Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

A. Implementation details

(a) Compute values for new nodes L (b) Update reaction ancestor nodes and (c) Update molecule ancestor nodes and J
molecule nodes in sibling sub-tree halt the update process if not updated © Expanded (Mpext)
[[1 O Being updated
I:‘ O Updated

Figure 5. Illustration for the update process. Three phases correspond to line 1-8, line 11-16, and line 17-21 in Algorithm 2.

In this section we describe the algorithm details in the update phase of Retro*. The goal of the update phase is to compute
the up-to-date V;(m|T') for every molecule node m € F(T). To implement efficient update, we need to cache V;(m|T')
for all m € V™ (T'). Note that from Eq (8), we can observe the fact that sibling molecule nodes have the same V;(m|T),
i.e. Vi(mg|T) = Vi(my|T) if pr(mg|T) = pr(ms|T). Therefore instead of storing the value of V;(m|T') in every molecule
node m, we store the value in their common parent via defining V;(R|T") = Vi(m|T') if R = pr(m|T) for every reaction
node R € V"(T).

In our implementation, we cache V;(R|T') for all reaction nodes R € V"(T') and cache rn(v|T) for all nodes v € V(T).
Caching values in this way would allow us to visit each related node only once for minimal update.

Algorithm 2: Update(muyeqt, { Ri, Si, ¢(R;) le) 3
1 fori < 1tokdo
2 form € S; do
3 L rn(m) « Vs
rn(R;) < ¢(R;) + EmGSi rn(m);
Vt(Rz) — Vt(pr(mnext)) - rn(mnext) + TTL(Ri);
new-rn < minje(1 2. xy ™(R;);
delta < new_rn — rn(Mpezt);
rn(Mpext) NEW_Irn;

[BN

R A

Meurrent < Mpext>

10 while delta # 0 and meyrrent is not root do
1 Rcurrent — pr(mcurrent);

12 'rn(Rcurrent) — Tn(Rcur'r‘ent) + delta;
13 W(Rcurrent) — V;E(Rcu'rrent) + delta;
14 for m € ch(Reyrrent) do

15 L if m is not Meyyrrens then

=)

16 L UpdateSibling(m,delta);

17 Meurrent — pr(RcuTrent);

18 delta = 0;

19 if rn(Reurrent) < r(Meyrrent) then

20 L delta «+ Tn(Rcu'rrent) - Tn(mcurrent);
21 Tn(mcurrent) — Tn(Rcurrem‘,);

The update function is summarized in Algorithm 2 and illustrated in Figure 5, which takes in the expanded node m,¢4¢
and the expansion result { R;, S;, ¢(R;)}*_,, and performs updates to affected nodes. We first compute the values for new

>For clarity, we omit the condition on T in the notations.

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

reactions according to Eq (7) and (8) in line 1-8. Then we update the ancestor nodes of m,¢,; in a bottom-up fashion in
line 9-21. We also update the molecule nodes in the sibling sub-trees in line 16 and Algorithm 3.

Algorithm 3: UpdateSibling(m, delta)

1 rn(m|T) < rn(m|T) + delta;
2 for R € ch(m|T) do
3 L for m’ € ch(R|T') do

| UpdateSibling(m/, delta);

Our implementation visits a node only when necessary. When updating along the ancestor path, it immediately stops when
the influence of the expansion vanishes (line 10). When updating a single node, we use a O(1) delta update by leveraging the
relations derived from Eq (7) and (8), avoiding a direct computation which may require O(k) or O(depth(7")) summations.

B. Guarantees on finding the optimal solution

Since Retro* is a variant of the A* algorithm, we can leverage existing results to prove the theoretical guarantees for Retro*.
In this section, we first state the assumptions we make, and then prove the admissibility (Theorem 1) of Retro*.

The theoretical results in this paper build upon the assumption that we can access Vm, which is a lowerbound for V,,, for all
molecules m. Note that this is a weak assumption, since we know 0 is a universal lowerbound for V,,,.

