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Abstract 
Measuring the similarity between data points of-
ten requires domain knowledge, which can in 
parts be compensated by relying on unsupervised 
methods such as latent-variable models, where 
similarity/distance is estimated in a more compact 
latent space. Prevalent is the use of the Euclidean 
metric, which has the drawback of ignoring in-
formation about similarity of data stored in the 
decoder, as captured by the framework of Rie-
mannian geometry. We propose an extension to 
the framework of variational auto-encoders allows 
learning fat latent manifolds, where the Euclidean 
metric is a proxy for the similarity between data 
points. This is achieved by defning the latent 
space as a Riemannian manifold and by regularis-
ing the metric tensor to be a scaled identity matrix. 
Additionally, we replace the compact prior typ-
ically used in variational auto-encoders with a 
recently presented, more expressive hierarchical 
one—and formulate the learning problem as a con-
strained optimisation problem. We evaluate our 
method on a range of data-sets, including a video-
tracking benchmark, where the performance of 
our unsupervised approach nears that of state-of-
the-art supervised approaches, while retaining the 
computational effciency of straight-line-based ap-
proaches. 

1. Introduction 
Measuring the distance between data points is a central 
ingredient of many data analysis and machine learning ap-
plications. Several kernel methods (KernelPCA (Schölkopf 
et al., 1997), KernelNMF (Li & Ding, 2006), etc.), and other 
non-parametric approaches such as k-nearest neighbours 
(Altman, 1992) rely on the availability of a suitable distance 
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function. Computer vision pipelines, e.g. tracking over time, 
perform matching based on similarity scores. 

But designing a distance function can be challenging: it is 
not always obvious to write down mathematical formulae 
that accurately express a notion of similarity. Learning such 
functions has hence been proven as a viable alternative to 
manual engineering in this respect (NCA (Goldberger et al., 
2005), metric learning (Xing et al., 2003), etc.). Often, these 
methods rely on the availability of pairs labelled as simi-
lar or dissimilar. A different route is that of exploiting the 
structure that latent-variable models learn. The assumption 
that a set of high-dimensional observations is explained by 
points in a much simpler latent space underpins these ap-
proaches. In their respective probabilistic versions, a latent 
prior distribution is transformed non-linearly to give rise 
to a distribution of observations. The hope is that simple 
distances, such as the Euclidean distance measured in la-
tent space, implement a function of similarity. Yet, these 
approaches do not incorporate the variation of the obser-
vations with respect to the latent points. For example, the 
observations will vary much more when a path in latent 
space will cross a class boundary. 

In fact, recent approaches to non-linear latent variable mod-
els, such as the generative adversarial network (Goodfellow 
et al., 2014) or the variational auto-encoder (VAE) (Kingma 
& Welling, 2014; Rezende et al., 2014), regularise the latent 
space to be compact, i.e. to remove low-density regions. 
This is in contrast to the aforementioned hope that Euclidean 
distances appropriately refect similarity. 

The above insight leads us to the development of fat mani-
fold variational auto-encoders. This class of VAEs defnes 
the latent space as Riemannian manifold and regularises 
the Riemannian metric tensor to be a scaled identity matrix. 
In this context, a fat manifold is a Riemannian manifold, 
which is isometric to the Euclidean space. To not compro-
mise the expressiveness, we relax the compactness assump-
tion and make use of a recently introduced hierarchical prior 
(Klushyn et al., 2019). As a consequence, the model is capa-
ble of learning a latent representation, where the Euclidean 
metric is a proxy for the similarity between data points. This 
results in a computational effcient distance metric which is 
practical for applications in real-time scenarios. 
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2. Variational Auto-Encoders with Flat 
Latent Manifolds 

2.1. Background on Learning Hierarchical Priors 
in VAEs 

Latent-variable models are defned as Z 
p(x) = p(x|z) p(z) dz, (1) 

where z ∈ RNz represents latent variables and x ∈ RNx the 
observable data. The integral in Eq. (1) is usually intractable 
but it can be approximated by maximising the evidence 
lower bound (ELBO) (Kingma & Welling, 2014; Rezende 
et al., 2014): h� � � � 

EpD (x) log pθ(x) ≥ EpD (x) Eqφ(z|x) log pθ(x|z) � �i 
− KL qφ(z|x)k p(z) , (2) 

PN1where pD(x) = δ(x − xi) is the empirical distri-N i=1 
bution of the data D = {xi}iN 

=1. The distribution param-
eters of the approximate posterior qφ(z|x) and the likeli-
hood pθ(x|z) are represented by neural networks. The prior 
p(z) is usually defned as a standard normal distribution. 
This model is commonly referred to as the variational auto-
encoder (VAE). 

