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Abstract
Despite remarkable success in practice, modern
machine learning models have been found to
be susceptible to adversarial attacks that make
human-imperceptible perturbations to the data,
but result in serious and potentially dangerous pre-
diction errors. To address this issue, practitioners
often use adversarial training to learn models that
are robust against such attacks at the cost of higher
generalization error on unperturbed test sets. The
conventional wisdom is that more training data
should shrink the gap between the generalization
error of adversarially-trained models and standard
models. However, we study the training of ro-
bust classifiers for both Gaussian and Bernoulli
models under `∞ attacks, and we prove that more
data may actually increase this gap. Furthermore,
our theoretical results identify if and when addi-
tional data will finally begin to shrink the gap.
Lastly, we experimentally demonstrate that our re-
sults also hold for linear regression models, which
may indicate that this phenomenon occurs more
broadly.

1. Introduction
As modern machine learning models continue to gain trac-
tion in the real world, a wide variety of novel problems
have come to the forefront of the research community. One
particularly important challenge has been that of adversarial
attacks (Szegedy et al., 2014; Goodfellow et al., 2015; Kos
et al., 2018; Carlini & Wagner, 2018). To be specific, given
a model with excellent performance on a standard data set,
one can add small perturbations to the test data that can fool
the model and cause it to make wrong predictions. What is
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more worrying is that these small perturbations can possibly
be designed to be imperceptible to human beings, which
raises concerns about potential safety issues and risks, es-
pecially when it comes to applications such as autonomous
vehicles where human lives are at stake.

The problem of adversarial robustness in machine learning
models has been explored from several different perspec-
tives since its discovery. One direction has been to propose
attacks that challenge these models and their training proce-
dures (Gu & Rigazio, 2015; Moosavi-Dezfooli et al., 2016;
Papernot et al., 2016; Carlini & Wagner, 2017; Athalye
et al., 2018). In response, there have been works that pro-
pose more robust training techniques that can defend against
these adversarial attacks (He et al., 2017; Raghunathan et al.,
2018a;b; Shaham et al., 2018; Weng et al., 2018; Wong &
Kolter, 2018; Zhang et al., 2018; Cohen et al., 2019; Lecuyer
et al., 2019; Stutz et al., 2020). For robust training, one
promising approach is to treat the problem as a minimax
optimization problem, where we try to select model param-
eters that minimize the loss function under the strongest
feasible perturbations (Xu & Mannor, 2012; Madry et al.,
2018). Overall, adversarial training may be computationally
expensive (Bubeck et al., 2019; Nakkiran, 2019), but it can
lead to enhanced resistance towards adversarially modified
inputs.

Although adversarially robust models tend to outperform
standard models when it comes to perturbed test sets, recent
studies have found that such robust models are also likely to
perform worse on standard (unperturbed) test sets (Raghu-
nathan et al., 2019; Tsipras et al., 2019). We refer to the
difference in test loss on unperturbed test sets as the cross
generalization gap. This paper focuses on the question of
whether or not this gap can be closed.

Theoretical work by Schmidt et al. (2018) has shown that
adversarial models require far more data than their standard
counterparts to reach a certain level of test accuracy. This
supports the general understanding that adversarial training
is harder than standard training, as well as the conventional
wisdom that more data helps with generalization. However,
when it comes to the cross generalization gap, things may
not be so simple.
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In this paper, we identify two regimes during the adversarial
training process. In one regime, more training data eventu-
ally helps to close the cross generalization gap, as expected.
In the other regime, the gap will surprisingly continue to
grow as more data is used in training. The data distribution
and the strength of the adversary determine the regime and
the existence of the two regimes indicates a fundamental
phase transition in adversarial training.

1.1. Our Contributions

In our analysis of the cross generalization gap, we assume
the robust model is trained under `∞ constrained pertur-
bations. We study two classification models including a
Gaussian model and a Bernoulli model, as well as a simple
linear regression model.

For the Gaussian model, we theoretically prove that dur-
ing the training of a robust classifier there are two possible
regimes that summarize the relation between the cross gen-
eralization gap and the training sample size (see Theorem 1).
More specifically, let n denote the number of training data
points. Suppose the perturbation that the adversary can add
is constrained to the `∞ ball of radius ε. In the strong adver-
sary regime (i.e. large ε compared to the signal strength of
the data), the gap always increases and has an infinite data
limit.

