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Abstract
Randomized Newton methods have recently be-
come the focus of intense research activity in
large-scale and distributed optimization. In gen-
eral, these methods are based on a “computation-
accuracy trade-off”, which allows the user to gain
scalability in exchange for error in the solution.
However, the user does not know how much er-
ror is created by the randomized approximation,
which can be detrimental in two ways: On one
hand, the user may try to assess the unknown error
with theoretical worst-case error bounds, but this
approach is impractical when the bounds involve
unknown constants, and it often leads to exces-
sive computation. On the other hand, the user
may select the “sketch size” and stopping criteria
in a heuristic manner, but this can lead to unreli-
able results. Motivated by these difficulties, we
show how bootstrapping can be used to directly
estimate the unknown error, which prevents ex-
cessive computation, and offers more confidence
about the quality of a randomized solution.

1. Introduction
In recent years, there has been a surge of interest in using ran-
domized approximations to accelerate Newton methods in
large-scale and distributed optimization (e.g. Shamir et al.,
2014; Erdogdu & Montanari, 2015; Zhang & Lin, 2015;
Byrd et al., 2016; Pilanci & Wainwright, 2016; Reddi et al.,
2016; Xu et al., 2016; Pilanci & Wainwright, 2017; Wang
et al., 2017; 2018; Dünner et al., 2018; Gupta et al., 2019;
Li et al., 2020; Roosta-Khorasani & Mahoney, 2019, among
many others). At a high level, this rapid development of
research has been driven by the fact that computing a New-
ton step to high precision can be very costly or infeasible
in large-scale problems. Instead, randomized approaches
make it possible to overcome this challenge by exchanging
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some degree of accuracy in return for substantial reductions
in both processing and communication costs. However, one
of the common difficulties faced by users in applying ran-
domized Newton methods is that they do not know how far
a randomized Newton step might stray from an exact one.

To deal with the uncertainty in the quality of a random-
ized solution, users have generally relied on two strategies,
which are to (1) assess the unknown error with theoretical
worst-case error bounds, or (2) use heuristic rules to select
the “sketch size” or number of iterations. But unfortunately,
both of these options can be detrimental to the overall per-
formance of randomized algorithms. Indeed, the first option
of worst-case analysis is typically inefficient from a compu-
tational standpoint, because it can substantially overestimate
the actual error of a solution — and hence mislead the user
to select an excessive sketch size or number of iterations.
Also, this option is limited by the fact that theoretical error
bounds often involve unspecified constants or unknown pa-
rameters that make it difficult to extract a numerical error
bound. Meanwhile, the use of heuristics is undesirable from
the standpoint of reliability, and it can create difficulty in
tuning downstream elements of computational pipeline.

As a way of handling these difficulties, we apply the sta-
tistical technique of bootstrapping to estimate the errors of
randomized Newton methods. In particular, this approach
avoids the conservativeness of worst-case analysis by di-
rectly estimating the actual error of a given randomized
solution. In addition, the bootstrap provides the user with
more flexibility in the choice of error metric than is typically
available with worst-case error bounds. Next, in comparison
to heuristic rules, this approach offers more reliability, by
giving the user a systematic procedure that is theoretically
justified. Furthermore, the bootstrap is highly scalable in
this context (due to its embarrassingly parallel structure),
and it is promising from an empirical standpoint as well.

1.1. Background and Setting

Let a1, . . . , an ∈ Rd be the rows of a matrix A ∈ Rn×d
with n � d, and let b1, . . . , bn be the entries of a vector
b ∈ Rn. Consider the problem of minimizing an objective
function f : Rd → R of the form

f(w) = 1
n

∑n
i=1 ϕ(a>i w, bi) + r(w), (1)
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where the functions ϕ : R2 → R and r : Rd → R are
twice differentiable, and ϕ is convex in its first argument.
Objective functions of the form (1) are ubiquitous in ma-
chine learning, where the points {(ai, bi)}ni=1 typically play
the role of n observations, and f is viewed as a measure
of empirical risk. Some of the most well known examples
occur in the fitting of regularized generalized linear mod-
els and support vector machines, where ϕ corresponds to
a loss function, and r(w) is a regularization function (cf.
McCullagh & Nelder, 1989; Chapelle, 2007). Another im-
portant class of examples arises in solving linear programs
of the form min{c>w |Aw ≤ b} by interior point methods,
where r(w) = c>w for some cost vector c ∈ Rd, and ϕ
corresponds to a logarithmic barrier function. (We refer
to (Pilanci & Wainwright, 2017) for more detailed examples
along these lines.)

