An Accelerated DFO Algorithm for Finite-sum Convex Functions

Appendix

This supplementary material is organized as follows:

e In Appendix A we discuss some fundamental properties of zero-order gradient estimation techniques.
¢ In Appendix B we give detailed proofs for the results in Section 4.
e In Appendix C we give detailed proofs for the results in Section 5.

e In Appendix D we give further details for the experiments in Section 6 and provide additional empirical results.

We summarize some notation used in the paper. The vector z € R? is the variable to optimize and n is the cardinality
of the dataset. The Gaussian smoothed gradient estimator is denoted as g,, ( Eq. (2)) while the coordinate-wise gradient
estimator is denoted as g, (Eq. (3)). The variable 7 indexes the data-point, and sometimes we specify it in the subscript of
our estimators, €.g. gy, gv,i- 1he vector u € R? is the random direction generated from N (0, I;) for Gaussian smoothing
estimator (I is the identity matrix in R?). Dy, D}, are some suboptimality measures for the initial states (see main paper). s
is the index of epoch, and we usually omit the superscript when discussing inner iterations inside each epoch, e.g. z; (which

should be denoted as x; rigorously). The pivotal information always has a superscript “~”, e.g.  denotes the current pivotal
point and g denotes the pivotal gradient estimation at epoch s.

A. Zero-Order Gradient estimation with variance reduction

We discuss here some fundamental properties of zero-order gradient estimation. We will use these properties heavily in
Appendix B and Appendix C.

A.1. Gaussian smoothing approach

We start by recalling some definitions presented in Section 3 of the main paper. Consider a differentiable function
f: R? — R; its smoothed version fu: R? — R is defined pointwise as

1 1 2
Julz) = y flo+ pu)e 2 dy, Vo e RY
(2m)2 JRra

We list some useful properties of f,, in the next lemma.
We recall that we say f is L-smooth if, Vx,y € R4, ||V f(z) — Vf(y)|| < L||lz -y

Lemma 10. The following properties hold :
(1) If f is convex, then f, is also convex.

(2) If f is L-smooth, then f, is also L-smooth.
(3) If f is T-strongly convex, then f,, is also T-strongly convex.

(4) (Lemma 1 in (Nesterov & Spokoiny, 2011)) Let w ~ N(0,1;), the standard normal distribution in R<.
Forp>2,d% <E,[|ul’] < (d+p)t.

We give a proof of the third property, since it is not explicitly carried out in (Nesterov & Spokoiny, 2011).

Proof of Lemma 10. f is T-strongly convex if and only if (see e.g. Theorem 2.1.9 in (Nesterov, 2014)) for all 2/, 7’ € RY
and « € [0, 1],
a(l —a)r

|

flaa’+ (1 —a)y) <af(@)+ (1 —a)f(y) -



An Accelerated DFO Algorithm for Finite-sum Convex Functions

We want to prove the same inequality for f,. Let z,y € R? and o € [0, 1]:
1 }
flax+(1—a)y+ uu)e_%”“”Zdu
(a(e + pu) + (1= a)(y + pu))e 211" du,

flJ(O‘m + (1 - O‘)y) = (27‘_)% i
1

B (2m)2 Jra
By picking 2’ = x + pu and ¥’ = y + pu in the definition of strong convexity for f, by linearity of integration and noting
)T 2) o~ blul?
o = y?) e 311" du

a(l —
2
O

1 _
all =) e,

4
2

that 2’ — y' = x — y, we get the desired result:
[ (afte i+ 0 =)+ ) -
R
2

fuloz + (1 —a)y) < @)

1

afu(@) + (1= a)fuly) -
om T Jre el qy = 1.

_ @+ pu) — fz)u
I

distribution in R%. Hence, the gradient of f,, can be written as
gu(w, )

where in the last equality we used the fact that
Properties of the smoothed gradient field. Note that f,,(z) = E,[f(x + pu)], with u ~ N(0, I;), the standard normal
Vfu(z) = Eufgu(z, u)], -

MQLd’
2

b

We list below some useful bounds from (Nesterov & Spokoiny, 2011).

Lemma 11. If f : R? — R is L-smooth, then
(1) (Theorem 1 from (Nesterov & Spokoiny, 2011))
| fulz) = f(z)| <

and, if f is convex (inequality (11) in (Nesterov & Spokoiny, 2011))
fulz) = f(2);

(2) (Lemma 3 from (Nesterov & Spokoiny, 2011))
pL(d+3)2
IV ful) — V1)) < PHEEAE,

(3) (Lemma 4 from (Nesterov & Spokoiny, 2011))
2L2 d 6 3
IS @) < 209 ) 2+ 20T,

+2(d + 4|V F (@)%

(4) (Theorem 4 from (Nesterov & Spokoiny, 2011))
272 3

u?L?(d + 6)
Eulgu (o, 0) ] < S50

(5) (Lemma 5 from (Nesterov & Spokoiny, 2011))
Eu [|lgn(z, w)|?] < 3u”L*(d +4)* + 4(d + 4[|V fu(2) ]|

Stochastic approximation of V f,,. In the context of this paper, f := % >, fi- A stochastic estimate of g,,(z, u) using
u ~ N(O, Id)

)

filz + pu) — fil2) |
1

data-point ¢ can be then calculated as follows:
gz, u,1) =
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In the inner loop of Algorithm 1, at iteration ¢, we use g,,(z, u, ?) to get a variance-reduced gradient estimate of V f,(z,):

Gt = gu(£t7ut7it) - gu(i%utvit) +g’

where we dropped the epoch index (i.e. s) for simplicity, as we will often do in the next pages. To study Algorithm 1, it is
necessary to get an estimate of E,,, ;, 17, , [|Gt — Eu, i,17_, [G4]||?], where F;_; denotes the past iterates in the current
epoch. Such a bound is provided by Lemma 1 — our main lemma for DFO variance reduction. Before proving this bound,
we need a result from (Nesterov & Spokoiny, 2011).

Lemma 12. (Theorem 3 from (Nesterov & Spokoiny, 2011)) Denote f'(x,u) the directional derivative of f at x along
direction u.:

f(z,u) = 1iml[f($+ozu) - f(@)].

all

Let go(x,u) := f'(x,u) - u. Iffis differentiable at x, then f'(x,u) = (Vf(x),u), and go(z,u) = (Vf(x),u) -
Also, the following inequality holds:

Eu[llgo(a, w)|?] < (d+4)[[V f(x)].

Now, let us start the proof of Lemma 1 in the main paper. Note that this lemma requires each f; to be L-smooth.
Proof of Lemma 1. According to E[||¢ — E[¢][|?] < E[]|€][?], we have

EupiolFoos [1Gt = Bugiv 71 [GellP] = Buimy [lgn (e uesie) = gu(@,uesie) = Vfiulzy) + V fu(@)]°]

< Eut-,it|]:t—1 [ng (Qtvuhit) —9u (i‘7ut>it) ”2]

The term ||g,, (2, ut,¢) — gy (&, u,it) ||* can be bounded as follows:

ng (&putvit) —9u (i‘vutait) ”2

~ ~ 2
_ ‘ fit(gt—i—ru’ut)_fit(&t) fl(a?—&—uut)—f“(x)
= cU — s Ut
[t I
_ ‘ Jwie(@y + ) —ex = fui(@g) +e2 o Suil@+pw) —es = Jpi(@) +ea
t t ’

where e, ea, e3, e4 denote some errors due to the small difference between f;, and f, ;,, which we will bound shortly. We
proceed with some additional algebraic manipulations.

ng. (£t7ut7it) - g,u (‘%>ut7it) ||2
_ ‘ fu,it@t + pug) — fu,it(%) g — fﬂl(‘% + pug) — f;m't(j) w4 €] —ex —e3t+ey g
Y I M
_ ‘ Jugio @y + pun) — fri (@) — 1V fui (24), ue) oy Juyio (@ 4 pr) — fr0, (@) — iV fui, (2), we) o
jZ H /

2
- e1 —ey —e3+e
AV fuig (@) = V fa, (), ) - g + +— QM R

o

AV frie (1) = Vi (), e) - e|* +

flhit (j + /’Lut) - fu,it (‘%) — M(vfu,it (i‘)7 U’t>
1
)

2 2
< 4( (SLlluel®) + (SLlwtl®) + 10V fuie (22) = V fu (), e) - e[ +

fu,it (&t + pag) — fu,it (Et) - /’I/<Vfu'ait (gt)’uﬁ . UtHQ + ‘ Ut

o

617627€3+64

Ut

e — ey —e3+ €4
W

)
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2
W -
< (Tl T (2 = V(B ) P+ 402 ).

where the second last inequality comes from the smoothness of f, ; and the last inequality is from (1) in Lemma 11. Now,
we define a new function f ; (z) = fui, (%) — (V£ (%), ) and

vf;,it (Z‘) = vflhit (Z‘) - vflhit (i‘)
Also, we define g, ; (z,u) as

’

gg%it (z,u) :==( ﬁl,) (z,u) - u. (19)
Note that g5 , ;, (x,uy) is related to the second term in the inequality before:
1985 1., (@, ue) I = (V£ 5, (@), 1) - uel® = KV Fui, (&) = Vi (), ) - el .
Next, we apply Lemma 12 to fﬁ,i,ﬁ

Eu, (196 .1, (@, u)IIP] < (d+4)V £, @)
(d+ DIV fruie (@) = V fui (@)1

Putting it all together, we obtain the desired bound:
}Eumid]‘—t—l [”Gt - Eut;it‘]:t—l [Gt} H2]

< EupiotFe 90 (@ weyie) — g (&, ue00) |1?]
< WL 5, [lue]®] + 4+ DE;, 5, [IV i (22) = Vo, DIP] + 1617 L2y 5, [
< 2°L(d +6)° + 164> L?d® + 8(d + 4)LE;, 7, , [fu,it (2) = fuic(@e) = (Vi (2), T — gt”
< 18M2L2(d + 6)3 + 8(d + 4)L[fu(55) - fu(it) - <vfu(£t)v55 - Lﬁ>]
The second last inequality holds thanks to Theorem 2.1.5 in (Nesterov, 2014). O

A.2. Coordinate-wise approach

In Section 5 we replace the Gaussian smoothing estimator of Eq. (2) with the coordinate-wise approach of (Ji et al., 2019)
for computing GG in Algorithm 1. That is, we set

Gt = gl/(gﬁ it) - gu('%Jt) + gV(j)?

with, as we specified in Eq. (3) of the main paper:

d
: filz +vej) — filw —vey)
gu(xv Z) = Z 2% 7R
J=1
where e; is the unit vector with only one non-zero entry 1 at its j th coordinate. Note that, g, is d times more expensive to
compute compared compared to g,,, which we discussed before.
The following lemma gives an useful approximation error bound.

Lemma 13. (Lemma 3 (Appendix D) from (Ji et al., 2019)) Suppose each f; is L-smooth and that we use the
coordinate-wise gradient estimation in Eq. (3). For any smoothing parameter v > 0 and any = € R%, we have

llgu(,4) — sz'($)||2 < L2dv2.

Also, if we define g, (z) := 23" | g,(x,1i), we clearly have ||g,(x) — V f(z)|* < L?dv>.

T n

In the next lemma, we bound the variance of G;. As the reader will soon notice, compared to Lemma 1, the proof in the
coordinate-wise case is simpler and closely related to the standard variance reduction analysis .