In contrast, in the weak adversary regime, there exists a
critical point that marks the boundary between two stages.
For all n less than this threshold, we have the increasing
stage where the gap monotonically increases. Beyond this
threshold, we will eventually reach another stage where the
gap strictly decreases. It is important to note that, even
in the weak adversary regime, it is possible to make this
threshold arbitrarily large, which means adding data points
will always expand the cross generalization gap.

For the Bernoulli model, we show similar results (see Theo-
rem 3). Although the curve for the cross generalization gap
will be oscillating (see Fig. 1b), we prove that it manifests in
a general increasing or decreasing trend. We further explore
a simple one-dimensional linear regression and experimen-
tally verify that the phase transition also exists.

The primary implication of our work is that simply adding
more data will not always be enough to close the cross
generalization gap. Therefore, fundamentally new ideas
may be required if we want to be able to train adversarially
robust models that do not sacrifice accuracy on unperturbed
test sets.

2. Related Work
There is an existing body of work studying adversarially
robust models and their generalization. We briefly discuss

some of the papers that are most relevant to our work.

Trade-off between robustness and standard accuracy
What initially motivated our work is the experimental find-
ing that standard accuracy and adversarial robustness can
sometimes be incompatible with each other (Papernot et al.,
2018; Tsipras et al., 2019). These works empirically show
that using more data for adversarial training might decrease
the standard accuracy. Additionally, this decline becomes
more obvious when the radius of perturbation ε increases.
This causes the cross generalization gap between robust and
standard models. The side effect of a large perturbation has
also been studied by Dohmatob (2019) who shows that it is
possible to adversarially fool a classifier with high standard
accuracy if ε is large. Ilyas et al. (2019) explore the relation
between the perturbation ε and the features learned by the
robust model. Their results suggest that a larger ε tends
to add more weight onto non-robust features and conse-
quently the model may miss useful features which should be
learned under standard setting. Diochnos et al. (2018) con-
sider both error region setting and study the classification
problem where data is uniformly distributed over {0, 1}d.
They show that under this `0 perturbation setting the ad-
versary can fool the classifier into having arbitrarily low
accuracy with at most ε = O(

√
d) perturbation. Zhang et al.

(2019) theoretically study the trade-off between robustness
and standard accuracy from a perspective of decomposition.
More specifically, they decompose the robust error into a
standard error and a boundary error that would be affected
by the perturbation. Their decomposition further leads to a
new design of defense. Empirically, to deal with the reduc-
tion in the standard accuracy, Stutz et al. (2019) show that
if the perturbation is not large enough to push data points
across the decision boundary and the resulting adversarial
examples still stay within their true decision region, then
the adversarial training with such examples can boost gen-
eralization. Zhang et al. (2020) also propose training on
specifically chosen adversarial examples to reduce the drop
in the standard accuracy. Brittleness/robustness of Bayesian
Inference is studied by Owhadi & Scovel (2016); Owhadi
et al. (2015a;b); Owhadi & Scovel (2017).

In a concurrent and independent work, Raghunathan et al.
(2020) performed a finite-sample analysis of the trade-off
for a linear regression model. They also leveraged the re-
cently proposed robust self-training estimator (Carmon et al.,
2019; Najafi et al., 2019) in order to mitigate the robust er-
ror without sacrificing the standard error. They focused on
a regression problem on the original training dataset aug-
mented with perturbed examples and investigated a regime
where the optimal predictor has zero standard and robust
error. This paper studied a classification problem and our
analysis covers both weak and strong regimes.
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Sample complexity for generalization The generaliza-
tion of adversarially robust models has different properties
from the standard ones, especially in sample complexity.
Schmidt et al. (2018) study Gaussian mixture models in
d-dimensional space and show that for the standard model
only a constant number of training data points is needed,
while for the robust model under `∞ perturbation a training
dataset of size Ω(d) is required. Their work is in a different
direction to ours: their main result focuses on dimension-
dependent bounds for sample complexity, while we quantify
the effect of the amount of training data on adversarial gen-
eralization and we prove the existence of a phase transition
under two binary classification models. Bubeck et al. (2019)
analyze the computational hardness in training a robust
classifier in the statistical query model. They prove that
for a binary classification problem in d dimensions, one
needs polynomially (in d) many queries to train a standard
classifier while exponentially many queries to train a ro-
bust one. Garg et al. (2020) consider a setting where the
adversary has limited computational power and show that
there exist learning tasks that can only be robustly solved
when faced with such limited adversaries. Yin et al. (2019)
and Khim & Loh (2018) prove generalization bounds for
linear classifiers and neural networks via Rademacher com-
plexity. In addition, Yin et al. (2019) show the adversarial
Rademacher complexity is always no less than the standard
one and is dimension-dependent. Montasser et al. (2019)
show the widely used uniform convergence of empirical
risk minimization framework, or more generally, any proper
learning rule, might not be enough for robust generaliza-
tion. They prove the existence of a hypothesis class where
any proper learning rule gives poor robust generalization
accuracy under the PAC-learning setting, while improper
learning can robustly learn any class. Cullina et al. (2018)
study generalization under the PAC-learning setting and
prove a polynomial upper bound for sample complexity that
depends on a certain adversarial VC-dimension. Diochnos
et al. (2020) study PAC-learning under the error region set-
ting and prove a lower bound for sample complexity that is
exponential in the input dimension.

