt,...,u1,i1}, and &
is the pivotal point for the epoch s.

Compared to Lemma 3 in (Lan et al., 2019), the bound on
the variance of the gradient in the DFO case is dimension-
dependent and has an extra error 1812 L?(d + 6)3 due to
Gaussian smoothing (it comes from the fact that we also
take the expectation over ).

4.2. Analysis for Smooth and Convex Functions

For our final complexity result in this section to hold, we
need all the sequences generated by Algorithm 1 to be
bounded in expectation.

(A2,) Letwj € argmin, f, () and consider the sequence
of approximations {Z°} returned by Algorithm 1. There
exists a finite constant Z < oo, potentially dependent on L
and d, such that, for ¢ small enough,

supE [||2° — a:ft||} < Z.
s>0

Using an argument similar to (Gadat et al., 2018), it is possi-
ble to show that this assumption holds under the requirement

that f is coercive, i.e. f(z) — oo as ||z]| — co. We are
ready to state the main theorem of this section.

Theorem 2. Assume (Al) and (A2,). If we define sq :=
[log(d 4+ 4)n| + 1 and set {Ts}, {s} and {ps} as

s—1
Ts:{?rso,’ iizz Yo = marpre D= b
(8)
with = {é» ) 5 < s . o
STsetdr S50
If we set
at:{gz(aﬁm) E;S Lo o
we obtain
E[fu(#) - f;] <
(d;#Jﬂqu?m, 1<s< s,
71(3—1(;2—4)2+5s (61 +<2), $> 80,

where ¢, = p?L(d +4)%, ¢ = ZVE, 5, = O(s — s0) and
Dy is defined as

2
Do 1= gy (@) = fulwp)] 4 6L 2" — o
(11)

*

where x M

is any finite minimizer of f,,.
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Compared to the gradient-based analysis of (Lan et al.,
2019), two additional errors terms appear because of the
DFO framework: ¢; is the error due to the Gaussian smooth
estimation and ¢ is an error due to the approximation made
at the pivot point. It is essential to note that, in the bound for
s > 8o, the error d4(s1 + <o) grows linearly with the number
of epochs. In Corollary 3 we show how it is possible to
tune our zeroth-order estimators to make these errors vanish
by choosing sufficiently small smoothing parameters ;. and
v, with an argument similar to the one used in Theorem 9
from Nesterov & Spokoiny (2011).

Based on Theorem 2, we obtain the following complexity
bound.

Corollary 3. Assume (Al) and (A2,,). The total number
N, of function queries performed by Algorithm 1 to find
a stochastic e-solution, i.e. a point T € R? s.t. E[f(Z) —
f*] < € can be bounded by

- O{dnlogdgo}, n > Dg/e

N, =
O{dnlogdn+dﬂ"?°}, n < Dg/e.

The reasoning behind the proof is quite standard in the DFO
literature (Nesterov & Spokoiny, 2011), yet it contains some
important ideas. Hence we include a proof sketch in order
to give some additional intuition to the reader, who might
wonder how to control the error terms from the theorem.
Details can be found in the appendix.

Proof sketch. The procedure consists in deriving three
bounds, that combined give the desired suboptimality e:

1. In general, zj, # x* € argmin, f(z). Yet, Theorem 2
gives us a procedure to approximate z,,. Hence we have
to show that f,,(°) — f.(x},) and f(2°) — f(z*) are close
enough. In particular, we have f,,(7°) — f.(x},) > f(2°) -
f(x*) — p®Ld, directly from Theorem 1 in (Nesterov &
Spokoiny, 2011). Hence, we get the following sufficient
condition: i > p?Ld. Therefore, the desired bound holds
for p? < 11+ Since p is a design parameter, which does
not affect the convergence speed but just the error, we can
choose it small enough so that this requirement is satisfied.

2. Next, assume ¢; = ¢o = 0 — we will deal with these
terms at the end of the proof. We can then follow the proof
of Theorem 1 in (Lan et al., 2019), but with the requirement
of § accuracy. This gives us the desired number N, of
function queries, which correspond to 5. epochs.