However, a standard normal prior often leads to an over-
regularisation of the approximate posterior, which results in 
a less informative learned latent representation of the data 
(Tomczak & Welling, 2018; Klushyn et al., 2019). To en-
able the model to learn an informative latent representation, 
Klushyn et al. (2019) propose to use a fexible hierarchical R 
prior pΘ(z) = pΘ(z|ζ) p(ζ) dζ, where p(ζ) is the stan-
dard normal distribution. Since the optimal prior is the 
aggregated posterior (Tomczak & Welling, 2018), the above 
integral is approximated by an importance-weighted (IW) 
bound (Burda et al., 2015) based on samples from qφ(z|x). 
This leads to a model with two stochastic layers and the 
following upper bound on the KL term: � � 
EpD (x) KL qφ(z|x)k p(z) ≤ F(φ, Θ, Φ)� 

≡ EpD (x) Eqφ(z|x) log qφ(z|x) h K i�X1 pΘ(z|ζi) p(ζi)− Eζ1:K ∼qΦ(ζ|z) log , (3)
K qΦ(ζi|z)i=1 

where K is the number of importance samples. Since it 
has been shown that high ELBO values do not necessar-
ily correlate with informative latent representations (Alemi 
et al., 2018; Higgins et al., 2017)—which is also the case 
for hierarchical models (Sønderby et al., 2016)—different 
optimisation approaches have been introduced (Bowman 

et al., 2016; Sønderby et al., 2016). Klushyn et al. (2019) 
follow the line of argument in (Rezende & Viola, 2018) 
and reformulate the resulting ELBO as the Lagrangian of a 
constrained optimisation problem: 

LVHP(θ, φ, Θ, Φ; λ) ≡ � � � � 
F(φ, Θ, Φ) + λ EpD (x) Eqφ(z|x) Cθ(x, z) − κ2 , (4) 

with the optimisation objective F(φ, Θ, Φ), the inequal-� � 
ity constraint EpD (x) Eqφ(z|x) Cθ(x, z) ≤ κ2 , and the 
Lagrange multiplier λ. Cθ(x, z) is defned as the 
reconstruction-error-related term in − log pθ(x|z). Thus, 
we obtain the following optimisation problem: 

min min max min LVHP(θ, φ, Θ, Φ; λ) s.t. λ ≥ 0. (5)
Θ,Φ θ λ φ 

Building on that, the authors propose an optimisation 
algorithm—including a λ-update scheme—to achieve a tight 
lower bound on the log-likelihood. This approach is referred 
to as variational hierarchical prior (VHP) VAE. 

2.2. Learning Flat Latent Manifolds with VAEs 

The VHP-VAE is able to learn a latent representation that 
corresponds to the topology of the data manifold (Klushyn 
et al., 2019). However, it is not guaranteed that the (Eu-
clidean) distance between encoded data in the latent space 
is a suffcient distance metric in relation to the observa-
tion space. In this work, we aim to measure the dis-
tance/difference of observed data directly in the latent space 
by means of the Euclidean distance of the encodings. 

Chen et al. (2018a); Arvanitidis et al. (2018) defne the 
latent space of a VAE as a Riemannian manifold. This 
approach allows for computing the observation-space length 
of a trajectory γ : [0, 1] → RNz in the latent space: Z 1 q � � 

L(γ) = γ̇(t)T G γ(t) γ̇(t) dt, (6) 
0 

where G ∈ RNz ×Nz is the Riemannian metric tensor, and 
γ̇(t) the time derivative. We defne the observation-space 
distance as the shortest possible path 

D = min L(γ) (7)
γ 

between two data points. The trajectory γ = arg minγ L(γ) 
that minimises L(γ) is referred to as the (minimising) 
geodesic. In the context of VAEs, γ is transformed by a con-
tinuous function f(γ(t))—the decoder—to the observation 
space. The metric tensor is defned as G(z) = J(z)T J(z), 
where J is the Jacobian of the decoder. 