Other relevant work Bhagoji et al. (2019) use optimal
transport to derive lower bounds for the adversarial clas-
sification error. For a binary classification problem, they
prove a relation between the best possible adversarial robust-
ness and the optimal transport between the two distributions
under a certain cost. Another line of work analyzes ad-
versarial examples via concentration of measure and show
that their existence is inevitable under certain conditions
(Gilmer et al., 2018; Fawzi et al., 2018; Shafahi et al., 2018;
Mahloujifar et al., 2019).

3. Preliminaries
3.1. Notation

We use the shorthand [d] to denote the set {1, 2, . . . , d}
for any positive integer d. We use N (µ,Σ) to denote the
multivariate Gaussian distribution with mean vector µ and
covariance matrix Σ.

If u, v ∈ Rd are two d-dimensional vectors, the j-th compo-
nent of u is denoted by u(j). The inner product of u and v
is denoted by 〈u, v〉. If A is a positive semi-definite matrix,
let the semi-norm induced by A be ‖u‖A =

√
u>Au. Let

B∞u (ε) denote the `∞ ball centered at u and with radius ε,
i.e., B∞u (ε) = {v ∈ Rd : ‖u− v‖∞ ≤ ε}. In our problem
setup in Section 3.2, the ball B∞u is the set of allowed per-
turbed vectors for the adversary, where ε is the perturbation
budget. We define the Heaviside step function H to be

H(x) =


1, for x > 0 ;
1/2, for x = 0 ;

0, for x < 0 .

3.2. Problem Setup

Suppose that the data (x, y) is drawn from an unknown
distribution D, where x is the input and y is the label. For
example, in a classification problem, we have (x, y) ∈ Rd×
{±1}; in a regression problem, we have (x, y) ∈ Rd × R.
Given a model parameter w ∈ Θ ⊆ Rp and a data point
(x, y), the loss of the model parameterized by w on the data
point (x, y) is denoted by `(x, y;w).

The training dataset Dtrain = {(xi, yi)}ni=1 consists of n
data points sampled i.i.d. from the distribution D. Given
the training dataset with size n, we respectively define the
optimal standard and robust models trained on Dtrain by

wstd
n = arg min

w∈Θ

1

n

n∑
i=1

`(xi, yi;w) ,

wrob
n = arg min

w∈Θ

1

n

n∑
i=1

max
x̃i∈B∞xi (ε)

`(x̃i, yi;w) .

(1)

The optimal standard model wstd is the minimizer of the
total training loss 1

n

∑n
i=1 `(xi, yi;w). In the definition of

the optimal robust model wrob, we take into consideration
the adversarial training for each data point, i.e., the inner
maximization maxx̃i∈B∞xi (ε)

`(x̃i, yi;w). We assume that
the adversary is able to perturb each data item xi within an
`∞ ball centered at xi and with radius ε. The best robust
model is the minimizer of the total training loss with adver-
sarial training. Note that both wstd and wrob are functions of
the training dataset and thereby also random variables.

If we have a model parametrized w and the test dataset
Dtest = {(x′i, y′i)}n

′

i=1 consists of n′ data points sampled
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i.i.d. from D, the test loss of w is given by

Ltest(w) = E

 1

n′

n′∑
i=1

`(x′i, y
′
i;w)

 = E(x,y)∼D [`(x, y;w)] .

Additionally, we define the cross generalization gap gn be-
tween the standard and robust classifiers by

gn = E
{(xi,yi)}ni=1

i.i.d.∼D

[
Ltest(w

rob)− Ltest(w
std)
]

= E
{(xi,yi)}ni=1

i.i.d.∼D

[
E(x,y)∼D[`(x, y;wrob)]

−E(x,y)∼D[`(x, y;wstd)]
]
.