3See e.g. Lemma 2.4 in (Allen-Zhu, 2017).
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variance reduction as follows:

Ei, [Ge = VF(z,)|?] < 12L%dv* +8L[f(2) — f(z;) — (Vf(2), & — z)],
where Gy is defined as

Gt = gu(y,1¢) — 9u(Z,7¢) + 90 (T)

Ei, [6:] = gu(z;) — Vf(z,) #0,

which is different from E;, 7, | [6:] = g,(&) — V f,.(Z) in Lemma 1.

and g, is the gradient estimator as defined by Eq. (3). Moreover, the expectation of the gradient estimation is

Lemma 14. When we use coordinate-wise gradient estimator Eq. (3) for computing Gy, we can obtain a DFO

(20)

2n

Proof. Note that Gy — V f(x,) can be decoupled as

Ge = Vf(zy) = Vi) = Vi, (@) = (V) — V@) + gu(@y, ie) — Vi ()
= 9u(@,1t) + V i, (Z) + g, () = Vf(2).

Therefore, we have

Ei, [IGe = V(@) ?] < 4Ei, [V fi(z,) = Vi, (2) = (Vf(z) = V@) I? + llgo (e, ie) = V i, ()]

+ 190 (&,i0) = V fi, @) + llg. (2) — V(@)
<AE,, [V fi, (z,) — V £i, ()] + 3L2dv?]
< 8LE;, I:flt (@) = fi,(z¢) = (Vfi,(2), T — Qt” +12L%dv°
=38L [f(‘%) = flzy) = (Vf(z,), T - §t>] + 1202402,

The second inequality holds because of E[||¢ — E[¢]||?] < E[|£]|?] and thanks to Lemma 13. The last inequality holds

thanks to Theorem 2.1.5 in (Nesterov, 2014).

B. Proofs for Section 4

O

The proofs of Theorem 2 and Theorem 4 follow the same structure as in (Lan et al., 2019), with some modifications due to
the zero-order gradient estimation techniques, supported by the bounds in Appendix A. We recall our basic assumption:

(A1) Each f; is convex, differentiable and L-smooth. Hence, also f = % >, fiis convex and L-smooth.

To make the notation compact, we define, again in analogy with (Lan et al., 2019):

+ .
S

1477, (@1 +77:)
and

li(z,2) = f(2) + (Vf(2), 2 = 2).
Using the definition of Z; and x; in Algorithm 1, we have:

T -z, = ag(ry — ).

(22)

(23)

(24)

The first result is simply an adaptation of Lemma 5 in (Lan et al., 2019) for the non-regularized Euclidean case. Hence, it

does not require a proof.
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Lemma 15. Assume (Al). For any x € RY, we have

Vs [lfu (24, 71) — lfu (24, 7)] <
s

1+ 77 9 147
. S g g - 2

5 [z — 5 oy — 24 [|* = 75 (0 w0 — ),

1
lze — 2l + 5llze — 2] -

which can be rewritten as

14 77,
2

s

1 1+ 77,
V(V (), we—a) < = lm—al*+5 e -2l -——

5 s —a |12 =75 (6e, 24 —2).

v —a]|*—

The following lemma bounds the progress made at each inner iteration, and is similar to Lemma 6 in (Lan et al., 2019), but
with some additional error terms coming from the zero-order estimation error for the gradients.

Lemma 16. Assume (Al). Assume that o5 € [0, 1], ps € [0,1] and s > 0 satisfy

1+ 7y — Lagys > 0, (25)

~ A(d+4)Lasys >0. 26)
14 775 — Lagys

S

Conditioned on past events F;_1 and taking the expectation of uy, i, we have

Eup s | 2 [Fu(0) — fu@)] + 5T oy 2

Vs 9y 2 L2 (d + 6)3
as 1+ 7y, — Lagys

s
(0%

< (1= o = po) [ful@-1) = fule)] +

S

[Fu®) = fule)] + 5l —al? +

S
S

B % : asEut,itlft—l |:<§ - vf,uf(‘f:)7 Ty — $>j| (27)

S

for any x € R,

Remark. The second term in Eq. (26) has a dependency on (d + 4), due to the Gaussian smoothing distortion.

Proof of Lemma 16. By the L-smoothness of f,, (from Lemma 10),

- La? + 12
+ s [fu@t) + (Vfu(gt),x _§t>] + 9 e — 241"

The equality above holds because of the update rule of z; in Algorithm 1 and the Eq. (24). Next, applying Lemma 15 for the
inequality above, we have

fu(ft) <(1—as—ps) [fu(gt) + <vfu(§t)7§7t—1 - Qt)] + s [fu(gt) + <vfu(§t>vx - §t>]
L iy — afl? = 2Ty — a2 — (600 — )]

275 25
2

pu[hued) + (V)& — )] + o2, — af )
< (U aw = p) [fu(@er) = gl — )] + s [fule) = 5l — 2]

1 s
ﬂ”xt —z|?]
27s

[T lo: -

-
+ s[5z — 2l +
[2 - 27

-1 — ]|* -

-
+ s[5z — 2l +
[2 - 27s
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- Qg
+ps [flt(gt) + <Vfu(£t>,$ - £t>] - 2y (1477 — LasVS)th - xt+—1||2 - a8<6t7xt - x>
_ T 14 77,
— (1= a0 = p) (1) = Flloe-s — 2] + u[£u(o) + glfois = ol ~ 5 ]
- Qg
+ Ds [fu(%) + <Vfu(£t)7$ - §t>] - 2 (14775 — Lagys) ||z — w:r—1||2

- O‘S<6t -9+ vfu(‘%)axt - »Tzr_1> - 045@ - vfu(-i')axt - ﬂff_1> - O‘S<6t’xt+—1 - .%‘>

- s 1 14 774
= (= 0= ) i) = Floems =2l + aul5u(o) + g lleics = ol = S5 — o)

e lfule) + (Ve 7 2] - 5
- as<gu(§t7ut7it) - gu(ivuhit) - vflt(gt) + vfﬂ(‘%)th - x;il>

— (g — Vfu(i‘),xt - 3«"?——1> — (s, 17?_—1 —z).

(14775 — Lagys) ||z — 333;1”2

The second inequality holds thanks to the strong convexity (with 7 > 0) of f,, (see again Lemma 10) and the last equality
comes from the definition

515 = Gt - vfu(ﬁt)

Next, note that for any a > 0,b € R and u,v € R, it holds that b(u, v) — [[v[|? < %Hu”2 Ifweseta= (1477 —
Lagys) and b = —a (requiring 1 + 7v5 — Lagys > 0), we get

_ _ T _ 1 1+ 77,
Fu@) < (1= g = ps) [fu(@ea1) = 5 1Tem1 — zl*] + s [fu(@) + 5 —llwer — @l = —— |z — @||?]
2 27s 27s
~ AsYs . ~ . -
+ Ds [fu@t) + <vfu(§t)= T — £t>] + 21+ 75 — Lass) ||gu(£tvutvlt) — gu(T, ut,ir) — vfu@t) + Vfu(x)ng
—as(g — Vf#(f),xt - $;1> - a5<5tvmttl — )
_ T _ 1 1+7
= (1= 0y = p) [fulr1) = 1T = 2] + s [fue) 5l =l = ==y — ]
N s
+ s [fu@t) + <Vfu($t)ax _$t>] + 2(1 + 775 jLO‘s’}’s) Gt — Ey, i, [Gt]HQ
_O‘S<§_vfu(33)7xt_mzr—1> _O‘S<5taxt+—1 _$>- (28)
Taking the expectation w.r.t. u, ¢, conditional on past iterates and applying Lemma 1,
. AsYs
Ds [f,u(@t) + <vfp,(lt)7x - £t>] + 2(1 + T — Las,yS)Eutﬂ:t‘]:t—l [”Gt - Eutﬂ;t [Gt]HQ]

- asEutaitl]:t—l [<§ - vfﬂ(‘i)7 Ty — x:—l” - asEut’itl]:t—l [<6t’ 33:—1 - $>]

=~ gas’)/s . ,U/2L2 (d + 6)3 4C¥S’YS (d + 4)L

< pa[fulen) + (V) 7 — )] + e

- asEutaitl]:t—l Kg - Vfu(.i), Ty — Z‘>]
— (py — S0sTs(d+ DL
Y 14+ 7y, — Lagys

- asEut’itl]:t—l Kg - Vfu('i)7 Ty — Z‘>]

dagys(d+4)L T sy - WP L*(d+6)2  dagys(d+4)L
< (po— OAHEDL ey T g2+ L !
1+ 7y — Loy, 2 1+ 79 — Loy, 1+ 7vs — Loy,
- asEUt’itl]:t—l Kg - Vfu(.i), Tt — Z‘>]
9asys - p? L2 (d + 6)°

. dasys(d+4)L
:psfp‘(x)i(ps 1+T’YS_L065’YS

a 1+ TYs — Las')/s
— B, 170 [0 — Vu(@), 20 — 3)]. (29)

[fu(‘%) — ful@y) = (Vfu(zy), 2 *Et>]

~ 904575 : M2L2 (d + 6)3 40[5'75 (d + 4)L
) lif#(zt) + <vf,u(lt), x §t>] + 1+ TYs — Las’)/s 1+ TYs — LOés’Ys

fu(®)

ful@)

T~
) 2l - P+
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The last inequality holds when p, — % > 0. Combining Eq. (28) with Eq. (29), we obtain

as(14 77s)

Eutvit‘}-t—l [fﬂ(i‘t) + 2,}/5 th - $||2]
_ ~ g gas'YsUZLQ(d + 6)3
< (1 — Oy _ps)fu(xt—l) ""psfu(x) + O‘Sfu(x) + 274 th—l - x||2 + T+ 77 — Lass
~ =~ (1 — Qs — ps)T - 4a578(d + 4)L Tha
- asEut,z’t\}}_l [(g - Vf#(x),xt - xﬂ - fﬂxtq - %”2 - (ps - m) ’ §||$ - £t||2
_ . g Y2 L2 (d + 6)3
<(l- s Vs - s s o -1 — 2
S (Um0 = o) @)+ Poul@) + 00 (o) 5 ey —al* 4 T
— O(S]Eut’it‘]:t71 [<§ — Vfﬂ(.f), Ty — 1’” .
Multiplying both sides by 2= and then rearranging the inequality, we finish the proof of this lemma, i.e. Eq. (27). O

B.1. Proof of Theorem 2

Before giving the convergence result for convex smooth f, we provide a lemma for the epoch-wise analysis. This lemma
needs an additional technical assumption.

(A2,) Letz;, € argmin, f,(z) and consider the sequence of approximations {Z°} returned by Algorithm 1. There exist a
finite constant Z < oo, potentially dependent on L and d, such that, for u small enough,

supE [||2° — xZH} < Z.
s>0

Using an argument similar to (Gadat et al., 2018), it is possible to show that this assumption holds under the requirement
that f is coercive, i.e. f(z) — oo as ||z|| — oo.

Lemma 17. Assume (Al), (A2,,). Suppose that the weights {0, } are set as

%(as'i_ps) 1§t§TS_1
0, = {Z " (30)
Define:
Lo 2 pry 1) 2l £Ps) 31)
Qs Qs
Rs = k(l —as) + (Ts — 1)%])8- (32)
Qg Qs

Under the conditions in Eq. (25) and Eq. (26), we have:

EsEFTS [fu,(js) - fu(x:;)]

e 1, 1 Vs 9asysp*L?(d + 6)°

s—1 * s—1 * |12 * |12 F

<R [ul@ ) = )] + (Gl =g = 5l =g 2) 4 1, 2 RO (2, 4R, 2|
1 9ovsyspu?L2(d + 6)3

~5— * — * 1 3 * ,)/S
< RS-[fu(:L‘s 1)—fu(mu)}+(§||x8 1—xu|\2—§|\x‘(’—qu2)+Tsa— +(Ls+Rs)ZVE.
S N ——  —

1 — Lagys
D @

where e = g — V f,,(2°~ ) and ||e*||* < E, which is consistent with the definition of E in Section 4.1. Here, the
expectation is taken over Fr, inside the epoch s.