As we describe in Eq (6), V;(m/|T') can be decomposed into g;(m|T") and hi(m|T"), where g,(m|T') is the exact cost of the
partial route through m which is already in the tree, and h;(m|T") is the future costs for frontier nodes in the route which is
a summation of a series of V,,s. In practice we use V,,, in the summation, and arrive at ht(m|T) which is a lowerbound of
ht(m|T), i.e. the following lemma.

Lemma 2 Assuming Vy, or its lowerbound is known for all encountered molecules m, then the approximated future costs
hi(m|T') in Retro* is a lowerbound of true hy(m|T).

We re-state the admissibility result (Theorem 1) in the main text and prove it with existing results in A* literature.

Theorem 1 (Admissibility) Assuming V,, or its lowerbound is known for all encountered molecules m, Algorithm 1 is
guaranteed to return an optimal solution, if the halting condition is changed to “the total costs of a found route is no larger
than argmin,,, c 77y Vi(m)”.

Proof Combine Lemma 2 and Theorem 1 in the original A* paper (Hart et al., 1968). |

C. Sample search trees and solution routes

In this section, we present two examples of the solution routes and the corresponding search trees for target molecule A and
B produced by Retro*.

Solution route for target molecule A/ B is illustrated in the top/bottom sub-figure of Figure 6, where a set of edges pointing
from the same product molecule to reactant molecules represents an one-step chemical reaction. Molecules on the leaf nodes
are all available.

The search trees for molecule A and B are illustrated in Figure 7 and Figure 8. We use reactangular boxes to represent
molecules. Yellow/grey/blue boxes indicate available/unexpanded/solved molecules. Reactangular arrows are used to
represent reactions. The numbers on the edges pointing from a molecule to a reaction are the probabilities produced by the
one-step model. Due to space limit, we only present the minimal tree which leads to a solution.

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

NH3 Mo
Ao ’ A\ '—i:/&

\
a/ \NH2

Figure 6. Top/bottom: solution route produced by Retro* for molecule A/B. Edges point from the same product molecule to the reactant
molecules represent an one-step chemical reaction.

D. Retro* for hierarchical task planning

As a general planning algorithm, Retro* can be applied to other machine learning problems as well, including theorem
proving (Yang & Deng, 2019) and hierarchical task planning (Erol, 1996) (or HTP), etc. Below, we conduct a synthetic
experiment on HTP to demonstrate the idea. In the experiment, we are trying to search for a plan to complete a target task.
The tasks (OR nodes) can be completed with different methods, and each method (AND nodes) requires a sequence of
subtasks to be completed. Furthermore, each method is associated with a nonnegative cost. The goal is to find a plan with
minimum total cost to realize the target task by decomposing it recursively until all the leaf task nodes represent primitive
tasks that we know how to execute directly. As an example, to travel from home in city A to hotel in city B, we can take
either f1ight, train or ship, each with its own cost. For each method, we have subtasks such as home — airport A,
flight(A — B), and airport B — hotel. These subtasks can be further realized by several methods.

As usual, we want to find a plan with small cost in limited time which is measured by the number of expansions of task
nodes. We use the optimal halting condition as stated in theorem 1. We compare our algorithms against DFPN-E, the best
performing baseline. The results are summarized in Table 2 and 3.

Time Limit | 15 | 20 | 25 | 30 | 35
Retro* 67 | 91| 96 | 98 | 1.

Retro*-0 S50 .86 | .95 | 98 | .99
DFPN-E 02| 33| .74 | 93| .97

Table 2. Success rate (higher is better) vs time limit.