4. Classification
In this section, we study a binary classification problem,
where we have each data point (x, y) ∈ Rd × {±1}. For
any model parameter w ∈ Rd, we consider the loss func-
tion `(x, y;w) = −y〈w, x〉 (Yin et al., 2019; Khim & Loh,
2018). The parameter w is constrained on the `∞ ball
Θ = {w ∈ Rd | ‖w‖∞ ≤ W}, where W is some posi-
tive real number. Under this setup, the best standard and
robust classifier are given as follows.

wstd
n = arg min

‖w‖∞≤W

1

n

n∑
i=1

−yi〈w, xi〉

= arg max
‖w‖∞≤W

n∑
i=1

yi〈w, xi〉 ,

wrob
n = arg min

‖w‖∞≤W

1

n

n∑
i=1

max
x̃i∈B∞xi (ε)

(−yi〈w, x̃i〉)

= arg max
‖w‖∞≤W

n∑
i=1

min
x̃i∈B∞xi (ε)

yi〈w, x̃i〉 .

(2)

The cross generalization gap gn between the standard and
robust classifiers is given by

gn = E
{(xi,yi)}ni=1

i.i.d.∼D

[
E(x,y)∼D[y〈wstd, x〉]− E(x,y)∼D[y〈wrob, x〉]

]
.

(3)

In this paper, we investigate how the cross generalization
gap gn evolves with the amount of data. Intuitively, one
might conjecture that the gap should satisfy the following
properties:

(a) First, the gap should always be non-negative. This
means that the robust classifier incurs a larger test (gen-
eralization) loss than the standard classifier, as there
is no free lunch and robustness in adversarial training
would compromise generalization performance.

(b) Second, more training data would close the gap gradu-
ally; in other words, the gap would be decreasing with
respect to the size of the training dataset.

(c) Third, in the infinite data limit (i.e., when the size of
the training dataset tends to infinity), the cross general-
ization gap would eventually tend to zero.

Our study corroborates (a) but denies (b) and (c) in general.
The implication of this is not only that current adversarial
training techniques sacrifice standard accuracy in exchange
for robustness, but that simply adding more data may not
solve the problem.

4.1. Gaussian Model

The Gaussian model is specified as follows. Let (x, y) ∈
Rd×{±1} obey the distribution such that y ∼ Unif({±1})
and x | y ∼ N (yµ,Σ), where µ(j) ≥ 0 for ∀j ∈ [d]
and Σ = diag(σ(1)2, σ(2)2, . . . , σ(d)2). We denote this
distribution by (x, y) ∼ DGau.

Theorem 1 (Gaussian model, proof in Appendix A).
Given i.i.d. training data (xi, yi) ∼ DGau with n data points,
if we define the standard and robust classifier as in (2) (de-
noted by wstd and wrob, respectively) and define the cross
generalization gap gn as in (3), we have

(a) gn ≥ 0 ∀ n ≥ 1;
(b) The infinite data limit equals

lim
n→∞

gn = 2W
∑

j∈[d]:µ(j)>0

µ(j)H

(
ε

µ(j)
− 1

)
,

where H is the Heaviside step function defined in
Section 3.1;

(c) If ε < minj∈[d]:µ(j)>0 µ(j), gn is strictly increasing
in n when

n < min
j∈[d]:
µ(j)>0

max

{
3

2
, 2 log

1

1− ε/µ(j)

}(
σ(j)

µ(j)

)2

,

and it is strictly decreasing in n when

n ≥ max
j∈[d]:
µ(j)>0

(
K0 + 2 log

1

1− ε/µ(j)

)(
σ(j)

µ(j)

)2

,

where K0 is a universal constant.
(d) If ε > ‖µ‖∞, gn is strictly increasing for all n ≥ 1.

Part (a) of Theorem 1 states that the generalization of the
robust classifier is never better than the standard one. Part
(b) quantifies the size of the gap as the size of the training
dataset n goes to infinity. The main implication here is that
the gap will always converge to some finite limit, which may
be zero if the strength of the adversary ε is small enough.
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Figure 1: Cross generalization gap gn (and strip center sn for the Bernoulli model) vs. the size of the training dataset.

Parts (c) and (d) describe the two different possible regimes.
Part (c) states that if the strength of the adversary is not
too large, then there will be two stages: an initial stage
where the cross generalization gap is strictly increasing in
n, followed by a secondary stage where the gap is strictly
decreasing in n. On the other hand, part (d) states that a
large ε will result in a cross generalization gap that is strictly
increasing (but still tending towards some finite limit).