To measure the observation-space distance directly in the 
latent space, distances in the observation space should be 
proportional to distances in the latent space: 

D ∝ kz(1) − z(0)k2, (8) 
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where we defne the Euclidean distance as the distance 
metric. This requires that the Riemannian metric tensor 
is G ∝ 1. As a consequence, the Euclidean distance in the 
latent space corresponds to the observation-space distance. 
We refer to a manifold with this property as fat manifold 
(Lee, 2006). To obtain a fat latent manifold, the model typ-
ically needs to learn complex latent representations of the 
data (see experiments in Sec. 4). Therefore, we propose the 
following approach: (i) to enable our model to learn com-
plex latent representations, we apply a fexible prior (VHP), 
which is learned by the model (empirical Bayes); and (ii) we 
regularise the curvature of the decoder such that G ∝ 1. 

For this purpose, the VHP-VAE, introduced in Sec. 2.1, is 
extended by a Jacobian-regularisation term. We defne the 
regularisation term as part of the optimisation objective, 
which is in line with the constrained optimisation setting. 
The resulting objective function is 

L(θ, φ, Θ,Φ; λ, η, c2) = LVHP(θ, φ, Θ, Φ; λ) + � � �� 
η EpD (x) Eqφ(z|x) kG(z) − c 21k22 , (9) 

where η is a hyper-parameter determining the infuence of 
the regularisation and c the scaling factor. Additionally, we 
use a stochastic approximation (frst order Taylor expansion) 
of the Jacobian to improve the computational effciency 
(Rifai et al., 2011b): 

1 � � 
Jt(z) = lim E�∼N (0,σ2) f(z + � et) − f(z) , (10)

σ→0 σ 

where Jt ∈ RNx is the Jacobian of the t-th latent dimension 
and et a standard basis vector. This approximation method 
allows for a faster computation of the gradient and avoids 
the second-derivative problem of piece-wise linear layers 
(Chen et al., 2018a). 

However, the infuence of the regularisation term in Eq. (9) 
on the decoder function is limited to regions where data is 
available. To overcome this issue, we propose to use mixup, 
a data-augmentation method (Zhang et al., 2018), which was 
introduced in the context of supervised learning. We extend 
this method to the VAE framework (unsupervised learning) 
by applying it to encoded data in the latent space. This 
approach allows augmenting data by interpolating between 
two encoded data points zi and zj : 

g(zi, zj ) = (1 − α) zi + α zj , (11) 

with xi, xj ∼ pD(x), zi ∼ qφ(z|xi), zj ∼ qφ(z|xj ), 
and α ∼ U(−α0, 1 + α0). In contrast to (Zhang et al., 
2018), where α ∈ [0, 1] limits the data augmentation to 
only convex combinations, we defne α0 > 0 to take into 
account the outer edge of the data manifold. By combin-
ing mixup in Eq. (11) with Eq. (9), we obtain the objective 

function of our fat manifold VAE (FMVAE): 

LVHP-FMVAE(θ, φ, Θ, Φ; λ, η, c
2) = LVHP(θ, φ, Θ, Φ; λ) + � � 

η Exi,j ∼pD (x) Ezi,j ∼qφ(z|xi,j ) kG(g(zi, zj )) − c 21k2 . 
(12) 

Inspired by batch normalisation, we defne the squared scal-
ing factor to be the mean over the batch samples and diago-
nal elements of G (see App. A.2 for empirical support): 

1 � �
2 c = Exi,j ∼pD (x) Ezi,j ∼qφ(z|xi,j ) tr(G(g(zi, zj ))) . 

Nz 
(13) 

The optimisation algorithm Alg. 1, and further details about 
the optimisation process can be found in App. A.4. 