3. Last, we spend the last  accuracy to bound the error
terms, now that we know we need to be running the algo-
rithm only for 5. epochs. First, we group together the error
terms in ¢ = (1 + 05_)(s1 + <2). We recall that, by Eq. (5),
(61 + s2) o< u? + \/u? + v2. Hence, again as for the first

point of this proof, we can choose x and v small enough
such that ¢ < 7. Note that it is exactly in this step that we
need (A2,,).

Hence, we can reach accuracy € = i + g + i. O

We make two important remarks.

Remark (Error terms). As we discussed in the proof of
Corollary 3, smaller smoothing parameters yields smaller
additional errors. Thus, in line with the previous litera-
ture (Nesterov & Spokoiny, 2011; Ji et al., 2019) we can
choose the smoothing parameters |, v arbitrarily small as
long as they are less than the upper bounds derived in
”Proof of Corollary 3” in the appendix. Theoretically, u, v
relies on a good estimation of Z in A2,,. However, from
a more practical side, we note in our experimental results
in Section 6 that the worst-case guarantees are not neces-
sarily tight since we do not observe any significant error
accumulation.

Remark (Dependency on the problem dimension). The
overall dependency of N. on the problem dimension is
O(dlog(d)). This complexity is comparable® to the usual
O(d) found in the classical literature (Nesterov & Spokoiny,
2011; Ghadimi & Lan, 2013).

We conclude by observing that, in the case n > Dg/e,
Algorithm 1 achieves a linear rate of convergence when
the desired accuracy is low (e has a large value) and/or n
is large. In the other case n < Dg/e (i.e. high accuracy),
Algorithm 1 achieves acceleration.

4.3. Analysis for Smooth and Strongly-convex
Functions

We now analyze the case where f is strongly-convex.

(A3) f= % S, fiis T-strongly convex. That is, for all
2,y €RY, f(y) > f(2) +(Vf(2),y —2) + Flly — =

For this case, we do not need (A2,,) since we will leverage
on strong convexity (which implies coercivity) to include Z
directly into our analysis.

Theorem 4. Assume (Al) and (A3). Let us denote sy :=
|log(d +4)n| + 1 and assume that the weights {0;} are set
to Eq. (10) if 1 < s < sg. Otherwise, they are set to

0, — Ty — (1 - Qs _ps)rta
P =
Ft—la

1<t<T,—1,
o (12)
t:TS‘a

where Ty = (1 + %)t If the parameters {Ts}, {~s} and

3 As an interesting side-note, if d is the ratio between the diam-
eter of the universe and the diameter of a proton (i.e. ~ 10%%), we
have log(d) < 100.
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{ps} are set to Eq. (8) with

1
o 92 S S S50,
ag =% (13)
{mln{w/m, %}, s > 8q,
we obtain
E[fu(z°) = f;] <
1
7(d+ 4)D0 + 2§1 + O.5§27 1 <s< So

25+1

D
(4/5)3_807O + 1261 + 562, s> sgandn > >=

—(s—sp) D
(1+ 1) T 2

+(8 8L 4 4)@ + 562,

s> spandn < 2>

nTt

where ¢ = p?L(d + 4)?, o = E/7 and Dy is defined as
in Eq. (11).

Remark. Unlike the result in Theorem 2 for convex func-
tions, the error term in Theorem 4 for the strongly-convex
case does not increase with the epoch s. This is consistent
with Theorem 9 in (Nesterov & Spokoiny, 2011).

Using the same technique as for the proof of Corollary 3,
we get the following complexity bound.

Corollary 5. Assume (Al) and (A3). The total number
N, of function queries performed by Algorithm 1 to find
a stochastic e-solution, i.e. a point & € R? s.t. E[f(z) —
f*] <€ can be bounded by

O{dnlog (LLGJO)}’ n>Dg/e or n>6L/T,

Ne:= O{dn log(dn) n<Do/eand n<6L/T

We conclude this subsection by commenting on the opti-
mality of this complexity result, following the discussion
in (Lan et al., 2019). When 7 and € are small enough (i.e.
the second case in Corollary 5, ill-conditioned), ZO-Varag
exhibits an accelerated linear rate of convergence which
depends on the square root of the condition number /L /7.
Else, if € or T are relatively large (first case), ZO-Varag treats
the problem as if it was not strongly convex and retrieves
the complexity bound of Corollary 3. Again, similarly to the
smooth convex case, the dependency of N, on the problem
dimension is O(d log(d)).

