
Differentiable Product Quantization for End-to-End Embedding Compression

A. Proof of Proposition 1
Proof. We first re-parameterize both the codebook C and the Value matrix V as follows.

The original codebook is C ∈ {1, · · · ,K}n×D, and we turn each code bit, which is an integer in {1, · · · ,K}, into a small
one-hot vector of length-K. This results in the new binary codebook B ∈ {0, 1}n×KD. Per our constraint in proposition 1,
B is a full rank matrix.

The original Value matrix is V ∈ RK×d, and we turn it into a block-diagonal matrix U ∈ RKD×d where the j-th block-
diagonal is set to V(j) ∈ RK×(d/D). Given that each block diagonal, i.e. V(j), is full rank, the resulting block diagonal
matrix U is also full rank.

With the above re-parameterization, we can write the output embedding matrix H = BU. Given both B and U are full rank
and KD ≥ d, the resulting embedding matrix H is also full rank.

B. Details of Model Training
We follow the training settings of the base models used, and most of the time, just tune the DPQ hyper-parmeters such as K,
D and/or subspace-sharing.

Transformer on WMT’19 En-De. For training the Transformer Model on WMT’19 En-De dataset, the training set
contains approximately 27M parallel sentences. We generated a vocabulary of 32k sub-words from the training data using
the SentencePiece tokenizer (Kudo & Richardson, 2018). The architecture is the Transformer Base configuration described
in (Vaswani et al., 2017) with a context window size of 256 tokens. All models were trained with a batch size of 2048
sentences for 250k steps, and with the SM3 optimizer (Anil et al., 2019) with momentum 0.9 and a quadratic learning rate
warm-up schedule with 10k warm-up steps. We searched the learning rate in {0.1, 0.3}.

BERT pre-training. As our baseline, we pre-train BERT-base (Devlin et al., 2018) on 512-token sequences for 1M
iterations with batch size 1024. We used the same optimizer (Adam) and learning rate schedule as described in (Devlin
et al., 2018). For the DPQ experiments, we used DPQ-SX with no subspace-sharing, D = 128 and K = 32, and exactly the
same configurations and hyperparameters as in our baseline.

C. Code Study
C.1. Code Distribution

DPQ discretizes the embedding space into the KD codebook in {1, ...,K}n×D. We examine the code distribution by
computing the number of times each discrete code in each of the D groups is used in the entire codebook:

Count(j)k =

n∑
i=1

(C
(j)
i == k)

Figure 5 shows the code distribution heat-maps for the Transformer model on WMT’19 En-De, with K = 32 and D = 32
and no subspace-sharing. We find that 1) DPQ-VQ has a more evenly distributed code utilization, 2) DPQ-SX has a more
concentrated and sparse code distribution: in each group, only a few discrete codes are used, and some codes are not used in
the codebook.

C.2. Rate of Code Changes

We investigate how the codebook changes during training by computing the percentage of code bits in the KD codebook
C changed since the last saved checkpoint. An example is plotted in Figure 6 for the Transformer on WMT’19 En-De
task, with D = 128 and various K values. Checkpoints were saved every 600 iterations. Interestingly, for DPQ-SX, code
convergence remains about the same for different K values; while for DPQ-VQ, the codes takes longer to stabilize for larger
K values.



Differentiable Product Quantization for End-to-End Embedding Compression

0

800

1600

2400

3200

4000

0

800

1600

2400

3200

4000

Figure 5. Code heat-maps. Left: DPQ-SX. Right: DPQ-VQ. x-axis: K codes per group. y-axis: D groups. K = D = 32.

0 50000 100000 150000 200000 250000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Fa

ct
io

n
 o

f 
co

d
e
 c

h
a
n
g
e

DPQ-VQ, K=8

DPQ-VQ, K=32

DPQ-VQ, K=128

DPQ-SX, K=8

DPQ-SX, K=32

DPQ-SX, K=128

Figure 6. Percentage of code bits in codebook which changed from the previous checkpoint. Transformer on WMT’19 En-De. D = 128
for all runs. Checkpoints are saved every 600 iterations.

C.3. Nearest Neighbours of Reconstructed Embeddings

Table 9, 10 and 11 show examples of nearest neighbours in the reconstructed continuous embedding space, trained in the
Transformer model on the WMT’19 En-De task. Distance between two sub-words is measured by the cosine similarity of
their embedding vectors. Baseline is the original full embeddings model. DPQ variants were trained with K = D = 128
with no subspace-sharing.

Taking the sub-word ‘_evolve’ as an example, DPQ variants give very similar top 10 nearest neighbours as the original full
embedding: both have 7 out of 10 overlapping top neighbours as the baseline model. However, in DPQ-SX the neighbours
have closer distances than the baseline, hence a tighter cluster; while in DPQ-VQ the neighbours are further from the original
word. We observe similar patterns in the other two examples.