By using augmented data, we regularise G to be a scaled 
identity matrix for the entire latent space enclosed by the 
data manifold. As a consequence, the function f(z) (de-
coder) is—up to the scaling factor c—distance-preserving 
since Dx(f(zi), f(zj )) ≈ cDz(zi, zj ), where Dx and Dz 

refer to the distance in the observation and latent space, 
respectively. 

3. Related Work 
Interpretation of the VAE’s latent space. In general, the 
latent space of VAEs is considered to be Euclidean (e.g. 
Kingma et al., 2016; Higgins et al., 2017), but it is not con-
strained to be Euclidean. This can be problematic if we 
require a precise metric that is based on the latent space. 
Some recent works (Mathieu et al., 2019; Grattarola et al., 
2018) adapted the latent space to be non-Euclidean to match 
the data structure. We solve the problem from another per-
spective: we enforce the latent space to be Euclidean. 

Jacobian and Hessian regularisation. In (Rifai et al., 
2011a), the authors proposed to regularise the Jacobian 
and Hessian of the encoder. However, it is more diffcult 
to augment data in the observation space than in the latent 
space. In (Hadjeres et al., 2017), the Jacobian of the de-
coder was regularised to be as small as possible/zero. On 
the contrary, we regularise the the Riemannian metric tensor 
to be a scaled identity matrix, and hence the Jacobian to be 
constant, and hence the Hessian to be zero. (Nie & Patel, 
2019) regularised the Jacobian with respect to the weights 
for GANs. In terms of supervised learning, (Jakubovitz & 
Giryes, 2018) used Jacobian regularisation to improve the 
robustness for classifcation. 

Metric learning. Various metric learning approaches for 
both deep supervised and unsupervised models were pro-
posed. For instance, deep metric learning (Hoffer & Ailon, 
2015) used a triplet network for supervised learning. (Kar-
aletsos et al., 2016) introduced an unsupervised metric learn-
ing method, where a VAE is combined with triplets. How-



Learning Flat Latent Manifolds with VAEs 

ever, a human oracle is still required. By contrast, our 
approach is completely based on unsupervised learning, 
using the Euclidean distance in the latent space as a dis-
tance metric. Our proposed method is similar to the metric 
learning methods such as Large Margin Nearest Neighbour 
(Weinberger & Saul, 2009), which pulls target neighbours 
together and pushes impostors away. The difference is that 
our approach is an unsupervised method. 

Constraints in latent space. Constraints on time (e.g. 
Wang et al., 2007; Chen et al., 2016; 2015) allow obtaining 
similar distance metrics in the latent space. Additionally, 
due to the missing data between different sequence steps, 
constraints on time cannot guarantee that the metric is cor-
rect between different sequences. However, our method can 
be used for general data-sets. 

Data augmentation. The latent space is formed arbitrarily 
in regions where data is missing. Zhang et al. (2018) pro-
posed mixup, an approach for augmenting data and labels 
for supervised learning. Various follow-up studies of mixup 
were developed, such as (Verma et al., 2019; Beckham et al., 
2019). (Verma et al., 2019) considered mixup of hidden 
representations of training data to fatten the class-specifc 
state distribution. We extend mixup to the VAE framework 
(unsupervised learning) by applying it to encoded data in 
the latent space of generative models. This facilitates the 
regularisation of regions where no data is available. As a 
consequence, similarity of data points can be measured in 
the latent space by applying the Euclidean metric. 

Geodesic. Recent studies on geodesics for generative mod-
els (e.g. Tosi et al., 2014; Chen et al., 2018a; Arvanitidis 
et al., 2018) are focusing on methods for computing/fnding 
the geodesic in the latent space. By contrast, we use the 
geodesic/Riemannian distance for infuencing the learned 
latent manifold. (Frenzel et al., 2019) projected the latent 
space to a new latent space, where the geodesic is equivalent 
to the Euclidean interpolation. However, these two sepa-
rate processes—VAEs and projection—probably hinder the 
model to fnd the latent features autonomously. Another dif-
ference is the assumption of previous work is that distances, 
defned by geodesics, can only be measured by following the 
data manifold. This is useful in scenarios such as avoiding 
unseen barriers between two data points, e.g., (Chen et al., 
2018b), but it does not allow measuring distances between 
different categories. In this work, we focus on learning a 
general distance metric. 