5. A Coordinate-wise Variant

In this section, we study the effect of replacing the gradient
estimator g, (, u, ¢) in the inner-loop of Algorithm 1 with
the coordinate wise variant g, (z, %) proposed in (Ji et al.,
2019) and already used in the last section for the computa-
tion of the pivotal gradient g°. More precisely, we consider
the following modification (g, defined in Eq. (3)): at each
inner-loop iteration ¢,

Gt = gu(2y,9¢) — 9u(T,4¢) + §°.

As we are not using a smoothed version of f anymore, we
need to introduce a slight modification on (A2,,).

(A2,) Leta* € argming paf(x). For any epoch s of
Algorithm 1, consider the inner-loop sequences {z,} and
{Z:}. There exist a finite constant Z < oo, potentially
dependent on L and d, such that, for » small enough,

sup max El|lz—z||] < Z.

s>0 z€{z:}U{z;}

Again, as mentioned in the context of (A2,) in the last
section, it is possible to show that this assumption holds
under the requirement that f is coercive.

5.1. Modified Analysis for Smooth and Convex
Functions

We follow the same proof procedure from last section, and
comment the results with a remark at the end of this section.

Theorem 6. Consider the coordinate-wise variant of Algo-
rithm I we just discussed. Assume (Al) and (A2,). Let us
denote sy := |logn| + 1. Suppose the weights {6;} are set
as in Eq. (10) and parameters {Ts}, {7s}, {ps} are set as

2571 5 < s
Ts: ’ - 5 s:#a szl,with
{Tso, s> s v T2La, P 2
(14)
1 <
0e =472, 5=%0 (15)
m, s > So
Then, we have
E[f(&°) - f*] <
!
Do |y 1<s<s
2S+1 1 25 = 0
1606 + 05 - (61 + 52)
————5 1+ 0s " ) >
n(5750+4)2 C1 T 62 S > S0

where ¢, = V2Ld, ¢ = L\ dZv, 6, = O(s — sg) and D),
is defined as

Dy = 2[f(2%) = f(2")] + 6L|l2° — =[], (16)

where x* is any finite minimizer of f.
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Corollary 7. Consider the coordinate-wise variant of Al-
gorithm 1. Assume (Al) and (A2,,). The total number N, of
function queries performed by Algorithm 1 to find a stochas-
tic e-solution, i.e. a point & € R4 s.t. E[f(7) — f*] < ¢,
can be bounded by

5.2. Modified Analysis under Strong Convexity

Theorem 8. Consider the coordinate-wise variant of Al-

gorithm 1. Assume (Al), (A2,) and (A3). Let us denote

so := |logn| + 1 and assume that the weights {0:} are set

to Eq. (10) if 1 < s < sg. Otherwise, they are set to

; {Ftl —(l=ay—p)ly, 1<t<T,—1
t =

T (17
Ft—la t:TS7 ( )

where I'y = (1 + Tvs)t. If the parameters {Ts}, {vs} and
{ps} set to Eq. (14) with

1
29 s < 50,
Qs = . (13)
{mln{\/l’;z, 1}, s> s,
We obtain
E[f(z°) - f*] <
1
——D{ + 1.5¢1 + 4¢, 1<s5<s9

2$+1
D/
(4/5)575070+ 961 + 24¢o, s> sgandn > %

1y ~(s=s0) Do
(1 + 4 SL) n

+(24/22 +1) (361 + 82),

s>soandn<%

where ¢, = V2Ld, ¢ = IVdZv and Dj, is defined as in
Eq. (16).

Corollary 9. Consider the coordinate-wise variant of Al-
gorithm 1. Assume (Al), (A2,) and (A3). The total
number N, of function queries performed by Algorithm 1
to find a stochastic e-solution, i.e. a point T € R? s.t.
E[f(Z) — f*] < € can be bounded by

O{dnlog(%é)}, nz%éornz 8L
N = O{dnlog(n) n < %6 andn < 3L
+d %log (Zé)},
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Figure 1. Loss log(f — f*) over epochs. We show more results
for various hyperparameters in the appendix.

Remark (Complexity using the coordinate-wise variant).
Note that, the complexity results found in Corollary 7 and 9
are comparable to the ones for Gaussian smoothing (Corol-
lary 3 and 5) while the dimensional dependency here is d
rather than dlog(d).