Classical Netwon method. When a classical version of
Newton’s method is applied to minimize (1), the k-th iterate
wk ∈ Rd is computed using the gradient, denoted

gk = ∇f(wk)

= 1
n

∑n
i=1 ∂1ϕ(a>i wk, bi)ai +∇r(wk),

as well as the Hessian, denoted

Hk = ∇2f(wk)

= 1
n

∑n
i=1 ∂

2
1ϕ(a>i wk, bi)aia

>
i +∇2r(wk),

where ∂1 is the partial derivative with respect to the first
argument. More specifically, if Hk is invertible, and if ηk is
a step size parameter, then the update rule is

wk+1 = wk − ηkH−1k gk.

However, in many cases, it is prohibitive to implement this
update rule to high precision, either because n is very large,
or because the observations {(ai, bi)}ni=1 may be stored in a
distributed manner, which can lead to high communication
costs.

In order to overcome these bottlenecks, randomized New-
ton methods seek to compute efficient approximations of
H−1k gk. In particular, these approximations are able to lever-
age the fact that the function (1) has a Hessian that can be
theoretically decomposed as

Hk = C>k Ck +∇2r(wk), (2)

where Ck ∈ Rn×d is a matrix given by

Ck = 1√
n
DkA with Dk = diag{

√
∂21ϕ(a>i wk, bi)}ni=1.

Below, we briefly review two well-known examples of such
randomized algorithms, called NEWTON SKETCH (Pilanci

& Wainwright, 2017) and GIANT (Wang et al., 2018), since
they will be the focus of our work later on.

The NEWTON SKETCH algorithm. The core idea of the
NEWTON SKETCH algorithm is to randomly transform the
matrix Ck into a much shorter version C̃k ∈ Rt×d that can
be handled more efficiently, where t � n. As a matter of
terminology, the matrix C̃k is referred to as a “sketch” ofCk,
and t is known as the “sketch size”. In detail, the random
transformation is implemented with a random “sketching
matrix” Sk ∈ Rt×n so that C̃k = SkCk, and in turn, this
leads to a sketched Hessian matrix defined as

H̃k = C̃>k C̃k +∇2r(wk). (3)

Accordingly, this algorithm revises the classical Newton
method by using the following randomized Newton step,1

wk+1 = wk − ηk(H̃k)−1gk. (4)

In order to ensure that H̃k provides an effective approxima-
tion to Hk, the sketching matrix Sk is commonly generated
so that it has i.i.d. rows and satisfies the relation E[S>k Sk] =
In. For example, when Sk is a uniform sampling matrix, the
rows of Sk are generated as i.i.d. samples from the uniform
distribution on the set {

√
n/t e1, . . . ,

√
n/t en} ⊂ Rn,

where e1, . . . , en are the canonical basis vectors.

The GIANT algorithm. When data are stored on a dis-
tributed system, controlling the communication cost be-
tween different machines (workers) is often of paramount
importance. As a way of reducing the communication in-
volved in computing a Newton step, the GIANT algorithm
uses an approximation to H−1k derived from the harmonic
mean of local Hessian matrices.

To be more specific, suppose random samples from
{(ai, bi)}ni=1 are evenly distributed acrossm different work-
ers, and the j-th worker holds samples indexed by Ij . Also,
in this context, we will denote the “local sample size” as
t = |Ij | = n/m, since it plays a role that is analogous to
the sketch size in the NEWTON SKETCH algorithm. Next,
if the matrix C̃k,j ∈ Rt×d is defined to have rows given
by the set of vectors { 1√

t
[Dk]iiai}i∈Ij , then the j-th local

approximate Hessian matrix at the k-th iteration is defined
by

H̃k,j = C̃>k,jC̃k,j +∇2r(wk). (5)

Once these local Hessians have been computed, they are
aggregated in the update rule

wk+1 = wk − ηk
m

∑m
j=1(H̃k,j)

−1gk, (6)

1We will follow the convention that if M is a singular square
matrix, then M−1 refers to the pseudoinverse. Nevertheless, the
approximate Hessian matrices under consideration will typically
be invertible in our settings of interest.
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which can be (conceptually) interpreted in terms of the
inverse of the harmonic mean H̃k =

(
1
m

∑m
j=1 H̃

−1
k,j

)−1
of

the local Hessians.

1.2. Problem Formulation

In order to study the algorithmic error of randomized New-
ton methods, our work will focus on the randomness that
comes from within the algorithms, and we will always treat
the points {(ai, bi)}ni=1 and the function f as being deter-
ministic. From this perspective, it is important to clarify
that an iterate wk of such algorithms is a random vector, but
the exact optimal solution

wopt = argmin
w∈Rd

f(w)

is deterministic. Also, it should be noted that gk, Ck, and
Hk are random in general, as they depend on wk.

Estimating error with respect to Newton step. Let the
exact Newton step and its sketched version be denoted as

∆k = H−1k gk and ∆̃k = (H̃k)−1gk. (7)

To measure the quality of an iterate wk+1, we may consider
the error of ∆̃k, denoted as

εk = ρ(∆̃k,∆k), (8)

where ρ(·, ·) is a generic non-negative measure of error that
is chosen by the user. For example, if ‖ · ‖� is some norm on
Rd, then we can take ρ to be the absolute error ρ(v′, v) =
‖v′ − v‖�, or the relative error ρ(v′, v) = ‖v′ − v‖�/‖v‖�.
The error in the Newton step is of particular interest for
functions that are locally quadratic near wopt, because the
exact Newton method minimizes quadratic functions in a
single step.

