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Abstract

We introduce a family of multilayer graph ker-

nels and establish new links between graph con-

volutional neural networks and kernel methods.

Our approach generalizes convolutional kernel

networks to graph-structured data, by represent-

ing graphs as a sequence of kernel feature maps,

where each node carries information about local

graph substructures. On the one hand, the ker-

nel point of view offers an unsupervised, expres-

sive, and easy-to-regularize data representation,

which is useful when limited samples are avail-

able. On the other hand, our model can also be

trained end-to-end on large-scale data, leading

to new types of graph convolutional neural net-

works. We show that our method achieves com-

petitive performance on several graph classifica-

tion benchmarks, while offering simple model

interpretation. Our code is freely available at

https://github.com/claying/GCKN.

1. Introduction

Graph kernels are classical tools for representing graph-

structured data (see Kriege et al., 2020, for a survey).

Most successful examples represent graphs as very-high-

dimensional feature vectors that enumerate and count oc-

curences of local graph sub-structures. In order to perform

well, a graph kernel should be as expressive as possible, i.e.,

able to distinguish graphs with different topological proper-

ties (Kriege et al., 2018), while admitting polynomial-time

algorithms for its evaluation. Common sub-structures in-

clude walks (Gärtner et al., 2003), shortest paths (Borgwardt

& Kriegel, 2005), subtrees (Shervashidze et al., 2011), or

graphlets (Shervashidze et al., 2009).
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Graph kernels have shown to be expressive enough to yield

good empirical results, but decouple data representation and

model learning. In order to obtain task-adaptive represen-

tations, another line of research based on neural networks

has been developed recently (Niepert et al., 2016; Kipf &

Welling, 2017; Xu et al., 2019; Verma et al., 2018). The re-

sulting tools, called graph neural networks (GNNs), are con-

ceptually similar to convolutional neural networks (CNNs)

for images; they provide graph-structured multilayer mod-

els, where each layer operates on the previous layer by

aggregating local neighbor information. Even though harder

to regularize than kernel methods, these models are trained

end-to-end and are able to extract features adapted to a spe-

cific task. In a recent work, Xu et al. (2019) have shown that

the class of GNNs based on neighborhood aggregation is

at most as powerful as the Weisfeiler-Lehman (WL) graph

isomorphism test, on which the WL kernel is based (Sher-

vashidze et al., 2011), and other types of network architec-

tures than simple neighborhood aggregation are needed for

more powerful features.

Since GNNs and kernel methods seem to benefit from differ-

ent characteristics, several links have been drawn between

both worlds in the context of graph modeling. For instance,

Lei et al. (2017) introduce a class of GNNs whose output

lives in the reproducing kernel Hilbert space (RKHS) of a

WL kernel. In this line of research, the kernel framework is

essentially used to design the architecture of the GNN since

the final model is trained as a classical neural network. This

is also the approach used by Zhang et al. (2018a) and Morris

et al. (2019). By contrast, Du et al. (2019) adopt an oppo-

site strategy and leverage a GNN architecture to design new

graph kernels, which are equivalent to infinitely-wide GNNs

initialized with random weights and trained with gradient

descent. Other attempts to merge neural networks and graph

kernels involve using the metric induced by graph kernels

to initialize a GNN (Navarin et al., 2018), or using graph

kernels to obtain continuous embeddings that are plugged

to neural networks (Nikolentzos et al., 2018).

In this paper, we go a step further in bridging graph neu-

ral networks and kernel methods by proposing an explicit

multilayer kernel representation, which can be used either

as a traditional kernel method, or trained end-to-end as a

GNN when enough labeled data are available. The mul-

tilayer construction allows to compute a series of maps

https://github.com/claying/GCKN
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which account for local sub-structures (“receptive fields”)

of increasing size. The graph representation is obtained

by pooling the final representations of its nodes. The re-

sulting kernel extends to graph-structured data the concept

of convolutional kernel networks (CKNs), which was orig-

inally designed for images and sequences (Mairal, 2016;

Chen et al., 2019a). As our representation of nodes is built

by iteratively aggregating representations of their outgoing

paths, our model can also be seen as a multilayer extension

of path kernels. Relying on paths rather than neighbors for

the aggregation step makes our approach more expressive

than the GNNs considered in Xu et al. (2019), which im-

plicitly rely on walks and whose power cannot exceed the

Weisfeiler-Lehman (WL) graph isomorphism test. Even

with medium/small path lengths (which leads to reasonable

computational complexity in practice), we show that the

resulting representation outperforms walk or WL kernels.