Remark. Compared to the corresponding result by Lan et al. (2019) (Lemma 7 in their paper), we note that two additional
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errors terms appear. @ is the error due to the Gaussian smooth estimation and @ is an error due to the approximation
made at the pivot point. We will later see that the coordinate-wise approach introduced in Eq. (3) yields a constant error
bound for @, which is independent of the gradient information.

Proof of Lemma 17. For f convex and L-smooth, we have that f,, is L-smooth and 7-strongly-convex with 7 = 0 from
Lemma 10. Hence, Lemma 16 can be written as

Vs _ 1
Eut,it\]‘-t—l ;[fﬂ(xt) - fﬂ(x)] + §||mt - (EHQ
S
Vs - VsPs ~ 1 Vs 9045’73M2L2 (d + 6)3
< 078(1 - Qs —ps)[fﬂ(act,ﬂ - fu(xﬂ + P [fu(x) - fu(wﬂ + §H$t71 — JCHQ + o 1= Laans
Vs ~ -
- ; : asEut,iﬂft—l [<g - Vfu(l'),fl?t - l’>] .
Summing up these inequalities over t = 1,. .., T}, using the definition of 0; and Z¢ = Z,

T
S 0B, [fu() — fule)] <[220 - an) + (T = D] [£,3) — fu@)] + (e — 2l = S ller, - 2l?)

g g

s Vs 2L2d 3
b, e 90snp? L (d + 6)

Ts
«a 1— Lagy _$Z%EE [@_vfu(i’)vft—@]-

t=1

Using the fact that £° = ZtT;1 (6:z)/ ZtT';l 0;, & = 771, 1o = 2°~ !, 7, = 2° and using convexity of f,,, the inequality
above implies

- . Ps ) 1 1
S UER[£u(a) ~ £u@)] <[220 = ) + (T - VIR [, ) = fu@)] + (Gl =) = 5"~ 2]?)
=1 s s
s s')s 2L%(d 3 s < ~ ~5—
+Ts'%'90¢ Vlli‘lga(’y‘FG) _%ZQSE}}RQS_VJC;L@?S 1),.Z‘t—$>],
S S /s S t=1

which is equivalent to

LER @)~ fu@)] <R [Lu@ ) ~ fu@)] + (3l — 2l — Sla* —a]?)

s 9asvsulL2(d +6)3 s s s
+TS.%. VluLa(fy ) —Z—ZasE;t[(g‘—VfH(xs Yoz —a2)].  (33)

Notice that, since Zo = & = #°~! in the epoch s,

Ts
Ly aBx (5" = VEE ), a0 — )]

t=1

Ts
Vs ~5 ~S— = = 58—
= o ZE}} [<9 = V(@ D@ — (1= g —ps)Ti1 — ps° " - asx>]
S t=1
Ts—1

= %Eﬁs [(3° = VL@, 3 + D (s + 0T — [(1— o) + (Ty = Dps]3°7" = 0, Toz)]
s t=1
v g &
— oTsEfTs [(5° — Vfu(@7h), 7— D 003 — [(1— a0) + (T = Dp) @ — a,Tuz)]
s 5 =1

=Er, [(§° — V (2571, L3° — R@* " — 7 Tow)]
=Er, [(7° — VI (@), L (3 —2) — R (257" —2))]. (34)
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The first equality is indeed the update rule of z;, the thrid equality is the definition of Z® and the second last equality comes
from the definition of £, and R.,.

Then, we set z = x, to the inequality above. Based on the assumption (A2,,) and combining the previous inequality with
Eq. (33), we have

1 1
‘CS]E]:TS [f/t(js) - f/L(IZ)] S Rs : [f,u(fs*l) - f/L($7L)] + (5”1’571 - l’;HQ - iHIS - x;’l”2)

s Yasyspu’L?(d +6)3
o, 2o Q0 LR O p Rz,
Qs 1 — Lagsys
O
Finally, we derive Theorem 2 directly from Lemma 17. For convenience of the reader, we re-write the theorem here.
Theorem 2. Assume (A1) and (A2,,). If we define sy := |log(d + 4)n] + 1 and set {7}, {7} and {p,} as
T _ 25—17 s S S0 _ L o 35
s = T, s>so7 Vs = 13(dt4)La,’ Ps = 2 (35)
with 1 <
ag=4%, 0T (36)
prE— S > So
If we set
Llas+p) 1<t<T,-1
Ht{§; o (37)
we obtain
d+4)D
. 7( 25+)1 O+§1+§2, 1<s<sg
Elfu(@) - fi] < D st s>
m s \S1T62), S ~>380
where ¢; = 242 L(d + 4)%, 62 = 3ZVE, 5, = O(s — s9) and Dy is defined as
2 0 * 0 * (12
Dy := m[fu(l‘ ) = fulzy)] +6L[z" — 2|17, (38)
where z}, is any finite minimizer of f,.

Proof of Theorem 2. First, note that, with the parameter choices described in the theorem statement, the restrictions in
Eq. (25) and Eq. (26) are satisfied:

1
1 s — Lagys=1— ———— >0, 39
7~ Lesy 12(d14) (39
_M:}_l.;>o (40)
s 14+ 77vs — Lagys 2 3 l—m '
‘We further define
we =L — Rop1. 41

Asin (Lan et al., 2019), if 1 < s < s,

ws =L — Rsyr1 = % [1 +(Ts — D(as+ps) — (1 —as) — (2Ts — 1)p8] = % [Ts(ozS —ps)] =0.

S
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(s—s0+4)?

1 _
BT hLa = dsarnr and

Otherwise, if s > sg, we have 37 =

Vs Vs+1 Vs (as + ps) Vs+1Ps+1
— (1 = 1) + (T, _1)[ -

g Qg1 Qg g4
(s —so+4)? (s—sp+5)? 2

T A8(d+ 4L 48(d+4)L ( _s—so+5)
(s —s0+4)2 2 1 (s—sp+5)? 1
T. —1 . il O S L e
+ (e )[ Baroz Gowii Y T mutor 2
1 T,, —1

T BA+HL T 96d 1AL

Ws = Es _Rs+1 -

[2(s —s0+4)—1] > 0.

Hence, w,; > 0 for all s. We can therefore use Lemma 17 iteratively as follows,

E[fu(@) = fulx (ij [u(@) fu@ﬁﬂ)

~ * * 1 s * > Vs 90[’}/#2L2(d+6)3
SRl-E[f”(l'O)—fu(l'u)]+]E|:§||.'L'O—.TM||2—§HCC _qu2}+Zjvjaij . lj—La'y
—1 j 373

+Z +R;)Z||e||

1 -0 o lio 2N v 9ayp’L3(d +6)°
<—\fu —fu == — T, —- 42
_6(d+4)L[f’ (") T (%)]JFQHI qu Jrj; J a; 1- Lo, 42)
+Z +R;)Z||e||
= Do+ ZT L 90t LA 4 6) i(ﬁ- +R;)Z||e? |
12L 0 a; 1 — Loy, T
v 3pPL(d+6)% < ;
<—D T — ————— j ) Z||€e’
< 12L 0+Z Y Ad 14 + ‘—1(5] +R;)Z|€||
Vi 2
SﬁDo-i‘z:lTj-a—j L(d+4) +Z (L; +R;)Z|€ |
j=
1 . Vi 2 2
< N N . ) .
< 57 Do+ ;T] ol L(d+4)* + Z(cj +R)ZVE (43)
The second last equality holds when «;y; = m and x = z},, the optimal solution for f,,. We proceed with two cases:
Casel: If s < 50, L = ﬁ,Rs = ﬁ = % L = m, T, = 2°~!. Hence, we have
1
E[fu(3%) = fula})] < Sorr(d+4)Dy+ 2P L(d+4)*+3ZVE, 1<s<s. (44)

Case II: If s > 59, we have

1 s—s0+4)2 1
£s = m [(TS - 1)as + §(Ts + 1)} = (48(613-_2)2/ : [(TSO - 1)0[5 + §(Tso + 1)]
S . ) I M Gk

= 96(d+4)L 192L ’
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where the last inequality holds since Ts, = ollogo[(d+4)n]] > %, i.e. 2% > (d + 4)n. Hence, based on ) ., 2 =
nlntD@rtl) and Eq. (44), Eq. (43) implies

16Dy

n(s —s0+4)2 +O(s — s0) - 2 L(d +4)* + O(s — s0) - ZVE. 45)

E[fu(@*) = fulz))] <
O
We conclude by deriving the final complexity result, stated in the main paper.

Proof of Corollary 3. We pick up from the proof presented in the main paper, which we summarize in the next lines. Note
that the analysis we performed in the last pages is based on f,, rather than f. Hence, we first need to ensure that the error
between these two functions is sufficiently small. We can bound f,(2°) — f.(x},) from f(&*) — f(z*) as follows:

Jul@) = Fu@h) = Ful@®) = () + F@*) = ful@l) + fu@®) — Lu(™) + fa®) — F(2)
> P 1@ a4 Rulet) — R )
s 15 1) — T

The first inequality comes from Lemma 11 and the second inequality comes from the definition of .

We want the error term 12 Ld we just derived to be small, say < e p=0 (\ /It d) From this, we get an upper bound
on u (choosing p small does not affect the convergence rate). Next, we bound in the same way the additional (non-vanishing)
1/2

error terms in Eq. (44) and Eq. (45). This requires y = O(L1/2d) W= (’)( ZLd3/2) and v = (’)(m) for Eq. (44) while

nl/ag3/4 1/2,.3/2 1/2,3/2
= (Ll/Qchl)/‘l)"u: (ZLd3/2Dé/2>andy:O(ZLdl/QDé/Q

Therefore, if we bound the term which contains Dy by 5, f(Z*) — f(2*) would achieve e-optimality in expectation. This is
what we do next (following the proof in (Lan, 2012)), for the two cases in Theorem 2.

) for Eq. (45) to ensure e-optimality, 7 more specifically.

If n > 20 je. in the region of relatively low accuracy and/or large number of components, we have
(d+4)Dy _ Do (d+4)D
9s0+1 §?<2:>1g7€ < Sp.

Therefore, the number of epochs is at most sq for the first term in Eq. (44) to achieve 5 optimality inside Case I. Hence, the
total number of function queries is bounded by

Sy
d+4)D D D
S+ 3T, = o{ min <dnlog (Jre)o,dnlog(dn),dn)} - o{ min (dnlog Eo,dn> } —0 {dnlog 60} .

s=1

If instead n < %, at epoch Sy = [ % + 59 — 4—‘ (ensuring the first term in Eq. (45) to be not bigger than %), we can

achieve € optimality. Hence, the total number of function queries is

dnso + Y Ty + (Toy +dn)(Sh — s0) < YT+ (Tuy + dn) Sy = o{d,/”fo - dnlog(dn)}.

s=1 s=1

B.2. Proof of Theorem 4

In this section, we assume f to be strongly convex. Hence, f, is also strongly convex by Lemma 10.
(A3) f=2L1%" f is7-strongly convex. Thatis, forall z,y € RY, f(y) > f(z) + (Vf(z),y — ) + Z|ly — z|*.

We rewrite below Theorem 4, for convenience of the reader:
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Theorem 4. Assume (A1) and (A3). Let us denote s := |log(d + 4)n| + 1 and assume that the weights {6, } are set
to Eq. (10) if 1 < s < sg. Otherwise, they are set to

(46)

9, — L —(1—as—p)ly, 1<t6<T -1,
B VY t="T,,

where I'; = (1 + Tl t. If the parameters {75}, {75} and {ps} are set to Eq. (8) with
2 p . q

1
1 <
o, = {2’ = %0 (47)

min{\/557. 5}, s> so,

we obtain
1
23+1(d+4)D0+§1+§2, 1<s< s
~8 * D 6L
]E[fu(x )_fu] S (4/5) %0 — +§1 + G2, s>spandn > =~
—(s—s D
(1"'% %)( 0)*04‘( %+1>§1+§2 s>soandn<%

n

where ¢; = 12u2L(d + 4)2, ¢ = 5E /7 and Dy is defined as in Eq. (11).