Due to the fact that the error εk in the Newton step is a
random variable, it is of interest to study its (1−α)-quantile,
which is defined as the tighest possible upper bound on εk
that holds with probability at least 1− α,

qα,k = inf
{
q ∈ [0,∞)

∣∣∣P(εk ≤ q) ≥ 1− α
}
.

Since the quantile qα,k is unknown in practice, we aim to
construct an estimate q̂α,k, which is intended to satisfy the
bound

εk ≤ q̂α,k (9)

with probability nearly equal to, or greater than, 1− α.

Estimating error with respect to Newton decrement.
Another way to measure the quality of an iterate wk is
through its optimality gap f(wk) − f(wopt). To derive a
bound on the optimality gap, it is convenient to consider the
squared Newton decrement

δ2k = g>k H
−1
k gk. (10)

The Newton decrement has special significance in the case
when f is a strictly convex self-concordant function —
which frequently occurs in the context of interior point
methods (cf. Nesterov & Nemirovskii, 1994). In particular,
functions of this type that have the form (1) are known to
occur in connection with ridge regression, regularized logis-
tic regression, and smoothed hinge loss functions (cf. Zhang
& Lin, 2015).

When the function f is strictly convex and self-concordant,
it is a classical fact that if wk is any point in the function’s
domain, then the optimality gap is bounded according to

f(wk)− f(wopt) ≤ δ2k, (11)

provided that δk ≤ 0.68 (Boyd & Vandenberghe, 2004,
§9.6.3). However, because the exact quantity δ2k is unknown,
it is of interest to measure the error of the approximate
(randomized) decrement δ̃2k = g>k H̃

−1
k gk. This error is

denoted as
εk = %(δ̃2k, δ

2
k), (12)

where %(·, ·) is another non-negative error measure of the
user’s choice. By analogy with the earlier definition of qα,k,
the (1−α)-quantile of εk is defined as

qα,k = inf
{
q ∈ [0,∞)

∣∣∣P(εk ≤ q) ≥ 1− α
}
.

Furthermore, since this parameter is unknown, we seek to
construct an estimate q̂α,k such that the following bound
holds with probability nearly equal to, or greater than, 1−α,

εk ≤ q̂α,k. (13)

In turn, this will provide a corresponding bound on the
optimality gap. For example, when % is chosen to be the
relative error %(δ̃2k, δ

2
k) = |δ̃2k − δ2k|/δ2k, the estimate q̂α,k

will satisfy

f(wk)− f(wopt) ≤ δ̃2k (1− q̂α,k)−1

provided that q̂α,k < 1, and (13) holds.

1.3. Related Work and Contributions

For handling error estimation problems that arise in statis-
tical contexts, bootstrap methods provide a very general
framework that is broadly applicable and supported by an
extensive literature (e.g. Efron, 1979; 1982; Shao & Tu,
2012; Davison & Hinkley, 1997; Chernick, 2011). (See also
the beginning of Section 2.1 for a brief description of the
basic principle of bootstrap methods.)

However, in the context of randomized sketching algorithms,
only a small subset of the literature has given attention to the
problem of estimating error, and likewise, error estimation
methods have only been developed for a limited number of
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these algorithms. Up to now, the existing work has dealt
primarily with low-rank matrix approximation or matrix
multiplication (e.g. Liberty et al., 2007; Woolfe et al., 2008;
Halko et al., 2011; Martinsson & Voronin, 2016; Sorensen
& Embree, 2016; Duersch & Gu, 2017; Lopes et al., 2019b;
2018; Yu et al., 2018; Lopes et al., 2019a; Tropp et al., 2019;
Lopes et al., 2020). (For further discussion of error esti-
mation in randomized numerical linear algebra, as well as
connections to bootstrapping, we refer to the forthcoming
survey (Martinsson & Tropp, 2020, §4.5-4.6).) Similarly,
in the large literature on stochastic gradient descent, rela-
tively few papers have addressed error estimation (e.g. Fang
et al., 2018; Fang, 2019; Su & Zhu, 2018; Li et al., 2018;
Anastasiou et al., 2019).

With regard to randomized second-order methods, the pa-
per (Lopes et al., 2018) took an initial step in this direction
by studying bootstrap error estimation for randomized least-
squares algorithms. However, that work focuses only on
ordinary least-squares problems, and does not address non-
quadratic objective functions or distributed optimization
(as our work does). Also, our work applies bootstrap error
estimation to a more general class of twice-differentiable
objective functions, and deals with a broader set of error
measures (based on the Newton step and Newton decre-
ment). Furthermore, whereas the analysis in (Lopes et al.,
2018) is asymptotic, we develop non-asymptotic theory in
the cases of the NEWTON SKETCH and GIANT algorithms.
Lastly, it should be noted that the distributed setting intro-
duces a significant extra theoretical challenge, which is to
show that bootstrap error estimation can account for the ac-
cumulation of bias in the approximations of several worker
machines.