Our model called graph convolutional kernel network

(GCKN) relies on the successive uses of the Nyström

method (Williams & Seeger, 2001) to approximate the fea-

ture map at each layer, which makes our approach scalable.

GCKNs can then be interpreted as a new type of graph

neural network whose filters may be learned without super-

vision, by following kernel approximation principles. Such

unsupervised graph representation is known to be partic-

ularly effective when small amounts of labeled data are

available. Similar to CKNs, our model can also be trained

end-to-end, as a GNN, leading to task-adaptive representa-

tions, with a computational complexity similar to that of a

GNN when the path lengths are small enough.

Notation. A graph G is defined as a triplet (V, E , a),
where V is the set of vertices, E is the set of edges, and

a : V → Σ is a function that assigns attributes, either dis-

crete or continous, from a set Σ to nodes in the graph. A

path is a sequence of distinct vertices linked by edges and

we denote by P(G) and Pk(G) the set of paths and paths

of length k in G, respectively. In particular, P0(G) is re-

duced to V . We also denote by Pk(G, u) ⊂ Pk(G) the set

of paths of length k starting from u in V . For any path p

in P(G), we denote by a(p) in Σ|p|+1 the concatenation of

node attributes in this path. We replace P with W to denote

the corresponding sets of walks by allowing repeated nodes.

2. Related Work on Graph Kernels

Graph kernels were originally introduced by Gärtner et al.

(2003) and Kashima et al. (2003), and have been the subject

of intense research during the last twenty years (see the

reviews of Vishwanathan et al., 2010; Kriege et al., 2020).

In this paper, we consider graph kernels that represent a

graph as a feature vector counting the number of occur-

rences of some local connected sub-structure. Enumerat-

ing common local sub-structures between two graphs is

unfortunately often intractable; for instance, enumerating

common subgraphs or common paths is known to be NP-

hard (Gärtner et al., 2003). For this reason, the literature on

graph kernels has focused on alternative structures allowing

for polynomial-time algorithms, e.g., walks.

More specifically, we consider graph kernels that perform

pairwise comparisons between local sub-structures centered

at every node. Given two graphs G = (V, E , a) and G′ =
(V ′, E ′, a′), we consider the kernel

K(G,G′) =
∑

u∈V

∑

u′∈V′

κbase(lG(u), lG′(u′)), (1)

where the base kernel κbase compares a set of local patterns

centered at nodes u and u′, denoted by lG(u) and lG′(u′),
respectively. For simplicity, we will omit the notation lG(u)
in the rest of the paper, and the base kernel will be simply

written κbase(u, u
′) with an abuse of notation. As noted

by Lei et al. (2017); Kriege et al. (2020), this class of kernels

covers most of the examples mentioned in the introduction.

Walks and path kernels. Since computing all path co-

occurences between graphs is NP-hard, it is possible instead

to consider paths of length k, which can be reasonably

enumerated if k is small enough, or the graphs are sparse.

Then, we may define the kernel K
(k)
path as (1) with

κbase(u, u
′) =

∑

p∈Pk(G,u)

∑

p′∈Pk(G′,u′)

δ(a(p), a′(p′)), (2)

where a(p) represents the attributes for path p in G, and δ

is the Dirac kernel such that δ(a(p), a′(p′)) = 1 if a(p) =
a′(p′) and 0 otherwise.

It is also possible to define a variant that enumerates all

paths up to length k, by simply adding the kernels K
(i)
path:

Kpath(G,G
′) =

k∑

i=0

K
(i)
path(G,G

′). (3)

Similarly, one may also consider using walks by simply

replacing the notation P by W in the previous definitions.

Weisfeiler-Lehman subtree kernels. A subtree is a sub-

graph with a tree structure. It can be extended to subtree

patterns (Shervashidze et al., 2011; Bach, 2008) by allowing

nodes to be repeated, just as the notion of walks extends

that of paths. All previous subtree kernels compare subtree

patterns instead of subtrees. Among them, the Weisfeiler-

Lehman (WL) subtree kernel is one of the most widely used

graph kernels to capture such patterns. It is essentially based

on a mechanism to augment node attributes by iteratively

aggregating and hashing the attributes of each node’s neigh-

borhoods. After i iterations, we denote by ai the new node
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attributes for graph G = (V, E , a), which is defined in Al-

gorithm 1 of Shervashidze et al. (2011) and then the WL

subtree kernel after k iterations is defined, for two graphs

G = (V, E , a) and G′ = (V ′, E ′, a′), as

KWL(G,G
′) =

k∑

i=0

K
(i)
subtree(G,G

′), (4)

where

K
(i)
subtree(G,G

′) =
∑

u∈V

∑

u′∈V′

κ
(i)
subtree(u, u

′), (5)

with κ
(i)
subtree(u, u

′) = δ(ai(u), a
′
i(u

′)) and the attributes

ai(u) capture subtree patterns of depth i rooted at node u.