Remark. Compared with smooth convex case, we can drop the assumption (A2,,).

We start with the following result.

Lemma 18. Assume (A1), (A3). Under the choice of parameters from Theorem 4, for any 0 < ¢ < 1,

S — * 1 *
EuirFis | 2 [Fa(@) = ]+ 1+ (1= )r7) - 5l — )
S — SIS * 1 S
< 21— ag = po) [ful@i-1) — £2] +” [£u(@) = f2] + 5 lweer — ||2+— PL(d+4)? + - . E,
Qg 2 2cT
(48)

where E is defined as in Lemma 17.

Proof of Lemma 18. First, note that, with the parameter choices described in the Theorem 4, the restrictions in Eq. (25) and
Eq. (26) are satisfied. Hence, Eq. (27) becomes, when setting © = 7,

.
’}/S = * 1 + T’YS *
Buiircs | 2 @) = 5] + L o — P
s _ VsPs a1 sz Vs 9agvsp?LA(d+6)3
< a: (1= a5 = ps) [fu(@i-1) — f] + [fu(®) = fi] + llee— =2y l” + o, 1t Lao.
- ﬂysEutﬁitU:t—l [<g - Vfll«(:z‘)’ T — .’EZ>]
Vs - VsPs ~ 1 12 , Vs 3M2L(d + 6)3
= 1— g — Py 1) = My — Is
as( as = ps) [fu(@e—1) = f] + [fu(®) = f] + 5 w1 —zplI” + o A1 — 2 (AT 4)
- ’YSEUt,it|ft—1 [<§ - Vfﬂ(ij) Ty — .’IJ;>]
s _ sVs 1 % s
< L=y = p)[fu @) = £i] 4 2 [£@) - £] 4 S e — P+ 2w L(d + 47

Qg 2
- PYSEUmitLFt—l [<g - Vfll«(j)? Ty — $Z>] .
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The equality above holds since a5 and 4 are defined as in Theorem 4 since a57ys = m.
Moreover, for any 0 < ¢ < 1, we have
~ ~, * CT7s * ~,
—Ys(g = Vful@), 20 —z,) — 25|| ¢ = ? Fu@)|?,

since b(u,v) — &[|v]|? <  ||u/|2 when a > 0. Hence, plugging this in,

—2a

By irlFos [fu( )=l + A+ A=)y IIIt — i ”

< 20—y = p) @) = ]+ B (@) - ]+ gllees — ol + 2 i+ 2

o
’YS ~ ~ 2
+ E]Eut;it\]:t—1 [Hg - vfu(x)H }
Vs _ VsPs * 1 «12 , Vs 2 2 Vs
< 075(1 — g = po) [fu(@i1) — ] + a. [fu(®) = fi] + 5”%—1 —z,||” + P L(d+4)" + 2r E.

We divide the proof of Theorem 4 into three cases, corresponding to the three lemmas below.

Lemma 19. Assume (Al), (A3). Under the choice of parameters from Theorem 4, if s < sq, then for any x € RY,

E[fu(2°) =[] < 251“ (d+ 4)Dy + 202 L(d + 4)° +

57
where Dy is defined in Eq. (11).

Proof of Lemma 19. For this case, a; = ps = %, Vs = T, = 251, Starting from Lemma 18, if we set ¢ = 1 in

Eq. (48) and sum it up from ¢ = 1 to T, we have

1
6(d+4)L°

Z 2o s [Fu@0) = £7] + 3B [lor, — ]

<

- “ 1 . s s
T,[fu(2) - £3] + 3l - 77 + % Ty pPL(d+ 42 + T, - ;7 .E.

Thanks to convexity of f,, we have f (T% thil Jit) < % ZtT:él f(Z4). Hence, the last inequality implies

S mE T B @) = i)+ 5, [l = o3P
= m T fu(@) = fi] + %Hxs_l — 2 |I* + 3d1 AL Ty - p?L(d +4)° + T - m B
= m T [fu@ 7Y = fil + Sl =gl + saron © pPL(d+4)* + T - m B,
where v, = 2%, mg = #°~1, & = 1. Applying the last inequality iteratively, we obtain
s ar T B - ]+ 5Bl - P

1 1 1
< — T z0) — f* 2 — 2|2 + T; - p“L(d +4) T, - ———7——F
<s@rarp Dl fil+5l1e” —al d+4 Z G +Z At L
where Ty = % is in accordance with the definition of T, = 257!, 0 < s < sq. Finally, we obtain

Qs

B[£(5°) = £;] + 2 - 5Elle* — 53]
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s w1, Sd+4)L 1 .
=E[fu(@) — ;] + = - SE[lle* — 2]’
1 ~ . i 1
Sg[fu(xo)_fu+3(d+4)L||x0_xu||2] = 1ZT p2L(d + 4)* Z EE
Jj=1 j=1
<1 (d+4)Dg + 2 2L(d+4)2+£ 49)
— 9s+1 0 K o
We conclude the proof by observing that 5zir >7_ 7 < 2 when s < 5. O

Lemma 20. Assume (Al), (A3). Under the choice of parameters from Theorem 4, if s > so and n > 8L then for any
r€R?

E[fu(z°) - fi] < (;‘) h % + 1202 L(d + 4) + ?

Proof of Lemma 20. For this case, as = o = ps = %, Vs =7 = (d+4)L, T, = 2%~! when s > so. Thanks to Lemma 18,

if we set ¢ = £ in Eq. (48), we have

Buciirs| 2[fute) = £5] + 1+ ) 3llon = 3P

1 2, V2 2, 7
7205[#() f] 5”901571—»%” +E'NL(d+4) +;'E-

Multiplying both sides by I';_; = (1 + 51)*~!, we obtain

v . . L .
Bugitics | 2Tea @) = 1]+ e = 531

< Ara ) - 5]+ 15

o [

|2 + %FH PL(d+ 4)? + %rt_l E.

Since 8; = I';_; as defined in Eq. (12), the last inequality can be rewritten as

gl . a . L .
Buciics | 200 fu(e0) = J5] + e - P

r
< S0 [£(@) = 1) + =5 e — @l + 20, pPL(d+ )7 + 20, E.

Summing up the inequality above from ¢t = 1 to T, we obtain

T,
0% r
E E]:t [f,u( ) f ] —’_77-']}3]'%q TT, _‘rHHQ
T, T,
< LN 4K E 0 d+42+256,-F
2 Z Fr, [fu(® —f}+2 fT[HJJo—xH Ztu +4)% + - ¢ L,
=1 t=1
and then
5 Yy L 0.F. _ % IE * |12
1 %Z t ft[fu(xt)—fu]-Fi Fr, 2T, — 2l
Ts T
lz Ex, [fu(E f*}+11Ef [lzo — 2%)1?] Zot WL+ 42+ 150, (50)
200 . Ll 27T # T ’

o~
Il
_



An Accelerated DFO Algorithm for Finite-sum Convex Functions

The last inequality is based on the fact that, for s > s, (d%‘l)n < T, =Ts, < (d+4)n, we have

_ TYNT: _ Ty 0 s Y > Ty (d+4)n
Lr, = (14 5) (1+2) 1+2 Ty 214 5 5
T (d+4)n ™m _ 5
=1 . =14-—>=
Tharar 2 tour T

where the last step holds under n > SL. Since 7 = 312 (0,,)/ Y12, 01, & = 771, w9 = 2°~, &y, = x* in the epoch
s and the convexity of f,, Eq. (50) implies

5 Y ~5 * 1 s * |12
1 %EFTS [fu(@) = fr] + @EHS z® — ||
LBy, [ )~ 2]+ e B, [ — o) + L2+ 4? + 1B
= ga P T e B g '
Applying it recursively for s > sg, we obtain
2c 1
E[fu(@) = fi] + =5 5E[l2" — 2|I”]
'721521 0, 2
—s . . 20 1 s . 2 s+1—j 20
< (4/5)"" [E[fu(ﬂf R R a1 et D S T M [2M2L(d+4)2 + B
72t:1 t j=so+1
< (4/5)F |E[f. (%) - 1] + 2o 1E[||x80 — 2 |*]| + 8’ L(d+4)* + 1k
= " PO ATy, 2 H T
where the last inequality holds because >>5_, ., (&) <4 L =4,5/°, 0, > T, = T}, and 2o < 1. Finally,
5
2c0 1
E[fu(@°) = fi] + —=5—  5E[lla® — 2}|”]
8 8 ZfTi1 01 2 g
5—s0 2a 1 50 112 2 2 4
< (4/5)° 7 |E[fu(@) — f2] + I SB[l — 2’| + 8" L(d+4)* + ~ - B
so
s— 90 ~s * 1 s * (12 2 2 4
< (4/5)° {E[f“(x ) —fi] + 7750 : 51[4:[\\33 O — 2y |]?]| + 8p’L(d+4)° + —-E
_ E 4
< (4/5)7 2. d+4)Do + 24°L(d + 4 L(d+4)?+ - E
< (4/5) [29+1(+)0+N (d+4)7 + =] + 82 L(d+4)* +
s—so (d+4)D E
< (4/5) °~(J;¢+12 27 (d+4)2 + 28
-
s—so (d+4)Dg 5F
a5y EDDo o gy O
(4/5) TP G
s—so D 5E
< (4/5)" 02 +12M2L(d+4) + =,
.
where the third inequality comes from Eq. (49) and the last inquality relies on T, > w. O
Lemma 21. Assume (Al), (A3). Under the choice of parameters from Theorem 4, if s > sq and n < 8L, then for any
xz € RY,
—(s—s0)
. 1 /nT Dy 6L 9  OF
E N—f<|(1+~-4/—= — 4 4 —.
[fu(2%) fu]_(+4 6L> n+<8‘/ +> L(d+4)" + —
Proof of Lemma 21. For this case, g = o = %,ps =p= %,% == W Ts=Ts, = = 2% =1 when s > 5.

Based on Lemma 18, if we set ¢ = % in Eq. (48), we have

* 1 *
Bavss| 0o = 1]+ (14 5 Gl = 23]
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< 1 « gl Y
5(1—04 p)[fu(@i—1) — fa ]+ [fu( ) — f] §||33t—1 —%||2+E'M2L(d+4)2+; E.
Multiplying both sides by I'; 1 = (1 + %)t_l, we obtain
g - * I's *
By in)Fis art—l [fu(@) =[] + 5”% -z ?
L1y . L D1V oy
< (U a =) [ful@an) — ]+ T (@) - £
F — *
* t2 ey — al? + B T A LS Y o)
a T
Summing up the inequality above from ¢t = 1 to T, we obtain
Ts
gl . o, I
=D OER[fu@) — [+ S llor, — ;)
t=1
T, T,
n r 41 2+ Loy p2L(d+4)2 + 2
_E[ —a— p-l-pz i—1] [fu(@) — fu]+§||$o—%|| Z t—1"H + ;Z
t=1 >z t=1

Since &% = S°1° (0:2¢)/ Y212, 01, & = 371, wo = 2*~ 1, 21, = 2° in the epoch s, and thanks to the convexity of f,, the
last inequality implies, for s > sq:

FTSO s * 12
*ZetE]:T fﬂ( ) f4]+ E]:Tst _JjNH

2
T,
: 1
< g[1 —a—p+pY Tl [fu@ ™) = fr] + sl =l + th L pPLd+ 42+ 2 Zrt L
t=1 Rt
(51
Moreover, we have
Te, Teg—1
Z 0; = FTSo_l + Z (Ft—l - (1 -« _p)Ft)
t=1 t=1
T,
=Ty, (1—a—p)+> (Te1—(1—a—pT)
t=1

—Tr (l—a—p)+[1-(1-a- )(1+—7)]Zrt_1.