In order to better describe and visualize the implications
of Theorem 1, we consider a special case where µ =
(µ0, . . . , µ0) and Σ = σ2

0I .

Corollary 2. Assume that W = 1, µ(j) = µ0 ≥ 0, and
σ(j) = σ0 > 0 for all j ∈ [d]. The infinite data limit equals

lim
n→∞

gn = 2dµ0H

(
ε

µ0
− 1

)
=


2dµ0, for ε

µ0
> 1 ;

dµ0, for ε
µ0

= 1 ;

0, for ε
µ0
< 1 .

If ε < µ0, we have gn is strictly increasing when

n < max

{
3

2
, 2 log

1

1− ε/µ0

}(
σ0

µ0

)2

,

and it is strictly decreasing when

n ≥
(
K0 + 2 log

1

1− ε/µ0

)(
σ0

µ0

)2

,

where K0 is a universal constant. If ε > µ0, we have gn is
strictly increasing for all n ≥ 1.

Corollary 2 is essentially a simplified version of parts (c)
and (d) of Theorem 1 where we cleanly divide between a
weak adversary regime and a strong adversary regime at a
threshold ε = µ0.

We illustrate the cross generalization gap gn vs. the size of
the training dataset in Fig. 1a, where we setW = d = µ = 1

and σ = 2. The curve ε = 1 belongs to the strong adversary
regime, while the remaining curves belong to the weak
adversary regime.

In the weak adversary regime, the evolution of gn can be
divided into two stages, namely the increasing and decreas-
ing stages (part (c) of Theorem 1). The duration of the
increasing stage is

Θ

((
σ0

µ0

)2

log
1

1− ε/µ0

)
.

This duration is controlled by the ratio ε/µ0, as well as the
reciprocal of the signal-to-noise ratio (SNR), i.e., σ0

µ0
. A

larger SNR and an ε closer to µ0 lead to a shorter increasing
stage. It can be observed in Fig. 1a that for the curves with
ε = 0.2, 0.5, 0.7, 0.9, 0.95, a larger ε results in a longer
duration of the increasing stage.

After the increasing stage, the cross generalization gap will
eventually begin to decrease towards some finite limit (given
by part (b) of Theorem 1) if sufficient training data is pro-
vided. In addition, we would like to remark that the duration
relies on the data and the strength of the adversary and could
be potentially arbitrarily large; in other words, without full
information about the true data distribution and the power
of the adversary, one cannot predict when the increasing
stage will terminate.

In the strong adversary regime, the cross generalization gap
expands from the very beginning. In the infinite data limit,
the gap approaches dµ0 if ε = µ0, and it approaches 2dµ0

if ε > µ0.

4.2. Bernoulli Model

In this subsection, we investigate the Bernoulli model de-
fined as follows. Let (x, y) ∈ Rd × {±1} obey the distribu-
tion such that y ∼ Unif({±1}) and for ∀j ∈ [d] indepen-
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dently,

x(j) =

{
y · θ(j) with probability 1+τ

2 ,

−y · θ(j) with probability 1−τ
2 ,

where θ ∈ Rd≥0 and τ ∈ (0, 1). We denote this distribution
by (x, y) ∼ DBer.

The parameter τ controls the signal strength level. When
τ = 0 (lowest signal strength), x(j) takes the value of
+θ(j) or −θ(j) uniformly at random, irrespective of the
label y. When τ = 1 (highest signal strength), we have
x(j) = y · θ(j) almost surely.

We illustrate the cross generalization gap gn vs. the size of
the training dataset (denoted by n) in Fig. 1b, where we set
W = d = θ = 1 and ε = 0.2. We observe that all curves
gn oscillate around the other curves labeled sn. Although
the figure shows that the curves gn are not monotone, they
all exhibit a monotone trend, which is characterized by sn.

As a result, we will not show that gn is monotonically in-
creasing or decreasing (as shown in Fig. 1b, it is not mono-
tone). Alternatively, we will show that gn resides in a strip
centered around sn and sn displays (piecewise) monotonic-
ity. Additionally, the height of the strip shrinks at a rate of
O
(

1√
n

)
; in other words, it can be shown that

|gn − sn| ≤ O
(

1√
n

)
, ∀n ≥ 1 .