6. Experiments

In this section, we compare the empirical performance of
Z0O-Varag with ZO-SVRG-Coord-Rand in (Ji et al., 2019)
and a simplified ZO-Katyusha which is the ZO-version of
the simplified Katyusha algorithm in (Shang et al., 2017),
see Algorithm 2 in the appendix. We conduct experi-
ments for both logistic regression and ridge regression *
with and without /5 regularization on the diabete dataset
(n = 442,d = 10) from sklearn and the ijcnnl dataset
(n = 49990,d = 22) from LIBSVM. The choice of the
hyperparameters chosen for each algorithm is detailed in
the appendix.

“Note that logistic regression with A\ = 0 is not guaranteed
to be coercive. However, this does not appear to be a problem in
practice.
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Figure 2. ZO-Varag, averaging vs. no-averaging

Based on our theoretical analysis, we require (d%)" <k<
(d + 4)n iterations per epoch for ZO-Varag. However, we
can lower the computational cost by using a batch update
with b samples per iteration and decrease the number of

iterations to be b times smaller, i.e. @ for each epoch.

6.1. Overall Performance

We first compare the performance of ZO-Varag to the base-
lines for two different regularizers: A = {0,1e7%} (i.e.
adding \||z||? to the loss). In this part, we set the Katyusha
momentum to a constant pg such that po + ag = 1. We then
set the Katyusha momentum to py = 0.5 (see additional re-
sults for different values of pg in the appendix). The results
shown in Figure 1 demonstrate that ZO-Varag does achieve
an accelerated rate for all settings. While the zero-th order
adaptation of simplified Katyusha does seem to be faster
than the other two approaches, its performance is still close
to the ZO-SVRG-Coord-Rand introduced in (Ji et al., 2019).
Finally, we note that Nesterov’s ZO (ZO-Nesterov) method
(Nesterov & Spokoiny, 2011) is a deterministic approach
and it therefore has a much higher complexity per step. In-
deed, while one step of ZO-Nesterov requires 2n queries, all
the other methods require 2b queries. In order to establish
a fair comparison, we plot the results of ZO-Nesterov with
the nearest functional queries w.r.t. the results at the pivotal
points for other stochastic methods.

6.2. Options for Pivotal Point

As in (Johnson & Zhang, 2013), we consider two options
for specifying the pivot point: i) = #°~! (as used in our
analysis), or ii) # = Z°~!. The comparison of these two op-
tions is shown in Fig. 2 as well as in the appendix. Although
option ii) does not have any theoretical guarantee, it empir-
ically converges at a slightly faster rate than i) for logistic
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Figure 3. ZO-Varag, effect of varying the regularizer \.

regression and significantly more for ridge regression.

6.3. Effect of the Regularizer \

We vary the strength of the regularizer to understand the
behavior of the algorithms for objectives with stronger con-
vexity constants and also to observe the convergence of the
algorithm to the optimal solution. These results are shown
in Figure 3 for increasing values of A\. ZO-Varag is faster
in the initial stage but for all values of A\, we observe that it
converges to a ball around the optimum. At first, one could
expect that this might be due to the DFO errors ¢, o shown
in our convergence theorems, which would only appears
to be a problem in high-accuracy regimes. However, the
reason may come from other two additional sources: 1)
the non-vanishing SVRG variance problem raised in the
SARAH paper (see Fig. 1 in (Nguyen et al., 2017) and our
discussion of Fig. 7 in the appendix) and 2) the fact that
stronger convexity constants increase the approximation
error of Gaussian smoothing.

7. Conclusion

We presented a derivative-free algorithm that achieves the
first accelerated rate of convergence for stochastic optimiza-
tion of a convex finite-sum objective function. We also ex-
tended our analysis to the case of strongly-convex functions
and included a variant of our algorithm for a coordinate-wise
estimation of the gradient based on (Ji et al., 2019). Besides,
a proximal variant of our approach could probably be de-
rived, to deal with non-smooth problems as in the original
Varag algorithm (Lan et al., 2019). Finally, we conducted
experiments on several datasets demonstrating that our algo-
rithm performs better than all existing non-accelerated DFO
algorithms.
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