4. Experiments 
We test our method on artifcial pendulum images, human 
motion data, MNIST, and MOT16. We measure the perfor-
mance in terms of equidistances, interpolation smoothness, 
and distance computation. Additionally, our method is ap-

plied to a real-world environment—a video-tracking bench-
mark. Here, the tracking and re-identifcation capabilities 
are evaluated. 

The Riemannian metric tensor has many intrinsic proper-
ties of a manifold and measures local angles, length, sur-
face area, and volumes (Bronstein et al., 2017). Therefore, 
the models are quantifed based on the Riemannian metric 
tensor by computing condition numbers and magnifcation 
factors. The condition number, which shows the ratio of the 
most elongated to the least elongated direction, is defned as 

Smax(G)k(G) = , where Smax is the largest eigenvalue of G.Smin(G) p
The magnifcation factor MF(z) ≡ det G(z) (Bishop 
et al., 1997) depicts the sensitivity of the likelihood func-
tions. When projecting from the Riemannian (latent) to the 
Euclidean (observation) space, the MF can be considered a 
scaling coeffcient. Since we cannot directly compare the 
MFs of different models, the MFs are normalised/divided 
by their means. The closer the conditional number and the 
normalised MF are to one, the more invariant is the model 
with respect to the Riemannian metric tensor. In other words: 
the conditional number and the normalised MF are metrics 
to evaluate whether G(z) is approximately constant and 
proportional to 1. 

In order to make the visualisations of the magnifcation fac-
tor in Sec. 4.1 (Fig. 1) and Sec. 4.2 (Fig. 3 & Fig. 7) compara-
ble, we defne the respective upper range of the colour-bar as 
max(MFVAE-VHP(grid area))·mean(MFVHP-FMVAE(data)) . MF(data) and mean(MFVHP-FMVAE(data)) 
MF(grid area) are computed with training data and by us-
ing a grid area, respectively. 

To be in line with previous literature (e.g. Higgins et al., 
2017; Sønderby et al., 2016), we use the β-parametrisation 

1of the Lagrange multiplier β = in our experiments. λ 

4.1. Artifcial Pendulum Data-set 

The pendulum data-set (Klushyn et al., 2019; Chen et al., 
2018a) consists of 16×16-pixel images generated by a pen-
dulum simulator. The pendulum has one degree of freedom, 
and the joint is located in the centres of the images. We 
generated 15 · 103 images with joint angles uniformly in 
the ranges of [0, 360) degrees. Additionally, we added 0.05 
Gaussian noise to each pixel. 

As seen in Fig. 1, without regularisation, the contour lines 
are denser in the centre of the latent space. The reason is 
that, in contrast to the VHP-VAE, the regularisation term in 
the VHP-FMVAE smoothens the latent space (G ≈ c 1)— 
visualised by the MF and the equidistance plots. In Fig. 2, 
VHP-FMVAE and VAE-VHP are compared in terms of 
condition number and normalised MF. In both cases the 
VHP-FMVAE outperforms the VHP-VAE. 
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(a) VHP-FMVAE 
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(b) VHP-VAE 

Figure 1. Latent representation of pendulum data: the contour plots 
illustrate curves of equal observation-space distance to the respec-
tive encoded data point. Distances are calculated using Eq. (6). The 
grey-scale displays MF(z). Note: round, homogeneous contour 
plots indicate that G(z) ∝ 1. 
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Figure 2. Pendulum data: if both the condition number and the 
normalised MF values are close to one, it indicates that G(z) ∝ 1. 
The box-plots are based on 1,000 generated samples. 

4.2. Human Motion Capture Database 

To evaluate our approach on the CMU human motion data-
set (http://mocap.cs.cmu.edu), we select fve dif-
ferent movements: walking (subject 35), jogging (subject 
35), balancing (subject 49), punching (subject 143), and 
kicking (subject 74). After data pre-processing, the input 
data is a 50-dimensional vector of the joint angles. Note 
that the data-set is not balanced: walking, for example, has 

more data points than jogging. 
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(a) VHP-FMVAE 

(b) VAE-VHP 

Figure 3. Latent representation of human motion data: the contour 
plots illustrate curves of equal observation-space distance to the 
respective encoded data point. The grey-scale displays MF(z). 
Note: round, homogeneous contour plots indicate that G(z) ∝ 1. 
In case of the VHP-FMVAE (a), Jogging is a large-range movement 
compared with walking, so that jogging is reasonably distributed 
on a larger area in the latent space than walking. By contrast, in 
case of the VHP-VAE (b), the latent representation of walking 
is larger than the one of jogging. Additionally, geodesics are 
compared to the corresponding Euclidean interpolations. The 
Euclidean interpolations in (a) are much closer to the geodesics. 