3. Graph Convolutional Kernel Networks

In this section, we introduce our model, which builds upon

the concept of graph-structured feature maps, following the

terminology of convolutional neural networks.

Definition 1 (Graph feature map). Given a graph G =
(V, E , a) and a RKHS H, a graph feature map is a mapping

ϕ : V → H, which associates to every node a point in H
representing information about local graph substructures.

We note that the definition matches that of convolutional

kernel networks (Mairal, 2016) when the graph is a two-

dimensional grid. Generally, the map ϕ depends on the

graph G, and can be seen as a collection of |V| elements

of H describing its nodes. The kernel associated to the

feature maps ϕ,ϕ′ for two graphs G,G′, is defined as

K(G,G′)=
∑

u∈V

∑

u′∈V′

〈ϕ(u), ϕ′(u′)〉H=〈Φ(G),Φ(G′)〉H,

(6)

with

Φ(G) =
∑

u∈V

ϕ(u) and Φ(G′) =
∑

u∈V′

ϕ′(u). (7)

The RKHS of K can be characterized by using Theorem 2

in Appendix A. It is the space of functions fz : G 7→
〈z,Φ(G)〉H for all z in H endowed with a particular norm.

Note that even though graph feature maps ϕ,ϕ′ are graph-

dependent, learning with K is possible as long as they all

map nodes to the same RKHS H—as Φ will then also map

all graphs to the same space H. We now detail the full

construction of the kernel, starting with a single layer.

3.1. Single-Layer Construction of the Feature Map

We propose a single-layer model corresponding to a con-

tinuous relaxation of the path kernel. We assume that

the input attributes a(u) live in R
q0 , such that a graph

G = (V, E , a) admits a graph feature map ϕ0 : V → H0

with H0 = R
q0 and ϕ0(u) = a(u). Note that this as-

sumption also allows us to handle discrete labels by us-

ing a one-hot encoding strategy—that is e.g., four labels

{A,B,C,D} are represented by four-dimensional vectors

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively.

Continuous relaxation of the path kernel. We rely on

paths of length k, and introduce the kernel K1 for graphs

G,G′ with feature maps ϕ0, ϕ
′
0 of the form (1) with

κbase(u, u
′) =

∑

p∈Pk(G,u)

∑

p′∈Pk(G′,u′)

κ1(ϕ0(p), ϕ
′
0(p

′)),

(8)

where ϕ0(p) = [ϕ0(pi)]
k
i=0 denotes the concatenation of

k + 1 attributes along path p, which is an element of Hk+1
0 ,

pi is the i-th node on path p starting from index 0, and κ1 is

a Gaussian kernel comparing such attributes:

κ1(ϕ0(p), ϕ
′
0(p

′)) = e−
α1
2

∑k
i=0 ‖ϕ0(pi)−ϕ′

0(p
′
i)‖

2
H0 . (9)

This is an extension of the path kernel, obtained by replac-

ing the hard matching function δ in (2) by κ1, as done

for instance by Togninalli et al. (2019) for the WL kernel.

This replacement not only allows us to use continuous at-

tributes, but also has important consequences in the discrete

case since it allows to perform inexact matching between

paths. For instance, when the graph is a chain with dis-

crete attributes—in other words, a string—then, paths are

simply k-mers, and the path kernel (with matching func-

tion δ) becomes the spectrum kernel for sequences (Leslie

et al., 2001). By using κ1 instead, we obtain the single-layer

CKN kernel of Chen et al. (2019a), which performs inexact

matching, as the mismatch kernel does (Leslie et al., 2004),

and leads to better performances in many tasks involving

biological sequences.

From graph feature map ϕ0 to graph feature map ϕ1.

The kernel κ1 acts on pairs of paths in potentially differ-

ent graphs, but only through their mappings to the same

space Hk+1
0 . Since κ1 is positive definite, we denote by H1

its RKHS and consider its mapping φ
path
1 : Hk+1

0 → H1

such that

κ1(ϕ0(p), ϕ
′
0(p

′)) = 〈φpath
1 (ϕ0(p)) , φ

path
1 (ϕ′

0(p
′))〉H1

.