Notation. The d × d identity matrix is denoted as Id,
and if A is a matrix of a complicated form, its ij entry
is sometimes denoted as [A]ij . The norms ‖ · ‖2 and
‖ · ‖∞ refer to the vector `2-norm and `∞-norms on Eu-
clidean space, while ‖ · ‖� refers to an arbitrary norm.
The singular values of a generic real matrix A are denoted
σj(A) ≥ σj+1(A), with the largest and smallest respec-
tively denoted as σmax(A) and σmin(A). For a list of
real numbers x1, . . . , xB , their empirical (1−α)-quantile
is written as quantile(x1, . . . , xB ; 1−α). More precisely,
this quantity is defined as inf{q ∈ R |FB(q) ≥ 1− α},
where FB(q) is the empirical distribution function FB(q) =
1
B

∑B
b=1 1{xb ≤ q}. Symbols such as c, c0, c1, . . . , are

used to denote absolute constants whose value may change
from line to line. Lastly, the maximum of two real numbers
a and b is denoted a ∨ b.

2. Methods
In this section, we describe two methods for constructing
quantile estimates that are designed to satisfy the conditions

(9) and (13). Sections 2.2 and 2.3 present the error esti-
mation methods corresponding to NEWTON SKETCH and
GIANT respectively. Later on, we discuss the computational
cost of error estimation in Section 2.4.

2.1. Bootstrap Methods in a Nutshell

Bootstrap methods are commonly used for error estimation
in the following way. Consider an unknown parameter θ
that is to be estimated with a statistic θ̂ that is computed as a
function of i.i.d. data X1, . . . , Xt, say θ̂ = h(X1, . . . , Xt).
In order to assess the accuracy of θ̂, it is desirable to es-
timate the quantiles of the random variable e = |θ̂ − θ|.
However, since the distribution of e is unknown, its quan-
tiles can be numerically estimated by generating a collection
of “approximate samples”, say e∗1, . . . , e

∗
B , and then using

the empirical quantiles of these values.

In this way, the problem of error estimation is reduced
to finding a way to generate the approximate samples
e∗1, . . . , e

∗
B , and many ways of doing this have been pro-

posed in the bootstrap literature. The most basic version of
these methods is to sample t values, say X∗1 , . . . , X

∗
t , with

replacement from X1, . . . , Xt, and define e∗1 = |θ̂∗ − θ̂|,
where θ̂∗ = h(X∗1 , . . . , X

∗
t ). Likewise, this process is re-

peated independently to obtain e∗2, . . . , e
∗
B . Roughly speak-

ing, this procedure can be understood as generating θ̂∗ so
that its fluctuations around θ̂ are statistically similar to the
fluctuations of θ̂ around θ. In the next two subsections, we
show how this general idea can be adapted to the contexts
of NEWTON SKETCH and GIANT.

2.2. Bootstrap Error Estimation for NEWTON SKETCH

Based on the preceding discussion, we aim to generate ap-
proximate samples of the error variables εk and εk for NEW-
TON SKETCH. Given that the t rows of the sketching matrix
Sk ∈ Rt×n are commonly generated to be i.i.d. random vec-
tors, it is helpful to think of them as being i.i.d. data points,
analogous to X1, . . . , Xt described in Section 2.1. Like-
wise, the sketched Newton step ∆̃k and decrement δ̃2k can be
loosely interpreted as “statistics” that are functions of these
i.i.d. data. Therefore, it is natural to consider generating
bootstrapped versions ∆̃∗k and δ̃∗2k by uniformly sampling
t rows from Sk (i.e. with replacement), and then perform-
ing the same computations as for ∆̃k and δ̃2k. Then, boot-
strapped error variables can be formed as ε∗k = ρ(∆̃∗k, ∆̃k)

and ε∗k = %(δ̃∗2k , δ̃
2
k). In essence, Algorithm 1 below is

simply a computationally efficient implementation of this
idea.

Remark. As a clarification, the intermediate objects H̃∗k ,
∆∗k, and δ∗2k below are not indexed by b, since they need
not be saved. The only essential quantities to save at each
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Algorithm 1 Error estimation for NEWTON SKETCH

Input: The iterate wk, the sketched Newton step ∆̃k, the
sketch C̃k, the sketched decrement δ̃2k, as well as the
gradient gk and the Hessian∇2r(wk).

for b = 1 to B do in parallel
• Construct a matrix C̃∗k ∈ Rt×d whose rows are sam-
pled uniformly from the rows of C̃k.
• Compute the following in succession:

H̃∗k = (C̃∗k)>(C̃∗k) +∇2r(wk)

∆̃∗k = (H̃∗k)−1gk

δ̃∗2k = g>k ∆̃∗k

ε̃∗k,b = ρ(∆̃∗k, ∆̃k)

ε̃∗k,b = %(δ̃∗2k , δ̃
2
k).