Table 1. Verifcation of the distance metric. The table shows the 
length ratio of the Euclidean interpolation to the geodesic. Addi-
tionally, we list the ratio of the related distances in the observation 
space. 

DATA-SET METHOD OBSERVATION LATENT 

HUMAN VHP-FMVAE 1.02 ± 0.06 0.93 ± 0.03 
VHP-VAE 1.23 ± 0.20 0.82 ± 0.10 

MNIST VHP-FMVAE 1.01 ± 0.08 0.92 ± 0.05 
VHP-VAE 1.13 ±0.22 0.70 ± 0.31 

Equidistance plots. In Fig. 3, we randomly select a data 
point from each class as centres of the equidistance plots. 

http://mocap.cs.cmu.edu


Learning Flat Latent Manifolds with VAEs 

V
H

P
-F

M
VA

E
V

H
P

-V
A

E
V

H
P

-F
M

VA
E

w
/o
c

2 1
V

H
P

-F
M

VA
E

w
/o

m
ix

up

methods

0

100

200

300

400

500

600
co

nd
it

io
n

nu
m

b
er

V
H

P
-F

M
VA

E

V
H

P
-V

A
E

V
H

P
-F

M
VA

E
w

/o
c

2 1
V

H
P

-F
M

VA
E

w
/o

m
ix

up

methods

0

2

4

6

8

10

12

no
rm

al
is

ed
M

F

Figure 4. Human motion data: if both the condition number and the 
normalised MF values are close to one, it indicates that G(z) ∝ 1. 
The box-plots are based on 3,000 generated samples. 
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Figure 5. Smoothness measure of the human-movement interpo-
lations. The mean and standard deviation are displayed for each 
joint: the smaller the value, the smoother the interpolation. 

(a) VHP-FMVAE (b) VHP-VAE 

Figure 6. Human-movement reconstructions of Euclidean inter-
polations in the latent space. Discontinuities in the motions are 
marked by blue boxes. 

In case of our proposed method, the equidistance plots are 
homogeneous, while in case of the VHP-VAE, the equidis-
tance contour lines are distorted in regions of high MF 
values. Thus, the mapping from latent to observation space 
learned by the VHP-FMVAE is approximately distance pre-
serving. Additionally, we use the condition number and 
the normalised MF to evaluate G based on 3,000 random 
samples. In contrast to the VHP-VAE, both the condition 
number and the normalised MF values of the VHP-FMVAE 
are close to one, which indicates that G(z) ∝ 1. 

Smoothness. We randomly sample 100 pair points and 
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(a) VHP-FMVAE without mixup 
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(b) VHP-FMVAE without the identity term c 21 

Figure 7. Infuence of the data augmentation and the identity term 
c 21 on the learned latent representation of human movement data. 
The movements are coloured as in Fig. 3. (a) If not applying 
mixup, regions, where data is missing (e.g., between two move-
ments), have a high MF and distorted equidistance contours. (b) 
regularising the metric tensor, and hence the Jacobian to be zero, 
does not allow the model to learn a fat latent manifold. The 
equidistance contours are scaled differently at various locations in 
the latent space. Without c 21 term as in (Hadjeres et al., 2017), it 
cannot reduce the distance for points with high similarities. For in-
stance, the walking is not squeezed as in Fig. 3a in the latent space. 
Therefore, the walking is not distributed smaller than jogging. 

linearly interpolate between each pair. The second derivative 
of each trajectory is defned as the smoothness factor. Fig. 5 
illustrates that the VHP-FMVAE signifcantly outperforms 
the VAE-VHP in terms of smoothness. Fig. 6 shows fve 
examples of the interpolated trajectories. 