For any graph G, we can now define a graph feature map

ϕ1 : V → H1, operating on nodes u in V , as

ϕ1(u) =
∑

p∈Pk(G,u)

φ
path
1 (ϕ0(p)) . (10)

Then, the continuous relaxation of the path kernel, denoted

by K1(G,G
′), can also be written as (6) with ϕ = ϕ1, and

its underlying kernel representation Φ1 is given by (7). The

construction of ϕ1 from ϕ0 is illustrated in Figure 1.
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u

ϕj(u) ∈ Hj

(V , E , ϕj : V → Hj)

path extraction

kernel mapping

path aggregation

u

u

ϕj+1(u) ∈ Hj+1

u u u

p1 p2 p3

φ
path
j+1 (ϕj(p1))

φ
path
j+1 (ϕj(p2))

φ
path
j+1 (ϕj(p3))

kernel mapping

Hj+1

path aggregation

ϕj+1(u) := φ
path
j+1 (ϕj(p1)) + φ

path
j+1 (ϕj(p2)) + φ

path
j+1 (ϕj(p3))

(V , E , ϕj+1 : V → Hj+1)

Figure 1. Construction of the graph feature map ϕj+1 from ϕj given a graph (V, E). The first step extracts paths of length k (here colored

by red, blue and green) from node u, then (on the right panel) maps them to a RKHS Hj+1 via the Gaussian kernel mapping. The new

map ϕj+1 at u is obtained by local path aggregation (pooling) of their representations in Hj+1. The representations for other nodes can

be obtained in the same way. In practice, such a model is implemented by using finite-dimensional embeddings approximating the feature

maps, see Section 3.2.

The graph feature map ϕ0 maps a node (resp a path) to H0

(resp Hk+1
0 ) which is typically a Euclidean space describing

its attributes. By contrast, φ
path
1 is the kernel mapping of the

Gaussian kernel κ1, and maps each path p to a Gaussian

function centered at ϕ0(p)—remember indeed that for ker-

nel functionK : X×X → R with RKHS H, the kernel map-

ping is of a data point x is the function K(x, .) : X → R.

Finally, ϕ1 maps each node u to a mixture of Gaussians,

each Gaussian function corresponding to a path starting at u.

3.2. Concrete Implementation and GCKNs

We now discuss algorithmic aspects, leading to the graph

convolutional kernel network (GCKN) model, which con-

sists in building a finite-dimensional embedding Ψ(G) that

may be used in various learning tasks without scalability

issues. We start here with the single-layer case.

The Nyström method and the single-layer model. A

naive computation of the path kernelK1 requires comparing

all pairs of paths in each pair of graphs. To gain scalabil-

ity, a key component of the CKN model is the Nyström

method (Williams & Seeger, 2001), which computes finite-

dimensional approximate kernel embeddings. We discuss

here the use of such a technique to define finite-dimensional

maps ψ1 : V → R
q1 and ψ′

1 : V ′ → R
q1 for graphs G,G′

such that for all pairs of nodes u, u′ in V , V ′, respectively,

〈ϕ1(u), ϕ
′
1(u

′)〉H1 ≈ 〈ψ1(u), ψ
′
1(u

′)〉Rq1 .

The consequence of such an approximation is that it pro-

vides a finite-dimensional approximation Ψ1 of Φ1:

K1(G,G
′) ≈ 〈Ψ1(G),Ψ1(G

′)〉Rq1

with Ψ1(G) =
∑

u∈V

ψ1(u).

Then, a supervised learning problem with kernel K1 on a

dataset (Gi, yi)i=1,...,n, where yi are labels in R, can be

solved by minimizing the regularized empirical risk

min
w∈Rq1

n∑

i=1

L(yi, 〈Ψ1(Gi), w〉) + λ‖w‖2, (11)

where L is a convex loss function. Next, we show that using

the Nyström method to approximate the kernel κ1 yields a

new type of GNN, represented by Ψ1(G), whose filters can

be obtained without supervision, or, as discussed later, with

back-propagation in a task-adaptive manner.

Specifically, the Nyström method projects points from a

given RKHS onto a finite-dimensional subspace and per-

forms all subsequent operations within that subspace. In

the context of κ1, whose RKHS is H1 with mapping func-

tion φ
path
1 , we consider a collection Z = {z1, . . . , zq1} of q1

prototype paths represented by attributes in Hk+1
0 , and we

define the subspace E1 = Span(φpath
1 (z1), . . . , φ

path
1 (zq1)).