2
t=1
Considering the range of a, since Ty, < (d + 4)n,
nr 1 T 1
— Z. ) /Ts (d+4
«= \/ 94l = d+4) =5 ird o Veldtdn
TWTSO
= T, (d+4)n > —.

Also note that, forany 7> 1and 0 < 07 < 1, (1 +T9) < (1 +6)T < (14 276). If we set § = % and T' = T, here,

T,
5T:L2°§a<l.
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Then, we have

2 2

1= (—a-p)1+5) =0+ PHatp- )+
TV T s, gl
> (1+ (2 +p - T
™ ™
=p(1+5)(1+2(Ty, = 1) - )
> p(1+ )0 =l .

Hence, we obtain ZtT:"l 0 > T, - [1 —a—p+p ZtTil l"t,l] - Moreover, using Eq. (51) and the fact that f,,(Z°) — f; > 0,
we have
I'r

T
= ~s * 1 s *
o[BS 1) - )+ B o -
t—

1
T th L p2L(d + 4)? ”Zrt L

Ts
<Ii—a—p+pd Tea] [f@ ) - ]+ 3

t=1
Applying this inequality iteratively for s > sy, we obtain

Ts

1
g 1—a- p—l—pzft 1 [fu(fs)—fﬂ +§E||33s—33:i||2
t=1
1 = 1
<F> Li—0—pp {6 - 1]+ o il

85 (o) [ o 2]

Note that 2[1 — v —p+p Y2, Ty q] > 237 Ty > 228 — 22200 apd p = 1 the inequality above implies

e s—s j
1 « N 1 2a
< | = E[f.(*°) - fi] + —E xSO—x*Q}ﬂLE: {2 2Ld+42+-E]
<FT50 > |: [fﬂ( ) fM] lyTSQ “| u” ] = <FTSO ) 1% ( ) -
() E[f,(5) - f] + ——E[Jle™ — a}|2]| + —— |202L(d+ 42+ 2 . B
a FTSU ! . ’YTSO g r so 1 T '
Next, as
TY\Ts 7T Ty(d+4)n 1 nr
FTSO (1“?7) 021+T021+f=1+1~ 6L

2a — n
and == \5 We have that, for s > s,

E[fu (&) = £i]
< (é) o [E[fu(izso) —fi]+ %E[Hx% - g;;||2]] + 4\/7[2,&@1 +4)% + % E}
= (é) - [E[fu@*c%) - fil + %E[Hx% - x,tllQ]] + SEMQL(CZ +4)° + %
< (é) 2[BlAE) 7]+ o 3Bl — ]| 40y Earnia v a7+ 2
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Note that, since n < %, we have S =12(d+ 4)La* = W < 3(d + 4)L. Finally, for s > so,

1 = 3(d+4)L 1 ) 6L , 4B
< | =— 2|E o) = gi] + 2L Tgfjpn 6L oy 0y g AE
- \Ir,, { u@) = fi) + = [l ] ]}+8 LA ) +

S$—S8o

! 1 E 6L AE
S\ 2 d+4)Dy + 2u2L(d + 4 8¢/ 22 L(d + 4)? + —
~ \Ip, [QSH( +4)Do + 2u°L(d + ) 27]_~_ m_'u (d+ ) n

IN

—so
(d+4)D, [6L , , 5E
8/ — +4 L(d+4 —
2T, + nrT + wL{d+4)"+ T
S$—So
D 6L 5F
=+ <8\/ +4> Ld+4)? + =
n nr T
s0(s—s0)
1 T Dy 6L 5E
. 84/ —+4 d+4
)V 6nL> n +< + ) L(d+ 4 +
1 S [6L 5E
T 0 2 2
1 . — 4 L(d+4 —
+2(cl—|—4) 6nL) n+<8 nr +>H (d+ )JFT

—(s—s0)
1 nrt Dy 6L 9 5 OB
<(14+-=-4/— — \— +4 Lid+4 —.
_(+4 6L> n+<8 n7+>'u (+)+T

The second inequality is based on Eq. (49) and the fourth and fifth inequalities rely on T, > . The last inequality
comes from 1 + 7§ < (1+ )7 when 6 > 0. O

IN

(Fl >O(d4;j‘o)Do+<8 (:;i+4>u2L(d+4)2+5f

I
/N
—
+
~
QU
+
e

(d+4)

Now, we can derive Theorem 4 based on Lemma 19, Lemma 20, Lemma 21.

Proof of Theorem 4. To summarize, we have obtained

L (d+4)Do + 22 L(d + 4)? + £, 1<s<s

(8)" 7 e 4 1202L(d +4)” + £, s> sgandn > &
E[f.(2°) — f3] = (52)

—(s—s0)
(1+411 8T % s>soandn<%

+(8y/SE +4) pPL(d + )% + 22,
from Lemma 19, Lemma 20, Lemma 21. Hence, the proof of Theorem 4 is completed. O
We conclude by deriving the final complexity result, stated in the main paper.

Proof of Corollary 5. Using the same technique as for the proof of Corollary 3, we can make the error terms depending

on E or p vanish. In addition to p < O(‘ /1a d) comeing from functional approximation error (see proof of Corollary 3),
we also need p = (’)(Ll/zd) for the first two cases (1 < s < sgor s > sg and n > 6L) W= O(%) for the third

1/2.1/2 1/2,1/2
case (s > sg and n < &) and pu = O(T 5575 ), v = O(T 7~ ) to ensure e-optimality, $ more specifically. Hence, we
can proceed as in (Lan et al., 2019) , neglecting the errors coming from the DFO framework (note that a similar procedure is
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adopted also in (Nesterov & Spokoiny, 2011) and (Liu et al., 2018b;a)) . For the first case (1 < s < s¢) the total number
of function queries is given in Corollary 3. Then, in the second case (s > sp and n > %), the algorithm run at most

S :=0{log (%) } epochs to ensure the first error with e-optimality. Thus, the total number of function queries in
this case is bounded by

S
dnS+Y T, < dn+S(d+4)n(9{dnlog (dDO>}. (53)
€

s=1

Finally, in the last case (s > sgandn < %) to achieve e-error for the first term, the algorithm need to run at most

S =50+ % log (%) epochs. Therefore, the total number of function queries in this case is bounded by
S, S0
D (dn+To) =Y (dn+T.) + (dn+Ts,)(S — so)
s=1 s=1

3

6L D
< 2dnsg + (dn + (d + 4)n) — log (712)

= O{dn log(dn) + dy/ % log <§§) } (54)

C. Proofs for Section 5: the coordinate-wise variant of Algorithm 1

When we replace the gradient estimator g,,(x, u, 7) in Algorithm 1 with Eq. (3), the dependency on the problem dimension
d gets better (Lemma 14 compared to Lemma 1), and the analysis looks more like the original Varag analysis (Lan et al.,
2019), with the addition of DFO errors. However, we should notice that Eq. (3) requires d times computation per iteration
compared to Eq. (2). From another point of view, choosing the gradient estimation in derivative-free optimization is a trade
off between computation time and numerical accuracy.

The first lemma follows directly from Lemma 5 in (Lan et al., 2019) (we simplify it to the case with V(z,z) = 1|z — z||%,
X =R%and h(z) = 0). Note that this is very similar to Lemma 15, but the Lemma below is with respect to f rather than

f. Indeed, for this appendix we define
5t = Gt - Vf(§t>

Also we recall that, to make the notation compact, we define

+
T T,

(i1 + Ts2y), li(z,x) = f(z) +(Vf(z),x — 2).

Lemma 22. Consider the coordinate-wise variant of Algorithm 1. Assume (Al). For any = € RY, we have
Vsl (g, w0) = Uy (24, )]
T, 1 14 77, 14 77,
< 2z — all? + Sllwes — all — =5 e — @2 = =S — 2 |2 - v (0, @1 — ).
2 2 2 2
which can be rewritten as
Vs(Vf(zy), 2 — )
T 1 147 147
< D2llas =l + 5 llwer — all = =5 e — 2l = = e — a2 = 70w — ).

The next lemma is similar to Lemma 6 in (Lan et al., 2019), but with some additional error terms, due to DFO framework.
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Lemma 23. Consider the coordinate-wise variant of Algorithm 1. Assume (Al). Assume that as € [0, 1], ps € [0,1]
and v > 0 satisfy

1+ 775 — Lagys > 0, (55)

4Lovgys
s >0. (56)

b 1+ 7y — Lagys —

Under the expectation of i, we have

B, | 2 (1@ - @) + T oy

S

< 21— . = po) [f(i-2) ~ 1@)] + 222 (@)~ f@)] + 5 e — ol

S aS

Vs 6Bagysv’LAd s N
—_— e — — - as{g -V LT —X). 57
+ ay 14 77s — Lagys  as as(gv(z,) f(zy), 2y — ) (57)

for any x € R,

Proof of Lemma 23. By the L-smoothness of f,
£(@0) < fle) + (V@) 70— 2) + 5 70— 2P
= (1= as = ps) [f(z) + (V (), Tr1 — 2)| + s [f(z) + (VI (), 20 — z,)]
+a[() + (VS (@), 7 — 2)] + o —

The equality above holds because of the update rule of z, in Algorithm 1 and Eq. (24). Then, applying Lemma 22 for the
inequality above, we have

f(z4)
< (U= —ps) [fla,) + (V) Te1 — z,)] + s [f(z,) +(Vflz,), 2 —z,)]
T 1+ 77s 1+ 77
+ 0‘3[5\@— x| + 5 a1 — 2| - 2 oy —z)* — 2. e — a1 = (0, 20 — )]
Lozi

e — 2|2

+ Ps [f(it) +(Vf(z,), T - L&ﬂ +

< (1—as—ps)[f(@-1) — g\lit—l —z,|I’] + as[f(z) — g\lx —z,|%]
1+ 77s

+ O‘S[%Hﬁ_ z||” + 2. lzi—1 — z||* — o lxy — ;z:Hﬂ
~ «
+po[f(2) + (Vf @), & —2)] = (1477 = Lawy)lloe =2 |1* = @ (B, e — )
1 1+ 77

= (L= 0 = p) (@) = Glros = 2l + an[F@) + e = = =T e ]

- g
+DPs [f@t) +(Vf(zy), T - Qtﬂ - 2 (14 7795 — Lagys) || — xf_1||2 — s (0, 24 — x?‘_1> - a5<5t,xf_1 - )

1 1 o
< (1= ay = p)[f@-1) = lIEs — 2, 7) + @ [f(@) + 5l =l - %th —z|?]

s a0) + (VS (), 7 = 2)] + 5P S I — (i aiy — ). (58)

The second inequality holds thanks to (strong) convexity of f. The last inequality follows from b(u,v) — %[[v[|* <

%HuHQ,Va > (; where we set @ = (f/—(l + 7vs — Lagys) and b = —a, requiring 1 + 75 — Lagys > 0.
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Note that 6; = Gy — V f(z,) for the coordinate-wise variant. Taking the expectation w.r.t i;, according to Lemma 14,

- AsYs
@)+ (V@05 2] + g s B 18] - 0u (6 )]
6y, - V2 L2d dagys L

< Dps [f@t) +(Vf(z,), o — §t>] + 1+ 775 — Lagys |+ 1+ 775 — Lags [f(i) = flzy) = (Vf(zy), T — %)]

—as[{gu(z;) = Vf(z,), 2 | — )]

dagys L N
- m) [fz) + (Vfz,), & —z)] +
—as(gu(z,) — VI(zy), x;rq — )

dogys L - T .
- Wims%) [f(z) - S lIz —z|’] +
- O‘S<9u(lt) - Vf(lt)a 1::'_1 —x)

6oy, - V2 L2d dagys L
1+ 779 — Las’}/s 1477 — Las')/s

= (ps

6asys - V2 L3d dagys L
147y — Lagys 14+ 77s — Lagvys

< (ps

N dagys L T . 9 6y, - V2 L2d i

= Ps — Vs — T+ ) "SI+ — —_su,_v,a__;Sg

ps f(T) (p 1+7”}/3*L045’}/S) 2”95 zy +1+T%7Las% s (g (2,) f(zy), z_y — ), (59)

where the last inequality holds if p, — % > 0. Combining Eq. (58) with Eq. (59), we obtain
B as(1+ 77,
Ei, [f(Z¢) + 27)||$t — z|?]
Vs
_ . o 6y, - V2 L2d
< (1= ay = py) f(@e—1) + ps ; 2 ey — 2|2 4 e =
< (1= a0 = ) (@1-1) + puf @)+ 0l (0) + s =+ [
(1 — Qs — ps)T — 40‘3’75(61 + 4)L T~
- aulan @) = Viz)aty — ) = 5P gy ) (- ) D

6oy, - V2 L2d
T+ 779 — Las')/s

Qs

275

< (1= as —ps)f(@i—1) + ps () + asf(@) + —||lz4—1 — 2|* +

—as(gv(zy) — V£(zy), x:_q — ).