Verifcation of the distance metric. To verify that the 
Euclidean distance in the latent space corresponds to the 
geodesic distance, we approximates the geodesic by using a 
graph-based approach (Chen et al., 2019). The graph of the 
baseline has 14,400 nodes, which are sampled in the latent 
space using a uniform distribution. Each node has 12 neigh-
bours. In Fig. 3, fve geodesics each are compared to the 
corresponding Euclidean interpolations. Tab. 1 shows the 
ratios of Euclidean distances in latent space to geodesics dis-
tances, as well as the related ratios in the observation space. 
To compute the ratios, we randomly sampled 100 pairs of 
points and interpolated between each pair. If the ratio of 
the distances is close to one, the Euclidean interpolation 
approximates the geodesic. The VHP-FMVAE outperforms 
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the VAE-VHP. 

Infuence of the data augmentation and the identity 
term c21. Fig. 4 and Fig. 7a show the infuence of the 
data augmentation (see Sec. 2.2). Without data augmenta-
tion, the infuence of the regularisation term is limited to 
regions where data is available, as verifed by the high MF 
values between the different movements. As an additional 
experiment, Fig. 4 and Fig. 7b illustrates the infuence of the 
identity term c21. If we remove it, the regularisation term 
becomes kG(g(zi, zj ))k22. As a consequence, the model is 
not able to learn a fat latent manifold. 

4.3. MNIST 

The binarised MNIST data-set (Larochelle & Murray, 2011) 
consists of 50,000 training and 10,000 test images of hand-
written digits (zero to nine) with 28×28 pixels in size. 
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Figure 8. Latent representation of MNIST data: the contour plots 
illustrate curves of equal observation-space distance to the respec-
tive encoded data point (denoted by a black dot). 

Both of our evaluation metrics the condition number and the 
normalised MF show that the VHP-FMVAE outperforms 
the VAE-VHP (see Fig. 8 and Fig. 9). In contrast to the 
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Figure 9. MNIST data: if both the condition number and the nor-
malised MF values are close to one, it indicates that G(z) ∝ 1. 
The box-plots are based on 10,000 generated samples. 

VHP-VAE, the VHP-FMVAE learns a latent space, where 
Euclidean distances are close to geodesic distances (see 
Tab. 1). This indicates that G(z) is approximately constant. 

4.4. MOT16 Object-Tracking Database 

We evaluate our approach on the MOT16 object-tracking 
database (Milan et al., 2016), which is a large-scale person 
re-identifcation data-set, containing both static and dynamic 
scenes from diverse cameras. 

(a) SORT 

(b) DeepSORT 

(c) VHP-VAE-SORT 

(d) VHP-FMVAE-SORT with η = 3000 

Figure 10. Example identity switches between overlapping tracks. 
For vanilla SORT, track 3260 gets occluded and when subsequently 
visible, it gets assigned a new ID 3421. For deeSORT and VHP-
VAE-SORT, the occluding track gets assigned the same ID as the 
track it occludes (42/61), and subsequently keeps this (erroneous) 
track. For VHP-FMVAE-SORT, the track 42 gets occluded, but is 
re-identifed correctly when again visible. 
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Table 2. Comparisons between different descriptors for the purposes of object tracking and re-identifcation (Ristani et al., 2016). The 
bold and the red numbers denote the best results among all methods and among non-supervised methods, respectively. 

METHOD TYPE IDF1↑ IDP↑ IDR↑ RECALL↑ PRECISION↑ FAR↓ MT↑ 

VHP-FMVAE-SORT η = 300 (OURS) UNSUPERVISED 63.7 77.0 54.3 65.0 92.3 1.12 158 
VHP-FMVAE-SORT η = 3000 (OURS) UNSUPERVISED 64.2 77.6 54.8 65.1 92.3 1.13 162 
VHP-VAE-SORT UNSUPERVISED 60.5 72.3 52.1 65.8 91.4 1.28 170 