Given a new path with attributes z, it is then possible to

show (see Chen et al., 2019a) that the projection of path
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attributes z onto E1 leads to the q1-dimensional mapping

ψ
path
1 (z) = [κ1(zi, zj)]

− 1
2

ij [κ1(z1, z), . . . , κ1(zq1 , z)]
⊤,

where [κ1(zi, zj)]ij is a q1 × q1 Gram matrix. Then, the

approximate graph feature map ψ1 is obtained by pooling

ψ1(u) =
∑

p∈Pk(G,u)

ψ
path
1 (ψ0(p)) for all u ∈ V,

where ψ0 = ϕ0 and ψ0(p) = [ψ0(pi)]i=0,...,k in R
q0(k+1)

represents the attributes of path p, with an abuse of notation.

Interpretation as a GNN. When input attributes ψ0(u)
have unit-norm, which is the case if we use one-hot encoding

on discrete attributes, the Gaussian kernel κ1 between two

path attributes z, z′ in R
q0(k+1) may be written

κ1(z, z
′) = e−

α1
2 ‖z−z′‖2

= eα1(z
⊤z′−k−1) = σ1(z

⊤z′),
(12)

which is a dot-product kernel with a non-linear function σ1.

Then, calling Z in R
q0(k+1)×q1 the matrix of prototype path

attributes, we have

ψ1(u) =
∑

p∈Pk(G,u)

σ1(Z
⊤Z)−

1
2σ1(Z

⊤ψ0(p)), (13)

where, with an abuse of notation, the non-linear function σ1
is applied pointwise. Then, the mapψ1 is build fromψ0 with

the following steps (i) feature aggregation along the paths,

(ii) encoding of the paths with a linear operation followed by

point-wise non-linearity, (iii) multiplication by the q1 × q1
matrix σ1(Z

⊤Z)−
1
2 , and (iv) linear pooling. The major dif-

ference with a classical GNN is that the “filtering” operation

may be interpreted as an orthogonal projection onto a linear

subspace, due to the matrix σ1(Z
⊤Z)−

1
2 . Unlike the Dirac

function, the exponential function σ1 is differentiable. A

useful consequence is the possibility of optimizing the filters

Z with back-propagation as detailed below. Note that in

practice we add a small regularization term to the diagonal

for stability reason: (σ1(Z
⊤Z) + εI)−

1
2 with ε = 0.01.

Learning without supervision. Learning the “filters” Z

with Nyström can be achieved by simply running a K-

means algorithm on path attributes extracted from training

data (Zhang et al., 2008). This is the approach adopted for

CKNs by Mairal (2016); Chen et al. (2019a), which proved

to be very effective as shown in the experimental section.

End-to-end learning with back-propagation. While the

previous unsupervised learning strategy consists in finding a

good kernel approximation that is independent of labels, it is

also possible to learn the parameters Z end-to-end, by mini-

mizing (11) jointly with respect to Z andw. The main obser-

vations from Chen et al. (2019a) in the context of biological

Algorithm 1 Forward pass for multilayer GCKN

1: Input: graph G = (V, E , ψ0 : V → R
q0), set of anchor

points (filters) Zj ∈ R
(k+1)qj−1×qj for j = 1, . . . , J .

2: for j = 1, . . . , J do

3: for u in V do

4: ψj(u) =
∑

p∈Pk(G,u) ψ
path
j (ψj−1(p));

5: end for

6: end for

7: Global pooling: Ψ(G) =
∑

u∈V ψJ(u);

sequences is that such a supervised learning approach may

yield good models with much fewer filters q1 than with the

unsupervised learning strategy. We refer the reader to Chen

et al. (2019a;b) for how to perform back-propagation with

the inverse square root matrix σ1(Z
⊤Z)−

1
2 .

Complexity. The complexity for computing the feature

map ψ1 is dominated by the complexity of finding all the

paths of length k from each node. This can be done by

simply using a depth first search algorithm, whose worst-

case complexity for each graph is O(|V|dk), where d is

the maximum degree of each node, meaning that large k

may be used only for sparse graphs. Then, each path is

encoded in O(q1q0(k+ 1)) operations; When learning with

back-propagation, each gradient step requires computing the

eigenvalue decomposition of σ1(Z
⊤Z)−

1
2 whose complex-

ity is O(q31), which is not a computational bottleneck when

using mini-batches of order O(q1), where typical practical

values for q1 are reasonably small, e.g., less than 128.

3.3. Multilayer Extensions

The mechanism to build the feature map ϕ1 from ϕ0 can be

iterated, as illustrated in Figure 1 which shows how to build

a feature map ϕj+1 from a previous one ϕj . As discussed

by Mairal (2016) for CKNs, the Nyström method may then

be extended to build a sequence of finite-dimensional maps

ψ0, . . . , ψJ , and the final graph representation is given by

ΨJ(G) =
∑

u∈V

ψJ(u). (14)

The computation of ΨJ(G) is illustrated in Algorithm 1.