Multiplying both sides by l— and then rearranging the inequality, we finish the proof of this lemma, i.e. Eq. (57). O

C.1. Proof of Theorem 6

To proceed, as in the Gaussian smoothing case, we need a technical assumption:

(A2,) Leta* € argmin, . f(x). For any epoch s of Algorithm 1, consider the inner-loop sequences {z,} and {z;}.
There exist a finite constant Z < oo, potentially dependent on L and d, such that, for » small enough,

su max Ell|lz —z*||] < Z.
szlg ze{z:}U{z,} [” IT<

Again, as mentioned in the context of (A2,,), it is possible to show that this assumption holds under the requirement that f
is coercive. As for Lemma 17, thanks to (A2,), we can get an epoch-wise inequality of the coordinate-wise approach.

Lemma 24. Consider the coordinate-wise variant of Algorithm 1. Assume (A1), (A2,). Set {0} to

Lo (g +pg) 1<t<Ts—1
— Qg < “ - —_ ©
0, = {g T (60)
and define
Lo 20 gz, — 1yl Ps), 61)
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Ry = 22 —=(1—as)+ (Ts — 1)2sPs (62)

Qg Qg

Under the conditions in Eq. (55) and Eq. (56), we have:

CE[fGE) — fa*)] <Re- [F@E) - f@)] + (5

2
. 6aysviLAd
oq e S0P o
Qg 1 — Lagsys Qs

1
l2"~" = 2"|* = Sl — 27]?)

where x* := arg mingcpa f ().

Proof of Lemma 24. 1f we set x = x*, Lemma 23 can be written as
Vs - * 1 *
Bi| 22 [f(@0) - £7)] + 5 o — 27

< L1 -, —p) [f(@Em1) = F@)] + L2 [£(@) - F@)] + Sllees 7|

s Qs 2
Vs GBagys’LPd
o T Lo o Oslee) = Vi) 2, - o).
Summing up these inequalities over ¢t = 1,. .., T}, using the definition of #; and Z( = Z, we get

So0E[f(@) - 1) < |20 - a4 (0= D2 [10) = 1) + (oo = oI = Glhen, — o7

Qg Qs

Vs oy LPd

e T Lavn o Zag (o) = Vf(a) 35y = )]
Noticing that 7* Zt L (Gtxt)/zt 10, & = %71, 19 = 271, xp, = 2° and thanks to the convexity of f, the
inequality above implies
L Y VsP 1 1
So0E[7G) - 1) < [0 - a0 + (- D2 (1@ - )] + (G -l - Gl -0 P
t:1 S S

Vs 6as'ysz/2L2d

FT o E asz_:as (o (@) = VI (@), 2y —a7)],

CEIA@) ~ )] <Ro- 1) - 5] + (5l = o[ = et = 0 P)

Gozs’ySVQLQd Vs &

Vs s N *
+Ts- ais T Lo, CTS ;O‘sEKQV@t) - vf(£t)7x?_—1 - >] (63)

Now, let us look at the additional term (g, (z;) — V f(z,), =", — x*), which can not eliminated by expectation compared
to gradient-based Varag (Lan et al., 2019). According to Eq. (24) and the update rule of Z; in Algorithm 1, we have

as(xttl —z¥) = a2, — Tt — asz”

= —(1—as —ps)Te—1 — psT + z, — asx™
—(1=as—ps)(@—1 —2%) = ps(T — %) + (z, — ")
< (1= as = p)l|Te—1 — =¥ + ps||T — 2" + ||z, — 27|

N

Thanks to assumption (A2,,), we have

aslgv(z,) = V() 2y — ") <llgu(@) = V(@) - las(zy — 27
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< (2 - a,)LVdZv. (64)
The last inequality comes from Lemma 13. Combining the previous inequality with Eq. (63), we have

LE[f() - ()] < Ra- [f@EY) = F@)] + (" — 7| - &

; 1
s 6 s /s 2L2d S
—&-Ts-l-%—i—ﬂ-l@—as)lﬂ/gzv.
as 1 — Lagys Qg

s — ZL'*||2)

O

Remark. Here E;, [6;] = g, (z,) — V f(z,) # 0. Notice that the error terms in Eq. (64), i.e. (g, (z,) — V f(z,), x{_, —x*),
is different from its counterpart in Eq. (34), i.e. (G — V f.(&),xs — z*).

Then, we can derive Theorem 6 for convex and smooth f;, based on Lemma 24. For convenience of the reader, we re-write
the theorem here.

Theorem 6. Consider the coordinate-wise variant of Algorithm 1. Assume (A1) and (A2,). Let us denote sy :=
[logn] + 1. Suppose the weights {6;} are set as in Eq. (10) and parameters {7}, {7}, {ps} are set as

2571 s < s 1 L
T = {T s> 50 y Vs = 12La Ps = 3, with (65)
S0
1 <
ag=4%, 0T (66)
s—so+47’ s> So
Then, we have
Dy
» . gerT T 1 T2 1<s<so
m+5s'(§1 +§2), s> 50

where ¢; = v2Ld, ¢; = 4L\ dZv, 5, = O(s — s0) and D} is defined as

D = 20f(2) — f(a*)] + 6L[2® — "], (67)

where z* is any finite minimizer of f.

Proof of Theorem 6. Assumption Eq. (55) and Eq. (56) are satisfied since

1+T'yS—LaS’yS:1—%>0, (68)
4L 1 1 1
ps‘ﬁ:ré'@” ()
We define
wy = Ly — Rys1. (70)
Asin (Lan et al., 2019), if 1 < s < s,
we = Ly = Rap1 = 2 [1+ (Ty = (s +ps) — (1 - a,) — (2T, — Dp] = 22 [Tu(as —7,)] = 0;

S S
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else, if s > sg,

s hd s\Os + s s S
s s+l Qs Qs+1
1 (T, —1)[2(s — 50 +4) — 1]
=L 96L > 0.

Hence, w, > 0 for all s. Using Lemma 24 iteratively,

LE[f(2°) - f(a")]

- \ S S - v 6oy vPLAd
< RuB[) - S +E [l - ot - Gl — o] + Yo7y 2 S
; J J 13

—|—ZT gEx 2—a])Lqu

j=1
Lo L o 2N v oyl | i
=— — * = -z T — ——— T, - —(2—«a;)LVdZ
GE L/ I et = I 3T D TR T S g Lz
Vi i
—D =T - T; - 2—oa;)LVdZ
12L O+Z o 1—Laj'yj+z j( @) vazy
Jj=1
Ji,2 ’YJ
— D] =T —= Ld 275 - L dZv. 71
= 12L 0 +Z a; +; \[ (71)
The last equality holds since o;7y; = ﬁ We proceed in two cases:
Case: If s < s, L, = f;Ll,R = 122L = E;, X = 77, Ty = 2°71. Hence, we have
s . 1
E[f(#*) — f(z*)] < =g + 2 Ld 4+ ALVdZy, 1< s< s. (72)
Case II: If s > s, we have
! [(Ts — D)as + 1(T +1)]
s =™ T 9 s — L)as S \ds
12a2 2
(s — 5o+ 4)? 1
=—" - |(Ts, — 1 —(Ts, +1
(s — sp +4)?
> (T, +1
- 96L (T +1)
- n-(s—sp+4)°?
- 192L '

where the last inequality holds since T, = gllogz ) > 5, 1.e. 2% > n. Hence, Eq. (71) implies

16D},

< m + O(s —s9) - V2 Ld + O(s — sp) - ILVdZv. (73)
— 20

We can now derive the final complexity result.

Proof of Corollary 7. Using the same technique as for the proof of Corollary 3, we can make the error terms depending on

o . . 1/2 . 1/4,3/4
v vanishing. This requires v = O(W), V= O(ﬁ) for the first case (1 < s < sg) while v = O(W),
( nl/23/2

V= Ld/2ZD}!/?

) for the second case (s > sp) to ensure e-optimality, § more specifically. Hence, we can proceed as
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in (Lan et al., 2019) , neglecting the errors coming from the DFO framework (note that a similar procedure is adopted also
in (Nesterov & Spokoiny, 2011) and (Liu et al., 2018b;a)). If n > %, we require

D6 < D—E) <

280+l = 2p

NN e

Dg

by

o154 357 a0 i (v (25) o )} -0 (s (2).0) .

where the coefficient d corresponds to the number of function queries for each gradient estimation. All in all, the number of
function queries is O {dn log (%) }

Therefore, the number of epochs can be bounded by S; = min {1og

) , S0 }, achieving e optimality inside Case I (see
proof of Theorem 6). The total number of function queries is bounde

o N

Ifn < %6 (Case II), we have S;, = [ 32Dq 4 So — 4}, ensuring the first term in Eq. (73) is not bigger than £

ne 2"
D/
= (’){d\/ %0 4 dnlog(n)}.
€

We can achieve e optimality. Hence, the total number of function queries is

d

nsg + ZTS + (Ts, + n)(Sy — so)] <d

s=1

S0
> T+ (To, +n)Sh
s=1

C.2. Proof of Theorem 8

In this section, we consider f to be strongly convex, which we denoted as (A3). We rewrite below Theorem 8, for
convenience of the reader:

Theorem 8. Consider the coordinate-wise variant of Algorithm 1. Assume (A1), (A2,) and (A3). Let us denote
s0 := [logn| + 1 and assume that the weights {6, } are set to Eq. (30) if 1 < s < sg. Otherwise, they are set to

Ty —(1- s_sl—‘» lgtSTs_lv
at:{“ (1—as = p)le (74)

Ft—h t:Ts7

where Ty = (1 + T’ys)t. If the parameters {7}, {7} and {p,} set to Eq. (14) with

1
. = 2 s < 50, (75)
s .
min{,/2=, 1}, s> s0.

We obtain
1

25+1‘D/0 +<1 +§27 1 S S S S0
o * . D .
E[f(x)_f]g (4/5)8 507+§1+§27 5>50andn2?

n

1y ~(s=s0) Do aL sz
(1+3v/357) o + 24/ + 1) (a + ), s> spandn < 2

where ¢; = 92Ld, ¢o = 24Lv/dZv and Dj, is defined as in Eq. (16).