Theorem 3 (Bernoulli model, proof in Appendix B).
Given i.i.d. training data (xi, yi) ∼ DBer with n data points,
if we define the standard and robust classifier (denoted by
wstd and wrob, respectively) as in (2) and define the cross
generalization gap gn as in (3), we have

(a) gn ≥ 0 for ∀n ≥ 1;
(b) The infinite data limit equals

lim
n→∞

gn = 2Wτ
∑

j∈[d]:θ(j)>0

θ(j)H

(
ε

θ(j)τ
− 1

)
,

where H is the Heaviside step function defined in Sec-
tion 3.1.

Furthermore, there exists a positive constant C0 ≤√
10+3

6
√

2π
≈ 0.4097 and a sequence sn such that |gn − sn| ≤

8C0Wτ‖θ‖1(τ2+1)√
n
√

1−τ2
and

(c) If ε
τ < minj∈[d]:θ(j)>0 θ(j), sn is strictly increasing

in n when

n <

(
1

τ2
− 1

)
max

3

2
, 2 min

j∈[d]:
θ(j)>0

log
1

1− ε
θ(j)τ



and strictly decreasing in n when

n ≥
(

1

τ2
− 1

)K0 + 2 max
j∈[d]:
θ(j)>0

log
1

1− ε
θ(j)τ

 ,

where K0 is a universal constant;
(d) If ετ ≥ ‖θ‖∞, sn is strictly increasing for all n ≥ 1.

Again, to explain the implications of Theorem 3, we ex-
plore the following special case where W = 1 and θ =
(θ0, . . . , θ0).

Corollary 4. AssumeW = 1 and that θ(j) = θ0 > 0 holds
for all j ∈ [d]. The infinite data limit equals

lim
n→∞

gn = 2τdθ0H

(
ε

θ0τ
− 1

)

=


2τdθ0, for ε > θ0τ ;

τdθ0, for ε = θ0τ ;

0, for ε < θ0τ .

(4)

If ε < θ0τ , sn is strictly increasing in n when

n <

(
1

τ2
− 1

)
max

{
3

2
, 2 log

1

1− ε/(θ0τ)

}
,

and it is strictly decreasing when

n ≥
(

1

τ2
− 1

)(
K0 + 2 log

1

1− ε/(θ0τ)

)
,

where K0 is a universal constant. If ε ≥ θ0τ , sn is strictly
increasing for all n ≥ 1.

Similar to the Gaussian model, there also exist two regimes.
One is the weak adversary regime where ε < θ0τ , while
the other is the strong adversary regime where ε ≥ θ0τ .
Recall that in Fig. 1b, we set W = d = θ = 1 and ε = 0.2.
Therefore the values τ = 0.1 and τ = 0.2 lie in the strong
adversary regime, while the values τ = 0.5 and τ = 0.7
belong to the weak adversary regime.

In the weak adversary regime, the critical point is when

n ≈ Θ

((
1

τ2
− 1

)
log

1

1− ε/(θ0τ)

)
. (5)

Before this critical point, the strip center sn that the cross
generalization gap gn oscillates around is strictly increasing;
it is strictly decreasing after the critical point and eventually
vanished as n → ∞. Note that when τ → 0, both terms
(
(

1
τ2 − 1

)
and log 1

1−ε/(θ0τ) ) in (5) blow up and thereby
the increasing stage elongates infinitely. The increasing
and decreasing stages of the weak adversary regime are
confirmed by the two curves τ = 0.5 and τ = 0.7 in Fig. 1b.
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In the strong adversary regime, the strip center sn displays a
similar trend as the cross generalization gap in the Gaussian
model; i.e., it is strictly increasing from the very beginning
(see the two curves τ = 0.1 and τ = 0.2 in Fig. 1b). Recall
that under the Bernoulli model, the strong/weak adversary
regime is determined by the ratio ε

θ0τ
, while under the Gaus-

sian model, it is determined by the ratio ε
µ0

. Nevertheless,
note that in the binary classification, θ0τ is the mean (in one
coordinate) of the positive class, just like µ0 in the Gaussian
scenario. These two ratios are thus closely related.

We would also like to remark that limits of gn in Fig. 1b
follow the theoretical results outlined in (4). In particular, if
we are in the weak adversary regime, the limit of gn always
tends to 0. On the other hand, in the strong adversary regime,
the limit is non-zero and proportional to τ .

4.3. Discussion

One common observation from Theorem 1 and Theorem 3
is that the duration of the increasing stage heavily depends
on the ratio between ε and the coordinate-wise mean of the
positive class (i.e. µ0 and θ0τ ). Note that the mean can
be interpreted as half the distance between the centers of
positive and negative classes in the space of x. Thus, another
way to view this result is that if the strength of the adversary
is relatively large compared to the distance between classes,
then we will have a long increasing stage.