Here we discuss two possible uses for these additional layers,

either to account for more complex structures than paths, or

to extend the receptive field of the representation without

resorting to the enumeration of long paths. We will denote

by kj the path length used at layer j.

A simple two-layer model to account for subtrees. As

emphasized in (7), GCKN relies on a representation Φ(G)
of graphs, which is a sum of node-level representations

provided by a graph feature map ϕ. If ϕ is a sum over
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paths starting at the represented node, Φ(G) can simply be

written as a sum over all paths in G, consistently with our

observation that (6) recovers the path kernel when using a

Dirac kernel to compare paths in κ1. The path kernel often

leads to good performances, but it is also blind to more

complex structures. Figure 2 provides a simple example

of this phenomenon, using k = 1: G1 and G3 differ by

a single edge, while G4 has a different set of nodes and a

rather different structure. Yet P1(G3) = P1(G4), making

K1(G1, G3) = K1(G1, G4) for the path kernel.

1 2

34

(G1)

1 2

34

(G2)

1 2

34

(G3)

1 2 3

413

(G4)

✗ K2(G1, G2) = 0

✓ K1(G1, G2) > 0

✓ K2(G1, G3) > K2(G1, G4)

✗ K1(G1, G3) = K1(G1, G4)

Figure 2. Example cases using κ1 = κ2 = δ, with path lengths

k1 = 1 and k2 = 0; The one-layer kernel K1 counts the number

of common edges while the two-layer K2 counts the number of

nodes with the same set of outgoing edges. The figure suggests

using K1 +K2 to gain expressiveness.

Expressing more complex structures requires breaking the

succession of linearities introduced in (7) and (10)—much

like pointwise nonlinearities are used in neural networks.

Concretely, this effect can simply be obtained by using

a second layer with path length k2 = 0—paths are then

identified to vertices—which produces the feature map

ϕ2(u) = φ
path
2 (ϕ1(u)), where φ

path
2 : H1 → H2 is a non-

linear kernel mapping. The resulting kernel is then

K2(G,G
′) =

∑

u∈V

∑

u′∈V′

〈ϕ2(u), ϕ
′
2(u

′)〉H2

=
∑

u∈V

∑

u′∈V′

κ2(ϕ1(u), ϕ
′
1(u

′)). (15)

When κ1 and κ2 are both Dirac kernels, K2 counts the

number of nodes in G and G′ with the exact same set of

outgoing paths P(G, u), as illustrated in Figure 2.

Theorem 1 further illustrates the effect of using a nonlin-

ear φ
path
2 on the feature map ϕ1, by formally linking the

walk and WL subtree kernel through our framework.

Theorem 1. Let G = (V, E), G′ = (V ′, E ′), M be the

set of exact matchings of subsets of the neighborhoods of

two nodes, as defined in Shervashidze et al. (2011), and ϕ

defined as in (10) with κ1 = δ and replacing paths by walks.

For any u ∈ V and u′ ∈ V ′ such that |M(u, u′)| = 1,

δ(ϕ1(u), ϕ
′
1(u

′)) = κ
(k)
subtree(u, u

′). (16)

Recall that when using (8) with walks instead of paths and

a Dirac kernel for κ1, the kernel (6) with ϕ = ϕ1 is the

walk kernel. The condition |M(u, u′)| = 1 indicates that u

and u′ have the same degrees and each of them has distinct

neighbors. This can be always ensured by including degree

information and adding noise to node attributes. For a large

class of graphs, both the walk and WL subtree kernels can

therefore be written as (6) with the same first layer ϕ1 repre-

senting nodes by their walk histogram. While walk kernels

use a single layer, WL subtree kernels rely on a second

layer ϕ2 mapping nodes to the indicator function of ϕ1(u).

Theorem 1 also shows that the kernel built in (15) is a path-

based version of WL subtree kernels, therefore more expres-

sive as it captures subtrees rather than subtree patterns. How-

ever, the Dirac kernel lacks flexibility, as it only accounts

for pairs of nodes with identical P(G, u). For example, in

Figure 2, K2(G1, G2) = 0 even though G1 only differs

from G2 by two edges, because these two edges belong to

the set P(G, u) of all nodes in the graph. In order to retain

the stratification by node of (15) while allowing for a softer

comparison between sets of outgoing paths, we replace δ

by the kernel κ2(ϕ1(u), ϕ
′
1(u

′)) = e−α2‖ϕ1(u)−ϕ′
1(u

′)‖2
H1 .

Large values of α2 recover the behavior of the Dirac, while

smaller values gives non-zero values for similar P(G, u).