C.4. Code Visualization

Table 12 shows some examples of compressed codes for both DPQ-SX and DPQ-VQ. Semantically related words share
common codes in more dimensions than unrelated words.



Differentiable Product Quantization for End-to-End Embedding Compression

Table 9. Nearest neighbours of ‘_evolve’ in the embedding space.
Baseline (Full) Dist DPQ-SX Dist DPQ-VQ Dist

_evolve 1.000 _evolve 1.000 _evolve 1.000
_evolved 0.533 _evolved 0.571 _evolved 0.506
_evolving 0.493 _evolution 0.499 _develop 0.417
_develop 0.434 _develop 0.435 _evolving 0.359
_evolution 0.397 _evolving 0.418 _developed 0.320
_developed 0.379 _arise 0.405 _development 0.307
_developing 0.316 _developed 0.405 _developing 0.299
_arise 0.298 _resulted 0.394 _evolution 0.282
_unfold 0.294 _originate 0.361 _changed 0.278
_emerge 0.290 _result 0.359 _grew 0.273

Table 10. Nearest neighbours of ‘_monopoly’ in the embedding space.
Baseline Dist DPQ-SX Dist DPQ-VQ Dist

_monopoly 1.000 _monopoly 1.000 _monopoly 1.000
_monopolies 0.613 _monopolies 0.762 _monopolies 0.509
monopol 0.552 monopol 0.714 monopol 0.483
_Monopol 0.380 _Monopol 0.531 _Monopol 0.341
_moratorium 0.271 _zugestimmt 0.486 _dominant 0.258
_privileged 0.269 legitim 0.420 _moratorium 0.239
_unilateral 0.262 _Großunternehmen 0.401 _autonomy 0.230
_miracle 0.260 _Eigenkapital 0.400 _zugelassen 0.227
_privilege 0.254 _wirkungsvoll 0.399 _imperial 0.226
_dominant 0.250 _UCLAF 0.388 _capitalist 0.223

Table 11. Nearest neighbours of ‘_Toronto’ in the embedding space.
Baseline Dist DPQ-SX Dist DPQ-VQ Dist

_Toronto 1.000 _Toronto 1.000 _Toronto 1.000
_Vancouver 0.390 _Chicago 0.475 _Orlando 0.307
_Tokyo 0.378 _Orleans 0.467 _Detroit 0.306
_Ottawa 0.372 _Melbourne 0.435 _Canada 0.280
_Philadelphia 0.353 _Miami 0.434 _London 0.280
_Orlando 0.345 _Vancouver 0.415 _Glasgow 0.276
_Chicago 0.340 _Tokyo 0.407 _Montreal 0.272
_Canada 0.330 _Ottawa 0.405 _Vancouver 0.271
_Seoul 0.329 _Azeroth 0.403 _Philadelphia 0.267
_Boston 0.325 _Antonio 0.400 _Hamilton 0.264



Differentiable Product Quantization for End-to-End Embedding Compression

Table 12. Examples of KD codes.
DPQ-SX DPQ-VQ

_Monday 2 5 0 7 0 6 1 6 6 5 0 2 4 3 1 7
_Tuesday 6 0 0 7 0 6 1 7 1 7 0 2 0 3 1 7
_Wednesday 6 5 0 3 0 6 1 6 6 2 3 2 0 2 1 7
_Thursday 5 5 0 3 0 6 1 7 7 2 0 2 0 3 1 2
_Friday 4 6 0 7 0 6 1 7 6 0 0 2 1 6 1 7
_Saturday 4 0 6 7 0 6 1 0 6 2 0 2 3 3 1 7
_Sunday 2 0 0 3 0 6 1 6 7 2 0 2 6 3 1 7

_Obama 2 6 7 2 5 7 3 7 2 3 1 6 6 1 7 4
_Clinton 2 4 7 2 3 5 6 7 5 3 5 6 6 0 7 4
_Merkel 4 1 7 2 6 2 2 6 6 3 1 1 4 6 7 4
_Sarkozy 7 6 7 1 4 2 5 0 0 3 1 7 5 7 7 4
_Berlusconi 4 6 5 1 4 2 6 7 6 3 0 6 6 7 7 4
_Putin 2 6 7 1 6 7 6 7 5 3 1 6 6 7 7 6
_Trump 7 6 7 2 0 7 6 7 2 3 1 6 5 7 7 7

_Toronto 6 2 3 2 4 2 2 6 4 3 4 7 6 2 0 7
_Vancouver 2 1 3 2 6 2 5 6 7 3 6 6 6 2 3 1
_Ottawa 2 5 6 1 6 2 2 7 6 3 1 6 6 2 0 4
_Montreal 4 0 0 2 6 2 1 7 4 3 1 1 6 2 0 1
_London 1 2 0 2 4 7 1 7 2 3 0 2 6 3 3 7
_Paris 4 0 3 5 4 2 1 0 5 3 0 0 6 3 2 7
_Munich 4 2 0 4 0 7 5 0 1 3 3 5 6 3 1 7