Return: q̂α,k = quantile(ε∗k,1, . . . , ε
∗
k,B ; 1−α),

q̂α,k = quantile(ε∗k,1, . . . , ε
∗
k,B ; 1−α).

iteration are ε∗k,b and ε∗k,b. Similar considerations will also
apply to Algorithm 2.

2.3. Bootstrap Error Estimation for GIANT

Recall that in the setting of the GIANT algorithm, there are
m workers indexed by j = 1, . . . ,m, and the j-th worker
holds randomly drawn points from {(ai, bi)}ni=1 that are
indexed by a set Ij with cardinality t = |Ij | = n/m. Each
worker computes a local approximate Newton step

∆̃k,j = H̃−1k,j gk,

where the local approximate Hessian is given by

H̃k,j = C̃>k,jC̃k,j +∇2r(wk). (14)

The globally improved approximate Newton (GIANT) step
∆̃k is then computed by averaging the local steps ∆̃k,j over
j = 1, . . . ,m, and the current iterate is updated using ∆̃k.

By comparing the above expression (14) for H̃k,j with the
expression (3) for H̃k in the case of NEWTON SKETCH,
there is a natural way to extend the previous error estimation
algorithm for NEWTON SKETCH to handle GIANT. Namely,
for each j = 1, . . . ,m, the j-th worker uniformly sam-
ples t rows from C̃k,j (with replacement) to form a matrix
C̃∗k,j ∈ Rt×d, and the resampled matrix C̃∗k,j is used to com-
pute a resampled version of the local Newton step (and
decrement). Then, the local resampled Newton steps (and
decrements) will be communicated to a central processor
and averaged over j = 1, . . . ,m to form a resampled GI-

ANT step (and decrement). The specific details are listed in
Algorithm 2.

Algorithm 2 Error estimation for GIANT

Input: The iterate wk, the GIANT step ∆̃k, the matrices
C̃k,1, . . . , C̃k,m, the approximate decrement δ̃2k, as
well as the gradient gk and the Hessian ∇2r(wk).

for j = 1 to m do in parallel

for b = 1 to B do in parallel

• Construct a matrix C̃∗k,j ∈ Rt×d whose rows are
sampled uniformly from the rows of C̃k,j .

• Compute

H̃∗k,j = (C̃∗k,j)
>(C̃∗k,j) +∇2r(wk).

• Compute ∆̃∗k,j,b = (H̃∗k,j)
−1gk.

• Compute δ̃∗2k,j,b = g>k ∆̃∗k,j,b.

• Send the vectors ∆̃∗k,j,1, . . . , ∆̃
∗
k,j,B and scalars

δ̃∗2k,j,1, . . . , δ̃
∗2
k,j,B to the central processor.

for b = 1 to B do

• Aggregate local ∗-steps ∆̃∗k,b = 1
m

∑m
j=1 ∆̃∗k,j,b.

• Aggregate local ∗-decrements δ̃∗2k,b = 1
m

∑m
j=1 δ̃

∗2
k,j,b.

• Compute ∗-step error ε∗k,b = ρ(∆̃∗k,b, ∆̃k).

• Compute ∗-decrement error ε∗k,b = %(δ̃∗2k,b, δ̃
2
k).

Return: q̂α,k = quantile(ε∗k,1, . . . , ε
∗
k,B ; 1−α),

q̂α,k = quantile(ε∗k,1, . . . , ε
∗
k,B ; 1−α).

Remark. Note that each worker j = 1, . . . ,m performs its
own for-loop over b = 1, . . . , B, and each worker may do
this in parallel by calling upon several of its own processors
(if available). After the loop over j = 1, . . . ,m is completed
by themworkers, the second loop over b = 1, . . . , B occurs
at the central processor. The computations at the central
processor consist mostly of inexpensive vector and scalar
addition, whereas more substantial matrix computations are
done by the workers.

2.4. Computational Cost

We now discuss the computational costs of Algorithms 1 and
2 for error estimation in the respective contexts of NEWTON
SKETCH and GIANT. Most importantly, it should be empha-
sized that these algorithms do not require any access to the
points {(ai, bi)}ni=1, which keeps communication costs low.