A multilayer model to account for longer paths. In the

previous paragraph, we have seen that adding a second layer

could bring some benefits in terms of expressiveness, even

when using path lengths k2 = 0. Yet, a major limitation

of this model is the exponential complexity of path enu-

meration, which is required to compute the feature map ϕ1,

preventing us to use large values of k as soon as the graph is

dense. Representing large receptive fields while relying on

path enumerations with small k, e.g., k ≤ 3, is nevertheless

possible with a multilayer model. To account for a receptive

field of size k, the previous model requires a path enumera-

tion with complexity O(|V|dk), whereas the complexity of

a multilayer model is linear in k.

3.4. Practical Variants

Summing the kernels for different k and different scales.

As noted in Section 2, summing the kernels corresponding

to different values of k provides a richer representation. We

also adopt such a strategy, which corresponds to concate-

nating the feature vectors Ψ(G) obtained for various path

lengths k. When considering a multilayer model, it is also

possible to concatenate the feature representations obtained

at every layer j, allowing to obtain a multi-scale feature

representation of the graph and gain expressiveness.

Use of homogeneous dot-product kernel. Instead of the

Gaussian kernel (9), it is possible to use a homogeneous dot-
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product kernel, as suggested by Mairal (2016) for CKNs:

κ1(z, z
′) = ‖z‖‖z′‖σ1

(
〈z, z′〉

‖z‖‖z′‖

)

,

where σ1 is defined in (12). Note that when z, z′ have unit-

norm, we recover the Gaussian kernel (9). In our paper, we

use such a kernel for upper layers, or for continuous input

attributes when they do not have unit norm. For multilayer

models, this homogenization is useful for preventing van-

ishing or exponentially growing representations. Note that

ReLU is also a homogeneous non-linear mapping.

Other types of pooling operations. Another variant con-

sists in replacing the sum pooling operation in (13) and (14)

by a mean or a max pooling. While using max pooling as a

heuristic seems to be effective on some datasets, it is hard

to justify from a RKHS point of view since max operations

typically do not yield positive definite kernels. Yet, such

a heuristic is widely adopted in the kernel literature, e.g.,

for string alignment kernels (Saigo et al., 2004). In order to

solve such a discrepancy between theory and practice, Chen

et al. (2019b) propose to use the generalized max pooling

operator of Murray & Perronnin (2014), which is compati-

ble with the RKHS point of view. Applying the same ideas

to GCKNs is straightforward.

Using walk kernel instead of path kernel. One can use

a relaxed walk kernel instead of the path kernel in (8), at the

cost of losing some expressiveness but gaining some time

complexity. Indeed, there exists a very efficient recursive

way to enumerate walks and thus to compute the resulting

approximate feature map in (13) for the walk kernel. Specif-

ically, if we denote the k-walk kernel by κ
(k)
walk, then its value

between two nodes can be decomposed as the product of

the 0-walk kernel between the nodes and the sum of the

(k − 1)-walk kernel between their neighbors

κ
(k)
walk(u, u

′) = κ
(0)
walk(u, u

′)
∑

v∈N (u)

∑

v′∈N (u′)

κ
(k−1)
walk (v, v′),

where κ
(0)
walk(u, u

′) = κ1(ϕ0(u), ϕ
′
0(u

′)). After applying

the Nyström method, the approximate feature map of the

walk kernel is written, similar to (13), as

ψ1(u) = σ1(Z
⊤Z)−

1
2

∑

p∈Wk(G,u)

σ1(Z
⊤ψ0(p))

︸ ︷︷ ︸

ck(u):=

.

Based on the above observation and following similar in-

duction arguments as Chen et al. (2019b), it is not hard to

show that (cj(u))j=1,...,k obeys the following recursion

cj(u) = bj(u)⊙
∑

v∈N (u)

cj−1(v), 1 ≤ j ≤ k,

where ⊙ denotes the element-wise product and bj(u)
is a vector in R

q1 whose entry i in {1, . . . , q1} is

κ1(u, z
(k+1−j)
i ) and z

(k+1−j)
i denotes the k + 1 − j-th

column vector of zi in R
q0 . More details can be found

in Appendix C.

4. Model Interpretation

Ying et al. (2019) introduced an approach to interpret trained

GNN models, by finding a subgraph of an input graph G

maximizing the mutual information with its predicted label

(note that this approach depends on a specific input graph).

We show here how to adapt similar ideas to our framework.

Interpreting GCKN-path and GCKN-subtree. We call

GCKN-path our model Ψ1 with a single layer, and GCKN-

subtree our model Ψ2 with two layers but with k2 = 0,

which is the first model presented in Section 3.3 that ac-

counts for subtree structures. As these models are built

upon path enumeration, we extend the method of Ying et al.