One interesting implication of this can be seen in regression
vs. classification tasks. Intuitively, one might look at a
regression task as a classification task with infinitely many
classes. Therefore, depending on the distribution that x is
sampled from, we could end up with a very small distance
between class centers and thus we would expect a very long
increasing stage.

5. Regression
In this section, we explore the problem of linear regression,
where we have each data point (x, y) ∈ Rd × R and the
linear model is represented by a vector w ∈ Rd. The loss
function is defined by `(x, y;w) = (y − 〈w, x〉)2.

We assume the following data generation process. First, we
sample xi from some distribution PX . Given the fixed true
model w∗, we set yi = 〈w∗, xi〉 + δ, where δ ∼ N (0, σ2)
is the Gaussian noise. The parameter space Θ is the entire
Rd.

Given the training dataset Dtrain = {(xi, yi)}ni=1, if we
define X = [x1, . . . , xn]> and y = [y1, . . . , yn]>, the best
standard model has a closed form (Graybill, 1961):

wstd = (X>X)−1X>y .

Observation 5 presents the form of the best robust model in

the linear regression problem.

Observation 5 (Proof in Appendix C). The best robust
model in the linear regression problem is given by

wrob
n = arg min

w∈Rd

1

n

n∑
i=1

|yi − 〈w, xi〉|+ ε

d∑
j=1

|w(j)|

2

.

Observation 6 gives the form of the gap in the linear regres-
sion problem setting.

Observation 6 (Proof in Appendix D). In the linear re-
gression problem, the cross generalization gap equals

gn = ‖wrob
n − w∗‖2Ex∼PX [xx>] − ‖wstd

n − w∗‖2Ex∼PX [xx>] .

Observation 6 shows that the cross generalization gap not
only depends on the difference vectors (wrob

n − w∗) and
(wstd

n − w∗) but also the matrix Ex∼PX [xx>]. This ma-
trix weights each dimension of the difference vectors and
thereby influences the cross generalization gap.

To avoid the complication incurred by the different weight-
ings of the matrix Ex∼PX [xx>] across the dimensions, we
investigate two one-dimensional linear regression problems
(d = 1) with the data input x sampled from a standard nor-
mal distribution and a shifted Poisson distribution, respec-
tively. To be specific, in the first study, we consider x sam-
pled from the standard normal distribution N (0, 1). In the
second study, the data input x is drawn from Poisson(5)+1
(in order to avoid x = 0); in other words, x − 1 obeys
the Poisson(5) distribution. In both studies, we set the
true model w∗ = 1 and the noise obeys δ ∼ N (0, 1) (i.e.,
σ2 = 1). In light of Observation 6, we obtain that if the
linear regression problem is one-dimensional, the cross gen-
eralization gap equals

gn = E(x,y)∼D
(
(wrob

n − w∗)2 − (wstd
n − w∗)2

)
Ex∼PX [x2] .

Since gn is proportional to
(
(wrob

n − w∗)2 − (wstd
n − w∗)2

)
with Ex∼PX [x2] being a constant, we call gn/Ex∼PX [x2]
the scaled cross generalization gap and plot it against the
size of the training dataset (denoted by n) in Fig. 2.

Fig. 2a shows the result for the first study with n ranging
from 1 to 20. For a clear presentation, Fig. 2b provides a
magnified plot for 5 ≤ n ≤ 20.

Our first observation is that in the Gaussian case, the cross
generalization gap gn always expands with more data, even
if ε is as small as 0.05. This may be because if we
sort n i.i.d. standard normal random variables x1, . . . , xn
in ascending order and obtain xπ(1) ≤ xπ(2) ≤ · · · ≤
xπ(n), the difference between two consecutive numbers (i.e.,
xπ(i+1) − xπ(i)) becomes smaller as n becomes larger. As
we discussed in Section 4, the monotone trend of gn is
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Figure 2: Scaled cross generalization gap gn/Ex∼PX [x2] vs. the size of the training dataset (denoted by n). First two
plots correspond to x being sampled from the standard normal distribution N (0, 1) and last two plots correspond to
Poisson(5) + 1. Each curve in a plot represents a different choice of ε.

determined by the ratio of ε to half the distance between
the positive and negative classes. The ratio is ε

µ0
in the

Gaussian model and it is ε
θ0τ

in the Bernoulli model. The
regression problem may be viewed as a classification prob-
lem with infinitely many classes. The difference between
two consecutive numbers is the analog of the distance be-
tween the means of difference classes. Since the difference
reduces as n becomes larger (points are more densely situ-
ated), the ratio increases and therefore we observe a wider
cross generalization gap.