As we can see, in terms of success rate, Retro* is slightly better than Retro*-0, and both of them are significantly better than
DFPN-E. In terms of solution quality, we compute the approximation ratio (= solution cost / ground truth best solution cost)

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

Alg Retro* | Retro*-0 | DFPN-E
Avg. AR | 1 1 1.5
Max. AR | 1 1 39

Table 3. AR = Approximation ratio (lower is better), time limit=35.

for every solution, and verify the theoretical guarantee in theorem 1 on finding the best solution.

E. Related Works

Reinforcement learning algorithms (without planning) have also been considered for the retrosynthesis problem. Schreck
et al. leverages self-play experience to fit a value function and uses policy iteration for learning an expansion policy. It is
possible to combine it with a planning algorithm to achieve better performance in practice.

Learning to search from previous planning experiences has been well studied and applied to Go (Silver et al., 2016;
2017), Sokoban (Guez et al., 2018) and path planning (Chen et al., 2020). Existing methods cannot be directly applied
to the retrosynthesis problem since the search space is more complicated, and the traditional representation where a node
corresponds to a state is highly inefficient, as we mentioned in the discussion on MCTS in previous sections.

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

T

e,
N

0.00

.00\

.00

.00

0.00

__oo,

n

000

— oo,
N

o

0,00

b 00

1

- . kico
\ &
)
b 00

1
o
[T —
15
6
211 COS(CN=0)=0
0.00
16 2
3
231 COS(CN=0)=0
@
1

Figure 7. Search tree produced by Retro* for molecule A. Reactangular boxes/arrows represent molecules/reactions. Yellow/grey/blue

2

——————— 25| CCOC(=0)CM)CelclnHlc2ecenc12

> 261 COC=O)CNICE clnHlc2ccene12

> 27 clntlc2ecen12)C(=00

—————» 28] CCICNCIOC(=ONC(CONCe el leZecene12

————» 20| 0=CINC(CONCelclnjeZecenc12)0Ce ececel
|
=+ 31| CC(=OINC(CO)CelclnHlc2ccenci2
|
31| 0=CIONC(COCe clnHc2ccenci2
35| CC(=0)0CCMNCelclnHlc2ceenc12 ®
————+ 36 0=CleZeccce2C=OINIC(CONCelclnllezecencl2
1.0/
———» 37| CO(CNCIOC(=ON1C(CeeinHIcdecenc23ICOCICIC
i
> 38| CCCNCNSICHCIOCCNICel et lc2ccenct2
0.00
n
009
n
= 11| COC(=OINC(CO)Celclnt]c2ccencl2
fo.o
——————— 42| NC(COXCeIc(Chintlezecenci2 s
_— lelnHlc2cce(Cline
43| NC(CO)CelclnHlezece(Clne12 oo
"
|
fo.00
3
——+ 16 NC(COC(eleeccct(elccccet ol ccceet Celclntjezccenc12
————————» 47 NC(C=O)CelclnHlc2ccenc2 %
7
—e 8
.00
”
— fo.o
n
sl
f0.00,
—————» 52| COISICENCC)e cec2inHcc(CCNICON2nL
.00 1 75
53| COE1GeE(NC(=0)eZece(OCK(F)e2)E(C(=OIC(=0)0)el
000
0

000
S

551 COC(=OkIncle2ceclOCII2 e Zece(OC K12
561 CCOC(=0kInc(<2ccc(0C)(Fle2nc2cec(0CKe12 0.

00

57 COclecezne(c3eec(OCKFIIne(C(=0)0C(CNCIC) 2]
0.0

i

58| COclece2nc(c3ece(OCIE(FIcdne(C(=0)0CeIeceec)c2el
.00

59 COelcecnetedecelOCH(FEIE(C(=0)0-Deze]

—

60| COelcec2nelcdecc(OCKFICCAN)c2eL
610

—— s a2i0m

0.00)

631 COctece(BO)O)ce1F

T 64 COrlceeznC(Chne(C(=0)0)c2e1

63 COCcec2ne(Clnc(C(=0)0)2e1

)

o
T 661 COMCPCCEIBOI0
> 671 C=CCOC=OleneteZecclOC) Pl neece(OCKe12
000\
8
—_— - INSe0N=00
71| COcleceane(e3oec(0CKFedne(C=0)zel
%