Cost of Algorithm 1 for NEWTON SKETCH. Given that
the loop over b = 1, . . . , B is embarrassingly parallel, it is
natural to evaluate the processing cost of Algorithm 1 on
a per-iteration basis. For common choices of ρ and %, it
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is straightforward to check that the processing cost at each
iteration is O((t + d)d2). In particular, it is notable that
this cost is independent of the large dimension n, which
allows Algorithm 1 to be highly scalable. Also, to help put
this into perspective, it should be noted that the cost of the
NEWTON SKETCH algorithm typically scales linearly in n.
With regard to the number of bootstrap samples B, it turns
out that Algorithm 1 can perform well with surprisingly
small choices of B, as will be illustrated by our experiments
in Section 4.

Cost of error estimation for GIANT. The processing cost
for each worker j = 1, . . . ,m in Algorithm 2 is analogous
to the processing cost of Algorithm 1 described previously.
Also, Algorithm 2 is well-suited to distributed computation,
since its loops can be implemented in parallel. On the other
hand, a distinct aspect of Algorithm 2 is that it involves
an aggregation step after the workers have finished their
computations. Nevertheless, this step involves a modest
overall communication cost of order O(Bmd), which is
independent of n.

3. Theory
In this section, we analyze Algorithms 1 and 2 in the context
of objective functions having the form (1), with r chosen
as r(w) = γ

2 ‖w‖
2
2 for some γ > 0. Also, we will focus on

the case of relative error,2 where the error variable is given
by εk = %(δ̃2k, δ

2
k) = |δ̃2k − δ2k|/δ2k. Our goal is to show

that the estimate q̂α,k produced by either algorithm satisfies
εk ≤ q̂α,k with probability not much less than 1− α.

Theoretical setup. In order to unify our analysis for
both NEWTON SKETCH and GIANT, we will work under the
following setup, since it allows the matrix H̃k defined in (3)
for NEWTON SKETCH, and the matrix H̃k,j defined in (5)
for GIANT, to be regarded as equivalent. Namely, this occurs
when the sketching matrix Sk in NEWTON SKETCH is gener-
ated by uniform sampling from {

√
n/t e1, . . . ,

√
n/t en},

and when the t points held by each worker in GIANT are
drawn by uniform sampling from {(ai, bi)}ni=1. (This type
of sampling was also considered by the authors of GI-
ANT (Wang et al., 2018, §A.3).) In addition, we will assume
that the workers in GIANT independently sample a fresh
set of points at each iteration, and that a fresh sketching
matrix Sk in NEWTON SKETCH is generated independently
at each iteration (as proposed by the authors of NEWTON
SKETCH (Pilanci & Wainwright, 2017)).

Within this setup, it should be noted that in the case of
GIANT, the three numbers (n,m, t) satisfy the relation
t = n/m, whereas in the case of NEWTON SKETCH, these

2Under the stated choice of r, note that if δ2k = 0 holds, then
δ̃2k = 0 must also for both NEWTON SKETCH and GIANT, and so
the relative error will be understood as εk = 0 in this case.

numbers satisfy m = 1 and t ≤ n. Hence, both algorithms
may be analyzed simultaneously under the basic condition
that t ≤ n/m. In addition, we will assume that there is an
absolute constant c1 > 0, such that m ≤ c1t, which is a
mild assumption from a practical standpoint, and will help
to simplify the form of our main result.

Notation and definitions. For the regularization function
r(w) = γ

2 ‖w‖
2
2, observe that the Hessian Hk of f at the

k-th iteration has the form

Hk = C>k Ck + γId. (15)

For each i = 1, . . . , n, we define the i-th ridge leverage
score as

`γi,k =
[
Ck(C>k Ck + γId)

−1C>k
]
ii

(16)

When γ = 0, this coincides with the standard leverage score.
Next, the effective dimension dγk is defined as as

dγk = `γ1,k + · · ·+ `γn,k =
∑d
j=1

σ2
j (Ck)

σ2
j (Ck)+γ

, (17)

which can be much smaller than d when Ck has only a few
dominant singular values (cf. Li et al., 2020). We also use
µγk = µγk(Ck) to refer to the ridge coherence, defined as

µγk = max
1≤i≤n

n`γi,k
dγk

. (18)

In the case when γ is set to 0, the quantity µγk reduces to
the ordinary matrix coherence (cf. Candès & Recht, 2009),
but it should be noted that γ will be taken as positive in our
work. Roughly speaking, the ridge coherence µγk measures
how evenly information is spread among the rows of matrix
Ck.