‘We start with a lemma.
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Lemma 25. Consider the coordinate-wise variant of Algorithm 1. Assume (Al), (A2,) and (A3). Under the choice of
parameters from Theorem 8, we have

’yS = * 1 + TfyS *
E;, 7[f($t) —f ] + gllwt —a*|?
Qg 2
S _ sMs ~ * 1 * S 3 s
< 20— o= p)[f@) = ]+ L [F@) = 1) Gllee — a4 2 AL+ (2 - a0 LVdZ
(76)
Proof of Lemma 25. For strongly convex f, Eq. (57) becomes,
’75 — * 1+ T’YS *
B, | 211 @) - 1)+ L2 oy o
Qs 2
Vs _ #1 1 YsPs rpo- a1 .
< 5 (1 =g —ps) [f(T11) — [ + T[f(x) -+ 5”%4 —a*?
Vs GagyPLPd
T T Lo, Cele@) = Vi @).el - o)
Vs - * VsPs ~ * 1 *
< J(l — g —ps) [f(Ze—1) — [*] + o [f(@) =]+ 5”1'1671 —a*?
+ 2320 (9 o) LVdzu,
as 4 Qg
The last inequality holds when « and , are as defined in Theorem 8 and Eq. (64). O

We divide the proof of Theorem 8 into three cases, corresponding to Lemma 26, Lemma 27, Lemma 28.

Lemma 26. Consider the coordinate-wise variant of Algorithm 1. Assume (A1), (A2,) and (A3). Under the choice of
parameters from Theorem 8, if s < s, for any © € R% we have

3
E[f(z*) - f7] < 2@+1D0+ SV Ld + 4LVdZv,

where D}, is defined in Eq. (16).

Proof of Lemma 26. For this case, g = ps = %, Ys = 6%, T, = 251, For Lemma 25, sum it up from ¢ = 1 to T, we have

- LB (@) - 1] + 3E[ler, — "]

Mﬂ

t=1

s ~ % 1 %112 Vs 3 2 Vs
50, T.[f(2) f]+2||:c0 z¥))? + T, e Ld+T, o (2 — o)LV dZv.

2

Since f is convex, we have

1 N 1 s «
E'TS'E[f(x )—f ] +§E[Hx -z HQ}
1 1 3
< — T 0f@ Y — ] + 2zt = QT—fQL T, - 2 — ) LVdZ
< TG = P gl T - P T o AL T o (2 ) LV dZ
1 1 1 3
:7'T_ ~s5—1 o * - 571_ * (12 T - Y 2L T L Z
op T lf@ ) =[]+ 5l =2t P+ Ty g - VLA + To e o2 - (2— ) LVdZ,

1

where x7, = 2%, 19 = x°~ !, & = 7. From using the last inequality iteratively, we obtain

—_

~S * 1 s *
o T ELF@) = £+ 3B [le" — o ]
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< i To[f(@°) — ] + %on — z*||? +3 ZS:T 7V2Ld+ — ZT ;) LV dZv
where Ty = 1s in accordance with the definition of T; = 2°~!, s > 0. Hence, we obtain
E[f@) - ']+ 5 - 5Bl — o7
< 2—18[1"(920) — f* +3L[|z° — z*||] XS:T 3+ ?z:: (2 —a;)LVdZv
< 25+1 — D} + § V2Ld 4 4LV dZv. (77)
We conclude the proof by observing that 25%1 22:1 T; <2 when s < sq. O

Lemma 27. Consider the coordinate-wise variant of Algorithm 1. Assume (Al), (A2,) and (A3). Under the choice of
parameters from Theorem 8, if s > so and n > % then for any x € RY we have:

E[f(z°) - f*] < <§> D =0 1 92 Ld + 24LNdZv.

I=

Proof of Lemma 27. For this case, as = a =ps = 5,7 =7 = 6%’ T, = 250~ ! when s > sq. Based on Lemma 25, we
have

_ . 1 . _ a1 . 3
E,, B [£@) = £+ (1+77) - 5llae - ||2] < - [J@ = P+ Gl — ot P+ 2 SvPLd + L oanvdz.
Multiplying both sides by I';_1 = (1 + 7y)*~!, we obtain
r
E;, [Zrtl [f(@e) = f] + ?tth - 35*”2]

Iy

3
ey — a2 + 7rt L 22nd+ Y 10 -2Lvidzy.

<7Ft [f@) - ]+

Since 0, = I';_1, as defined in Eq. (17), the last inequality can be rewritten as

| AP

r ~ *
E, [Zyet[f<xt>—f*]+;nxt—w*nﬂ < S0 F@) ~ 1]+ S e — o+ 26 SvLa+ Yo, 20z

Summing up the inequality above from ¢ = 1 to T, we obtain

£ F s £
LS 0E[f(@) - '] + 5*Eller, — " |

Ts
Y . eI 3 2
gﬁtﬂet]E[f(x)— 1+ 7|\x07x 12 + LdZ@tJr— 2L\fzyt219t,
and then
o2 ZGJE 7]+ 3Eller, - 2*|?
4|20

glaZQtE[f(:ﬁ)—f*] fo 7+ QLdZ@** 2Lf2”29“ e

t=1
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which is based on the fact that, for s > 80, § T <T, =T, <n,wehave

n ™ 5
= s 20 > > - —_ = —_ >
r,=(1+7)" = (14m)" > 14y Ty > Lbry g =14 157 >
where the last inequality is conditioned on n > 3%. Since 7 = ZtTil(ﬁt:Et)/ ZtTil 01,3 =3"Y 29 =a°"Y, 21, = 2°
in the epoch s and thanks to the convexity of f, Eq. (78) implies
5| v - 1 9
- —E|f(z°) - f"| + ——E||z* — 2~
1|2 EU6E) 1 + Sy Bl =]
1 _ v 3 ot
<—IE STl ——— |l =P+ L SVPLd + - - 20V d 2.
REUE ) =TT+ =] 12+ 2 v+ 1
Multiplying both sides w1th < and applying this inequality recursively for s > so, we obtain
2a 1
E[f(Z) = f*] + —=— - 5E[llz® — =*|?]
Yl 6 2
AN 2 1 4T3
< () " rrem - e = e el 3 (3) [rasavaz
5 ')/Ztél et 2 j=sot1 5 2
4 o ~5 * 2a 1 s * |12 2
< (= E[f(@) - f*] + ZE[|jz*0 — 2*|?]| + 6v°Ld + 16 LVdZv.
5 Ty 2
where the last inequality holds since Zj:so-l-l (%)S+1 < % 17§ =4 and Zt °, 0 > Ts =T, Hence
5
2a 1
E[f(Z°) — f*] + —=5— - 5E[llz* — z"|?]
Yl b 2
4 o ~S * 6L s * (|2 2
<(: E[f(z%) f]+T - ZE[[Jz* — 2*|?]| + 6v°Ld + 16LVdZv
S0
4 s7so ~g * 3L 1 s * 12 2
<(: QE[f(xO)—f]JrT— fIE[HxO—xH] +6v°Ld + 16LVdZv
so
4\°7% 1 3 5 9
< (= 2+ [go37 Do+ 5¥°Ld +4LVdZv] + 61 Ld + 16LvdZv
5 2s0+1
4\ D
< (5) e H LA 24LVdZv
N Db g2na 4 vz
= = —_— v 1%
5 2T,
4\°7% D}
< (5) =0 1 92Ld + 24LVdZv,
n
where the third inequality comes from Eq. (77) and the last inequality from the fact that T, > 5. O

Lemma 28. Consider the coordinate-wise variant of Algorithm 1. Assume (Al), (A2,) and (A3). If s > sg and
n < 3L then for any x € RY,

(s—s0) s
E[f(z°) - f*] < (1+ 1\/5) 2t +< \/ZJr 1) [3V2Ld+8L\/&ZV .

Proof of Lemma 28. For this case, a; = a = /{57, Ps = p = %, Vs =7 = \/m Ty = Ts, = 2°°~! when s > s.
Based on Lemma 25, we have

E;, g[f(ft) - f*] + @th — $*||2] <

(1 == p) @)~ ]+ 2 [£@) = 7] + ey — 2P

o2
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3
+ 2202 0d+ L (2 - a)LVdZv.
a 4 «

Multiplying both sides by I'y_; = (1 + 7)*~!, we obtain

B | 20 lf@) - )+ e o] < P20 - - pf@n) - 1]+ 2 (1@ - 1)

a
Iy

T

3
et — 2*|% + grt_l - VLd+ %FH (2 - a)LVdZv.

Summing up the inequality above from ¢ = 1 to T, we obtain
v I'r 2
ZGtE 1+ —IEHxT — "

. T, T
b 1 s 3 s

< g[l -« prrpZI‘t_l]E[f(i) -]+ §||x0 —z*||? + % ZI‘t_l . Z1/2Ld+ g th_l -(2—a)LVdZv.
t=1 t=1

t=1

Since 7° = ZZil(tht)/ ZZL 0,7 = 771, 1o = 2°~1, mp, = x° in the epoch s and the convexity of f,, it implies, for
S > So,

T, T

1> 6E[f(@) - 1]+ 5 Elle” — ="

t=1

7 - ° y

E[l a— p—|—pZFt JE[F@EY -]+ H STl o2+ Zrt 1- 2Ld+ Zrt 1-(2—a)LVdZv.

(79)
Moreover, we have

Tyy—1

Ty
S =Tr,+ > (Timi—(1—a—p)ly)
t=1 t=1

Teq

:FTSO(I—a—p)—&—Z(Ft_l—(1—a—p)Ft)

t=1

=Tr,(1—a=p)+[l—(l—a=p)(1+77)] Y Tt

Considering the range of o, since T, < n,

nr T, T 1
= > 0 g . . TS
VL=V T Voo Vi

=77\ Tsgn > 7T,

Also note that, forany 7> 1and 0 < 67 < 1, (1 + T9) < (1 +6)T < (1 + 276). If we set § = 7y and T' = T}, here,
0T = 1yTs, < a < 1.
Then, we have

l1-(1-a-p)(Q+m)=0+79)(a+p—T17)+ 7%
> 1+ ) (9 Ts +p—T77)
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=p(l+7y)(1+2(Ty, — 1) 77)
>p(1477) 0 =pl'r, .