SORT N.A. 57.0 67.4 49.4 66.4 90.6 1.44 158 

DEEPSORT SUPERVISED 64.7 76.9 55.8 66.7 91.9 1.22 180 

METHOD PT↓ ML↓ FP↓ FN↓ IDS↓ FM↓ MOTA ↑ MOTP ↑ MOTAL↑ 

VHP-FMVAE-SORT η = 300 (OURS) 269 90 5950 38592 616 1143 59.1 81.8 59.7 
VHP-FMVAE-SORT η = 3000 (OURS) 265 90 6026 38515 598 1163 59.1 81.8 59.7 
VHP-VAE-SORT 266 81 6820 37739 693 1264 59.0 81.6 59.6 

SORT 275 84 7643 37071 1486 1515 58.2 81.9 59.5 

DEEPSORT 250 87 6506 36747 585 1165 60.3 81.6 60.8 

We compare with two baselines: SORT (Bewley et al., 2016) 
and DeepSORT (Wojke et al., 2017). SORT is a simple on-
line and real-time tracking method, which uses bounding 
box intersection-over-union (IOU) for associating detections 
between frames and Kalman flters for the track predictions. 
It relies on good two-dimensional bounding box detections 
from a separate detector, and suffers from ID switching 
when tracks overlap in the image. DeepSORT extends the 
original SORT algorithm to integrate appearance informa-
tion based on a deep appearance descriptor, which helps 
with re-identifcation in the case of such overlaps or missed 
detections. The deep appearance descriptor is trained us-
ing a supervised cosine metric learning approach (Wojke 
& Bewley, 2018). The candidate object locations of the 
pre-generated detections for both SORT, DeepSORT and 
our method are taken from (Yu et al., 2016). Further details 
regarding the implementation can be found in App. A.3. 

We use the following metrics for evaluation. ↑ indicates that 
the higher the score is, the better the performance is. On the 
contrary, ↓ indicates that the lower the score is, the better 
the performance is. 

· IDF1(↑): ID F1 Score · FN(↓): False Negatives 
· IDP(↑): ID Precision · IDs(↓): Number of times 
· IDR(↑): ID Recall an ID switches to a different 
· FAR(↓): False Alarm Ra- previously tracked object 
tio · FM(↓): Fragmentations 
· MT(↑): Mostly Tracked · MOTA(↑): Multi-object 
Trajectory tracking accuracy 
· PT(↓): Partially Tracked · MOTP(↑): Multi-object 
Trajectory tracking precision 
· ML(↓): Mostly Lost Tra- · MOTAL(↑): Log tracking 
jectory accuracy 
· FP(↓): False Positives 

Tab. 2 shows that the performance of the proposed method 
is better than that of the model without Jacobian regularisa-
tion, and even close to the the performance of supervised 
learning. All methods depend on the same underlying de-
tector for object candidates, and identical Kalman flter 
parameters. Compared to baseline SORT which does not 
utilise any appearance information, DeepSORT has 2.54 
times, VHP-VAE-SORT has 2.14 times, VHP-FMVAE-
SORT (η = 300) has 2.41 times and VHP-FMVAE-SORT 
(η = 3000) has 2.48 times fewer ID switches. Whilst the 
supervised DeepSORT descriptor has the least, using un-
supervised VAEs with fat decoders has only 2.2% more 
switches, without the need for labels. Furthermore, by en-
suring a quasi-Euclidean latent space, one can query nearest-
neighbours effciently via data-structures such as kDTrees. 
Fig. 10 shows an example of the results. In other examples 
of the videos, the VHP-FMVAE-SORT works similar as 
the DeepSORT. Videos of the results can be downloaded at: 
http://tiny.cc/0s71cz 

5. Conclusion 
In this paper, we have proposed a novel approach, which 
we call fat manifold variational auto-encoder. We have 
shown that this class of VAEs learns a latent representation, 
where the Euclidean metric is a proxy for the similarity 
between data points. This is realised by interpreting the 
latent space as a Riemannian manifold and by combining a 
powerful empirical Bayes prior with a regularisation method 
that constrains the Riemannian metric tensor to be a scaled 
identity matrix. Experiments on several datasets have shown 
the effectiveness of our proposed algorithm for measuring 
similarity. In case of the MOT16 object-tracking database, 
the performance of our unsupervised method nears that of 
state-of-the-art supervised approaches. 

http://tiny.cc/0s71cz
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