Assumption 1. Let xk ∈ Rn denote the random vector
given by xk = 1

δk
CkH

−1
k gk, and let s ∈ Rn be a random

vector sampled uniformly from the set {
√
ne1, . . . ,

√
nen},

independently of xk. Then there is an absolute constant
c0 > 0 such that the following bound holds for any γ > 0
when xk 6= 0,

var
(
(s>xk)2

∣∣xk) ≥ 1
c0(1+γ)2

(19)

Remarks. To provide some intuition for the condition (19),
it arises from the fact that our analysis is based on showing
that the distribution of the random variable (δ̃2k − δ2k)/δ2k is
approximately Gaussian (conditionally on wk). To establish
such a Gaussian approximation using non-asymptotic tools
like the Berry-Esseen theorem, it is important to ensure
that the conditional variance of this random variable does
not become too small. However, there are certain collec-
tions of points {(ai, bi)}ni=1 that can cause this variance to
be arbitrarily small, or even zero. As a simple example,
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consider the case when all the observations are the same,
(a1, b1) = · · · = (an, bn), and when the function f corre-
sponds to ridge regression — for which it can be checked
that Ck is proportional to A. In this case, when NEWTON
SKETCH or GIANT use uniform sampling to construct C̃k or
C̃k,j , it follows that every realization of these matrices must
be the same, which causes the variance of (δ̃2k−δ2k)/δ2k (con-
ditionally on wk) to be zero. Similarly, in this case, it can be
checked that the quantity var((s>xk)2|xk) in (19) is equal
to zero as well. So, roughly speaking, the condition (19) can
be interpreted as a way of ruling out “degenerate” cases.

The following theorem is our main theoretical result.

Theorem 1. Suppose that Assumption 1 holds within the
setup described above, and let q̂α,k denote the second output
of Algorithm 1 or 2. Then, there is an absolute constant
c > 0 such that the bound

P
(
|δ̃2k−δ

2
k|

δ2k
≤ q̂α,k

)
≥ 1− α− c ω

holds for some positive number ω satisfying

ω ≤ (1+γ)3E[(µγkd
γ
k)

3] log(n)c√
t

+

√
log(B)√
B

.

Remarks. To comment on same basic features of this result,
observe that it is non-asymptotic, and that it accounts for
the sampling in the optimization algorithms (measured by
t), as well as the sampling in the bootstrap error estimation
(measured byB). With regard to the proof, the essential task
is to show that the random variable (δ̃2k−δ2k)/δ2k has a distri-
bution that is approximately Gaussian. In developing such
an approximation, one of the key challenges is to handle the
accumulation of bias across the m workers. More specif-
ically, each approximate inverse Hessian matrix (H̃k,j)

−1

creates bias in the local approximate Newton steps, and in
order to show that the bootstrap works, it is necessary to
keep track of the cumulative effect of these local biases.

Validating Assumption 1 for generic matrices. The col-
lection of matrices in Rn×d with orthornormal columns,
denoted as Stief(n, d), is known to possess a natural uni-
form probability distribution, called the Haar distribu-
tion (Meckes, 2019). From a conceptual point of view,
a random matrix Q ∈ Stief(n, d) generated from this dis-
tribution may be regarded as “generic”. Accordingly, we
can investigate the condition (19), as well as the size of the
quantity µγk , in a generic sense by considering a situation
where the Q factor in the QR-decomposition of Ck is drawn
from the Haar distribution. In this way, the following propo-
sition provides a kind of validation for Assumption 1, as
well a reference point for the size of µγk .

To proceed, first note that if Ck = QR, then the left side
of (19) can be explicitly written as a function φ of Q, R,
and the unit vector u = 1

δk
H
−1/2
k gk. Namely, we have

var((s>xk)2|xk) = φ(Q,R, u),
where

φ(Q,R, u)= 1
n

∑n
i=1

(
u>M(R)>Q>(neie

>
i −In)QM(R)u

)2
,

and M(R) = R(R>R + γId)
−1/2. Similarly, the ridge

coherence µγk can be expressed as a function ψ of Q and R.
That is,

µγk = ψ(Q,R) = max
1≤i≤n

n‖M(R)>Q>ei‖22
‖M(R)‖2F

.

With this notation in place, we may now state the following
result.

Proposition 1. Let u ∈ Rd be any fixed unit vector, and let
R ∈ Rd×d be any fixed upper-triangular matrix satisfying

1
c ≤ σmin(R) ≤ σmax(R) ≤ c

for some absolute constant c ≥ 1. Also, let Q ∈ Rn×d be
a random matrix drawn from the uniform distribution on
Stief(n, d). Under these conditions, there exists an absolute
constant c0 > 0, such that the inequality

φ(Q,R, u) ≥ 1
c0(1+γ)2

(20)

holds with probability at least 1− c0
n (d ∨ log n)2(1 + γ)2,

and the inequality

ψ(Q,R) ≤ c0
( log(n)

d ∨ 1
)

(21)

holds with probability at least 1− c0/n.

Remarks. Since the columns of a random matrix Q drawn
uniformly from Stief(n, d) are not independent, it is neces-
sary in the proof of this result to make use of non-asymptotic
tools that can allow for such dependence. Specifically, the
proof hinges on the fact that if Ψ : Stief(n, d) → R is a
Lipschitz function with respect to the Frobenius norm, then
the random variable Ψ(Q) has strong concentration proper-
ties (cf. Milman & Schechtman, 2009, p.29).