72| O=[Mal(=0)(=0)O-]

I

75 | COelecezne(cdece(OC(MEIE(CHNIc2e
- ——wi
x, 7711011
781 COFlcee2nelc3ce(OCNNICIC(C(=0)0KZel
79| FBAEE
— e wjo-r0NO0
811 COclcoc2nctc3oce(OCK(EIIMG(C=Ok2cl
— - 82[COSE=00
83| COelccele2nc(C=0)0N3cc(O)ccednaiee
— B COSE=0)=0
85 | COetecezneledeecOMENNCC=010)2c]
— eI
87| COclecetene(C(=0/0IcdeeFleceInzicel F
_ swic0
91 COclcecznctcdoceFFIedne(C(=0)0N2e1
————+ 901 CCOC(=0K Ine(e2ecc(ON(FIe2IncZece(0C)ce12
411 COS(CN=01=0
- 921 COS(CN=0)=0

93] CCOC(=0)eIne(<2cce(0C)(Fle2Inc2cec(O)cc12

aijerceoct
95 | COElece2e(eIC(=0)C=OIN2

A

T sl cometimonieetr
971 COCIceNI(C(=01C(=0)0)c1

T a|COcIccCONIRClF

99 COClecelN)e(C(=0)C(=0)0)c1

S T T

=0N0c1r

———+ 101 CCOC(=0)C(=0)e1cE(0CIECE INC(=0)elcec(OC)(Flel

102 COC(=0)C(=Oe1c(OC)ceeINC=O)elccc(OCk(Flel

103 | COCLCE2e(NC(=0)e3ec(OCKFIEINE(E1)C(=0)C2=0

> 1041 C

C0CC0CEOCE0CCOCCOT
103 C=C(C(=00)1ce(OC eceINC(=Olel cec(OC (Rl

T+ 106]0m(0410

107] COC(=O)Tcee(0CI(TICt

> 108 | COGlece(N)e(C(=0)C(=0)0)c1

10jco

T 11| COClE(C(=OINe2ecc(0)ce2C(=0XC (=00l 1 F

nzico

- 113 COClceENC(=0)c2ccc() (FIcIE(C(=0)C=0)0)]

> 114100

115 COeleee(C(=0NeZece(F)ec2C(=0)C (=00l F

> 116100

117 | COc1ccelNC(=0)c2ece(Mc(P2)e(C(=0)C(=0)0)c1

120] COEcec(C(=0XChee1F

121 COC1cceNC(=0)c2cec(0C)c(E2Ie(C(=0)C (=00 el

b 1221 0=CO-DIO-]

123 COecec(C(=0INe26cc(0)ce2C(=0)C(=0)O)cc

> 124)

10-0(0-)

/| |

125 COBcec(NC(=0)e2ecc(O)e(FIc2)e(C(=0)C (=00l

> 126

127 COEcec(C(=0INe2ece(O)e2C(=0)C(=0)O)ce1F.

» 128

/| /

129 COC1eC(NC(=0)e2ece(Ok(FIe2IC(C(=0IC(=00)c

130 COS(=0)(=00C

/\

131 COelece(C(=0INe2eec(0)e2C(=0)C(=0)0)ceF

132 COS(=0)(=00C

’\

133 COElccc(NC(=0)e2cc(Oe(FIc2)e(C(=0)C (=00l

indicate available/unexpanded/solved molecules. Numbers on the edges are the probabilities produced by the one-step model.

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

Figure 8. Search tree produced by Retro* for molecule B. Reactangular boxes/arrows represent molecules/reactions. Yellow/grey/blue
indicate available/unexpanded/solved molecules. Numbers on the edges are the probabilities produced by the one-step model.