Our second observation regarding the Gaussian data is that
the cross generalization gap is (very) negative at the initial
stage. In particular, when n = 1, the gap g1 is between
−106 and −107. The reason is that when n = 1, we have

E
[
(wstd

1 − w∗)2
]

=∞ .

Because of the robustness, wrob is more stablized and

therefore E[
(
wrob

1 − w∗
)2

] is finite. Since the cross
generalization gap g1 is proportional to their difference
E[
(
wrob

1 − w∗
)2

]− E
[
(wstd

1 − w∗)2
]
, the gap g1 is indeed

−∞. We present a proof of g1 = −∞ in Theorem 7.

Theorem 7 (Proof in Appendix E). In the one-
dimensional linear regression problem, if x1 ∼ N (0, 1),
δ ∼ N (0, 1), and y1 = w∗x + δ, the cross generalization
gap g1 with only one training data point is −∞.

Fig. 2c presents the result for the Poisson input with ε vary-
ing from 1.0 to 6.0. Fig. 2d illustrates the result correspond-
ing to large ε that ranges from 7.0 to 15.0. We see two
different regimes in Fig. 2c and Fig. 2d. Fig. 2c represents
the weak adversary regime where the cross generalization
gap shrinks with more training data. Fig. 2d represents
the strong adversary regime in which the gap expands with
more training data. Furthermore, given the same size of the
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training dataset, the gap increases with ε.

The result for the Poisson input is in sharp contrast to the
Gaussian input. It appears that for any small ε, the cross
generalization gap will increase with more data in the Gaus-
sian setting, as the real line becomes increasingly crowed
with data points. In the Poisson setting, whilst the Poisson
distribution is infinitely supported as well, the minimum
distance between two different data points is one (recall that
the Poisson distribution is supported on natural numbers).
A weak adversary with a small ε is unable to drive the cross
generalization gap into an increasing trend. Additionally, re-
calling that the mean of Poisson(5)+1 is 6, the value ε = 6
exactly separates the weak and strong adversary regimes in
these two figures. Note that all ε values in Fig. 2c are ≤ 6,
while all those in Fig. 2d are > 6.

Unlike the Gaussian setting for linear regression, we never
observe a negative cross generalization gap, even if n = 1.
This observation supports our theoretical finding, which is
summarized in Theorem 8.

Theorem 8 (Proof in Appendix F). In the one-dimensional
linear regression problem, if x1 ∼ Poisson(λ) + 1, δ ∼
N (0, 1), and y1 = w∗x + δ with |w∗| ≥ 1, the cross
generalization gap g1 with only one training data point is
non-negative, finite, and increases with ε.

6. Conclusion
In this paper, we study the cross generalization gap between
adversarially robust models and standard models. We ana-
lyze two classification models (the Gaussian model and the
Bernoulli model), and we also explore the linear regression
model. We theoretically find that a larger training dataset
won’t necessarily close the cross generalization gap and
may even expand it. In addition, for the two classification
models, we prove that the cross generalization gap is al-
ways non-negative, which indicates that current adversarial
training must sacrifice standard accuracy in exchange for
robustness.

For the Gaussian classification model, we identify two
regimes: the strong adversary regime and the weak ad-
versary regime. In the strong adversary regime, the cross
generalization gap monotonically expands towards some
non-negative finite limit as more training data is used. On
the other hand, in the weak adversary regime, there are two
stages: an increasing stage where the gap increases with
the training sample size, followed by a decreasing stage
where the gap decreases towards some finite non-negative
limit. Broadly speaking, the ratio between the strength of
the adversary and the distance between classes determines
which regime we will fall under.

In the Bernoulli model, we also prove the existence of the
weak and strong adversary regimes. The primary difference

is that the cross generalization gap is oscillating instead of
monotone. However, we also show that these oscillating
curves have strip centers that display very similar behavior
to the Gaussian curves.

Our findings are further validated by a study of the linear
regression model, which experimentally exhibits similar
behavior and may indicate that our results hold for an even
broader class of models. The ultimate goal of adversarial
training is to learn models that are robust against adversarial
attacks, but do not sacrifice any accuracy on unperturbed
test sets. The primary implication of our work is that this
trade-off is provably unavoidable for existing adversarial
training frameworks.
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