Hence, we obtain Z:}Fj’l 0, > T, - [1—a—p+p ZtTil I';—1]. Moreover, thanks to Eq. (79) and f(Z*) — f* > 0, the
last inequality implies that

Ts
o, (2l pepd T JBIG) - 1]+ Ll o]

t=1

,g[l—a p+pZFt1 [f(js_l)_f*}‘k

t=1

Ts
n g S Tioi-(2—a)LVdzv.
t=1

1 ¥ — 3

s—1 * |2 2
— — —l——g I - —-v*Ld
2H$ x|| oztl =1 41/

Applying this inequality iteratively for s > sg, we obtain

Ts
1—a-p+pY PE[f@E) — 1] + LBl — |

t=1

1
«
1 e T, ,
< (]_"T ) |:ry [1—0[ p+pZFt 1 [f( 90)_f*]+2||$30—$*||2:|

s$—Sq J Ts -
+3 <FT ) BZ_: 3 2Ld+72rt L 2—04)L\[ZV}

Note that, since

gl - < wTs _ T
a[l _a_p'i_pzrt—l} > ;Zrt—l > o= TO
t=1 t=1
and p = %, the inequality above implies
E[f(@*) - ]
NER Bl ~ )+ Bl -]+ 3 () [ - s0pnvaz]
=~ FTsO ’yTSO = FTSO 2
< (-1 o {E[f(zsﬂ) -+ E[[|z® — :c*||2]} + _ {31/2Ld+ (4 — 2a)L\/gZV}
- FTS[) ’}/TSO FTSO —11(2

AsTr, = (1+7-7) 0 >1+ 79Ty, > 1+ 3% =1+ 1. /% itimplies, for s > so,

E[f(z®) — f*] < <Fi> {E[f(i"s“) -]+ 7;‘; IAER x*||2]} +4\/§By2m+ (4 — 201)L\/EZV}

0

Note that, since n < %, we have % = 12La? < 3L. Hence, for s > sg, we have

E[f(z°) :_J:*]
< (r; ) OQ[E[f(;%SU)—f*]—i—;L ; [[|z% — z*|]? } \FF viLd + (4 —QQ)L\/gZV:|

So

5—S8po
< (-2 2| ——Dj + § V2Ld 4 4LVdZv| + 4\/ wQLd + (4 —2a)LVdZv
FT_ 250+1 nT
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S—S8o
1 D! L
< |- =0 4 (2\/3—+1) |:3V2Ld+8LﬁZVj|
I'r,, 250 nr
1\ D /3L
S 0 20/ = +1)|3v°Ld + 8LV dZ
(FTSO> 2Tbo+( —+ ) |3v2Ld + 8LV dZv
S$—S8p
1 D! 3L
< () =4 (24/=+1) {3u2Ld + 8L\/gZu]
FTSO n nrt

7T30(8780) D/ L
T > =25 (2\/3——4—1) |:3I/2Ld+8L\/gZI/:|
n nTt

n(s—sq)

B D/ L
- =4 (2\/ L + 1) 3v2Ld + 8LV dZv
3nL n nr

1
2
1 [ar\ ¢ Dy 3L
< <1+4- ) =L+ (2¢/=+1) [3V2Ld+8L\/EZV:|,
nrt

Il
S/ N N
—
+
N =
w
3
=~

3L n

where the second inequality is based on Eq. (77) and the fourth and fifth inequalities rely on T, > 7. The last inequality
comes from 1+ 7§ < (1+ )T when 6 > 0. O

Now, we can finish the proof of Theorem 8§:

Proof of Theorem 8. To summarize, we have obtained

2Dy + 3v2Ld + ALVdZv, 1<s<so
(477 Lo 1 9,214 4 241/d 2, s> spandn > 3L
E[f(z%) — f*] := - (80)
—(S—So ,
(1"'411 gz) % s> spandn < 3£
+(24/3L +1) [3V2Ld +8L\dZv/|,

from Lemma 26, Lemma 27, Lemma 28. L]
We conclude once again by proving the complexity result.

Proof of Corollary 9. Using the same technique as for the proof of Corollary 5, we can make the error terms depending
on v vanishing. It requires v = O(Llj;ii;m), v = O(ﬁ) for the first two cases (1 < s < sg or s > sp and n > 3L)
while we need to take the extra conditional number % into account for the last case (s > sgandn < %) to ensure
e-optimality, 5 more specifically. Hence, we can proceed as in (Lan et al., 2019) , neglecting the errors coming from the
DFO framework (note that a similar procedure is adopted also in (Nesterov & Spokoiny, 2011) and (Liu et al., 2018b;a)).
For the first case above (1 < s < sg), the total number of function queries is given in Theorem 6. In the second case
(s > spandn > %), the algorithm runs at most S := (’){ log (DTé’)} epochs to ensure e-optimality. Thus, the total number
of function queries in this case is bounded by

S
D/
dns+§ d-T, gdns+dn5=0{dnlog (0>} (81)
€

s=1

Finally, to achieve e-error for the last case (s > sgandn < %), our algorithm needs to run at most S = So +
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% log (%’) epochs. Therefore, the total number of function queries is bounded by

’

S So
> (dn+dT,) =Y (dn+dT.) + (dn + dT.,)(S" — so)
s=1 s=1

!
< 2dnsg + (dn + dn)\/ % log (DO>
nr ne
/
= O{dnlog(n) +dy/ nk log (DO) } (82)
T ne

D. Experiments
D.1. Parameter settings for Fig. 1

Here, we compare our method (Algorithm 1) with ZO-SVRG-Coord-Rand (Ji et al., 2019), with the accelerated method
in (Nesterov & Spokoiny, 2011) and with a zero-order version of Katyusha inspired from (Shang et al., 2017) — which is a
simplified version of the original algoerithm presented in (Allen-Zhu, 2017). We define this method in Algorithm 2.

Algorithm 2 Simplified ZO-Katyusha
Require: 2° € R {T.}, {7:}, {as}.
1: fors=1,2,...,5do
22 F=3"lay=ys =371

3:  Pivotal ZO gradient § = g, (Z) using the coordinate-wise approach by Eq. (3).
4. fort=1,2,...,Tsdo

5: Pick ¢, uniformly at random from {1,...,n};

6: Gt :gu(xffl,ut,it) —gu(it,ut,it)—i—g;

7: yi = yia —1sGo

8: i =7+ as(yf — 2);

9: end for

0 = AT

11: end for

Output: 7°

We recall some notation from the main paper.

n is the data-set size;

e d is the problem dimension;

e b is the mini-batch size used to compute stochastic ZO-gradients.
e v is the coordinate-smoothing parameter (see Section 3);

e . is the Gaussian-smoothing parameter (see Section 3);

o {as},{7s}, {Ts} and {6;} are parameters defined for ZO-Varag (Algorithm 1), which also appear in ZO-Katyusha (Al-
gorithm 2). oy, v, 0 also appear in the algorithm by Nesterov & Spokoiny (2011), but have different definitions (see
Eq. 60 in their paper);

e {ps} is the Katyusha momentum parameter in Algorithm 1, which can be seen as a Katyusha momentum even though
it is defined differently in the simplified framework of (Shang et al., 2017) (see definition in the original paper
by Allen-Zhu (2017));

e 7 is the step size for ZO-SVRG (Ji et al., 2019).
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Next, we specify some parameter settings used for the experiments in Fig. 1. What is not specified here directly appears in
the corresponding figures.

o 1 =v=0.001.
e T are set as in Theorem 2.

e In Algorithm 1 and Algorithm 2 we set s according to Eq. (9) and Eq. (13) in the main paper. For the accelerated
method by (Nesterov & Spokoiny, 2011), we used the choice of oy, reccomended in their paper.

e Note that, for both Algorithm 1 and Algorithm 2, the gradient estimate G is actually multiplied © by a,y,. Hence,
«s7Ys acts like a step-size. Therefore, in ZO-SVRG, we choose the equivalent stepsize ns = as7ys. Also note that, as
one can note in Eq. (8), as7ys is actually constant and inversely proportional to d (see also next bullet-point).

e We choose v, such that n = a5y, = 0.001 - b/d for logistic regression and 1 = «7ys = b/d for ridge regression when
testing on the diabetes dataset (python sklearn). For the ijcnnl dataset (python LIBSVM), we instead choose v, such
that n = a7y, = 0.1 - b/d for logistic regression and 1 = a5 = 0.001 - b/d for ridge regression.

e We pick ps = 0.5, as specified in Eq. (8).
D.2. Additional experiments
Next, we discuss potential variations of the parameters discussed in the last subsection.
Options for pivotal point. We tested two options for pivot computation in Algorithm 1:
Option I: 7 = 751 = &° = Y. 1° (0,%,)/ (2212, 0:) (as used in our analysis), or Option II: & = 7°~! .

In addition to the experimental results on the ijcnnl dataset (LIBSVM) provided in Fig. 2, we also provide results on the
diabetes dataset (sklearn) here: from Fig. 4, we observe that Option II also achieves faster convergence than Option I on the
diabetes dataset in practice. Overall, our empirical evidence seems to indicate that Option II works better than Option 1.

: . 5
diabetes, S =200,b=5,A =0 diabetes, S =200,b=5, A = le”°
. '
10 AVG 10 -4 v
- NO_AVG M- NO_AVG
107! 107!
. 107 1073
=]
2
Ty 107 107
9]
-
1077 1077
107 10~
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
-4 Ave 10° 1 -4 A6
102 -l NO_AVG —l- NO_AVG
101
100
o -1
g 107 0
o~
1074 103
.
10 10-5
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
epochs epochs

Figure 4. ZO-Varag, averaging (Option I) vs. no-averaging (Option II).

%In Algorithm 1, this is actually csys /(1 + pys) & Quss.
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Effect of the momentum p,. The effect of p, (a.k.a Katyusha momentum) varies depending on the data set. From Fig. 5
and Fig. 6, we find that increasing values of p can either accelerate or slow down the convergence of the algorithm. Moreover,
the algorithm may not converge when p < 0.5, since the constraint from Eq. (26) is not guaranteed anymore (recall the
proof we provide is based on p = 0.5).

regularizer A = 0 regularizer A = le~°

Logistic

Ridge

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
epochs epochs

Figure 5. Effect of p on the diabetes dataset. Recall that our theoritical guarantees hold for p = 0.5.

Effect of the step-size ccsys. As discussed in Fig. 3 from the main paper, we find that the suboptimality stalling effect is
related to the magnitude of the regularizer A, which influences the strong-convexity constant of the objective function. Here,
we show how such stalling effect of ZO-Varag can be controlled by tuning the step size asys. From Fig. 7, we see that
the final suboptimality decreases if we decrease the magnitude of the step size a5, which however also affects speed of
convergence.

Effect of the smoothing parameter v. In this test, we set steps as the biggest step for each scenario in Fig. 7 as we only
care about the stalling effects. In Fig. 8, we verify that the final error our ZO algorithm is dependent on the smoothing
parameter v at the pivotal point, i.e. smaller v yields smaller error deviating from the optimum. However, we also find that
this effect varies depending on the datasets and models being used, and is sometimes negligible: the logistic regression is
sensitive to the values of the smoothing parameters, while the ridge regression is not. Note that, as expected, p does not
influence the steady-state error.

Comparison with the Coordinate-wise Variant Finally, we also provide a preliminary test between the ZO-Varag
algorithm and its coordinate-wise variant which is introduced in Section 5. Although the length of inner loops are not
the same for these two algorithms, see different definitions of sy in Theorem 2, 4, 6, 8, we only need to compare the
function values at the pivotal points as the function queries are the same inside each inner loop after s iterations (defined in
Theorem 2). The experiments are carried out in Figure 9 and Figure 10, and show that there is almost no difference between
the performance of ZO-Varag and the performance of its coordinate-wise variant, except the magnitude of stalling errors.
This comes from the fact that the step size for the coordinate-wise variant is d times larger than that for ZO-Varag.
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regularizer A = 0 regularizer A = 1le™°
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Figure 6. Effect of p on the ijcnnl dataset. Recall that our theoritical guarantees hold for p = 0.5.

. _5 .. _5
diabetes, S =600, b=5, A = le ijennl, S =200, b =500, A = le
10t 4 107 1
::: step=113.75
0. step=22.75
1071 —A- step=0.1 1073 4 A step=4.55
103 -5
10771
2
B2 -5 J
& 10 107
—
10-7 1
0 10794
107° 4
10-11
0 100 200 300 400 500 600 0 25 50 75 100 125 150 175 200
:: step=2.5 1071 ::: step=113.75
tep=0.5 step=22.75
102 °
step=0.1 1072 A step=4.55
100 107
& 1077
=) -2
& 10 107°
107 107
10713
10°° 10-15
0 100 200 300 400 500 600 0 25 50 75 100 125 150 175 200
epochs epochs

Figure 7. ZO-Varag with varying step-sizes= aus7s.
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Figure 8. ZO-Varag, varying smoothing parameter ;1 and coordinate-wise paramater v.
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Figure 10. ZO-Varag vs. Coordinate-wise Variant of ZO-Varag (ijcnnl)