4. Experiments
In this section, we present a collection of experiments that
study how well Algorithms 1 and 2 can estimate the er-
rors of NEWTON SKETCH and GIANT in the context of `2-
regularized logistic regression. Accordingly, the objective
function has the form

f(w) = 1
n

∑n
i=1 log(1 + exp(−(a>i w)bi)) + γ

2 ‖w‖
2
2,

where the observations satisfy (ai, bi) ∈ Rd × {±1} for all
i ∈ {1, . . . , n}.

Experimental setup. We used the SUSY regression dataset
of size (n = 5,000,000, d = 18), which can be ob-
tained from LIBSVM (Chang & Lin, 2011). For all the
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Figure 1. Numerical results on dataset SUSY (n = 5,000,000, d = 18). The plots illustrate the performance of Algorithms 1 and 2 in the
task of estimating the quantiles of the three errors |δ̃2k − δ2k|, ‖∆̃k −∆k‖2, and ‖∆̃k −∆k‖∞. The blue curves represent the ground
truth for the 0.95-quantiles of the errors, as described in the main text. The red curves (which are mostly covered by the blue curves)
represent the average of the bootstrap estimates, with the yellow curves being three standard deviations away.

experiments, the regularization parameter was chosen as
γ = 10−3, and the number of bootstrap samples was chosen
as B = 12. The step size ηk at each iteration of NEWTON
SKETCH and GIANT was determined by the Armijo line
search so that

f(wk + ηk∆̃k) ≤ f(wk) + ηkβ〈∆̃k, gk〉.

Specifically, the control parameter β was set to β = 0.1,
and the search for the step size was restricted to a grid of
values ηk ∈ {20, 2−1, . . . , 2−10}.

We studied the quantiles of six different kinds of error vari-
ables: the absolute error with respect to (1) the Newton
decrement, (2) the `2-norm for the Newton step, and (3) the
`∞-norm for the Newton step, as well as the relative error
versions of these three. The results are shown in Figures 1
and 2.

Below, we detail the aspects of the experiments pertaining
specifically to Algorithm 1 (for NEWTON SKETCH) and
Algorithm 2 (for GIANT).

Experiments for NEWTON SKETCH. The sketched New-
ton update defined in (4) was independently run 300 times,
with 6 iterations k = 1, . . . , 6 in each run. At each iteration,
a fresh sketching matrix Sk was generated via uniform sam-
pling, with a sketch size of t = n/32. For each realization
of Sk, we computed the (true) values of the six error vari-
ables mentioned above. This gave 300 total realizations of

each type of error variable at each k = 1, . . . , 6. In turn, we
used these 300 realizations to compute the empirical 0.95
quantile for each type of error variable, and these quantiles
were treated as ground truth for q.05,k and q.05,k. These
ground truth values are plotted in blue in Figures 1 and 2.
Next, we ran Algorithm 1 on the output associated with each
Sk, giving 300 realizations of the bootstrap estimates at each
k = 1, . . . , 6 (for each of the six types of 0.95-quantiles).
The averages of the bootstrap estimates are plotted in red,
with the yellow curves being three standard deviations away.
(Note that the red curves are mostly covered by the blue
curves in Figure 1.)

Experiments for GIANT. The experiments for GIANT were
conducted in a similar way to those for NEWTON SKETCH.
We ran the GIANT algorithm 300 times, each time with 6
iterations using the update rule (6). We randomly sampled t
data points for each of the m workers before each run, and
the data points stayed unchanged on each worker throughout
the iterations. We chose the number of machines to be m =
32 for all datasets, in correspondence with the sketch size
used in NEWTON SKETCH. The true error variables were
computed at each iteration (giving 300 realizations of each),
and the empirical 0.95-quantiles of these realizations were
treated as ground truth for q.05,k and q.05,k. We also ran
Algorithm 2 for each run of GIANT, yielding 300 bootstrap
estimates for each type of error variable at each iteration.
The results are plotted in Figures 1 and 2 using the same
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Figure 2. Numerical results on dataset SUSY (n = 5,000,000, d = 18). The plots illustrate the performance Algorithms 1 and 2 in the
task of estimating the quantiles of three relative errors |δ̃2k − δ2k|/δ2k, ‖∆̃k −∆k‖2/‖∆k‖2, and ‖∆̃k −∆k‖∞/‖∆k‖∞. The labelling
scheme for the curves is the same as that used in Figure 1.

scheme as that described above in the context of NEWTON
SKETCH.

Remarks. Our experiments show that Algorithms 1 and 2
perform reliably for each of the six types of error variables
considered. In particular, the red lines are well aligned with
the blue lines in all of the plots, indicating that the bootstrap
estimates are nearly unbiased. The small gap between the
yellow curves also shows that the bootstrap estimates have
fairly low variance — which is encouraging in light of the
fact that the estimates were computed using only B = 12
bootstrap samples. Furthermore, this performance with a
small choice of B also demonstrates that error estimation
need not add much cost to the underlying optimization algo-
rithm.
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