(2019) by identifying a small subset of paths in an input

graph G preserving the prediction. We then reconstruct a

subgraph by merging the selected paths. For simplicity, let

us consider a one-layer model. As Ψ1(G) only depends

on G through its set of paths Pk(G), we note Ψ1(P) with

an abuse of notation for any subset of P of paths in G, to

emphasize the dependency in this set of paths. For a trained

model (Ψ1, w) and a graph G, our objective is to solve

min
P′⊆Pk(G)

L(ŷ, 〈Ψ1(P
′), w〉) + µ|P ′|, (17)

where ŷ is the predicted label of G and µ a regularization

parameter controlling the number of paths to select. This

problem is combinatorial and can be computationally in-

tractable when P(G) is large. Following Ying et al. (2019),

we relax it by using a mask M with values in [0; 1] over the

set of paths, and replace the number of paths |P ′| by the

ℓ1-norm of M , which is known to have a sparsity-inducing

effect (Tibshirani, 1996). The problem then becomes

min
M∈[0;1]|Pk(G)|

L(ŷ, 〈Ψ1(Pk(G)⊙M), w〉)+µ‖M‖1, (18)

where Pk(G) ⊙M denotes the use of M(p)a(p) instead

of a(p) in the computation of Ψ1 for all p in Pk(G). Even

though the problem is non-convex due to the non-linear

mapping Ψ1, it may still be solved approximately by using

projected gradient-based optimization techniques.

Interpreting multilayer models. By noting that Ψj(G)
only depends on the union of the set of paths Pkl

(G), for all

layers l ≤ j, we introduce a collection of masks Ml at each

layer, and then optimize the same objective as (18) over all

masks (Ml)l=1,...,j , with the regularization
∑j

l=1 ‖Ml‖1.
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5. Experiments

We evaluate GCKN and compare its variants to state-of-

the-art methods, including GNNs and graph kernels, on

several real-world graph classification datasets, involving

either discrete or continuous attributes.

5.1. Implementation Details

We follow the same protocols as (Du et al., 2019; Xu et al.,

2019), and report the average accuracy and standard devi-

ation over a 10-fold cross validation on each dataset. We

use the same data splits as Xu et al. (2019), using their code.

Note that performing nested 10-fold cross validation would

have provided better estimates of test accuracy for all mod-

els, but it would have unfortunately required 10 times more

computation, which we could not afford for many of the

baselines we considered.

Considered models. We consider two single-layer mod-

els called GCKN-walk and GCKN-path, corresponding to

the continuous relaxation of the walk and path kernels re-

spectively. We also consider the two-layer model GCKN-

subtree introduced in Section 3.3 with path length k2 = 0,

which accounts for subtrees. Finally, we consider a 3-layer

model GCKN-3layers with path length k2 = 2 (which enu-

merates paths with three vertices for the second layer), and

k3=0, which introduces a non-linear mapping before global

pooling, as in GCKN-subtree. We use the same parame-

ters αj and qj (number of filters) across layers. Our com-

parisons include state-of-the-art graph kernels such as WL

kernel (Shervashidze et al., 2011), AWL (Ivanov & Bur-

naev, 2018), RetGK (Zhang et al., 2018b), GNTK (Du et al.,

2019), WWL (Togninalli et al., 2019) and recent GNNs in-

cluding GCN (Kipf & Welling, 2017), PatchySAN (Niepert

et al., 2016) and GIN (Xu et al., 2019). We also include a

simple baseline method LDP (Cai & Wang, 2018) based on

node degree information and a Gaussian SVM.

Learning unsupervised models. Following Mairal

(2016), we learn the anchor points Zj for each layer

by K-means over 300000 extracted paths from each

training fold. The resulting graph representations are then

mean-centered, standardized, and used within a linear SVM

classifier (11) with squared hinge loss. In practice, we use

the SVM implementation of the Cyanure toolbox (Mairal,

2019).1 For each 10-fold cross validation, we tune the

bandwidth of the Gaussian kernel (identical for all layers),

pooling operation (local (13) or global (14)), path size k1
at the first layer, number of filters (identical for all layers)

and regularization parameter λ in (11). More details are

provided in Appendix B, as well as a study of the model

robustness to hyperparameters.

1http://julien.mairal.org/cyanure/

Learning supervised models. Following Xu et al. (2019),

we use an Adam optimizer (Kingma & Ba, 2015) with the

initial learning rate equal to 0.01 and halved every 50 epochs,

and fix the batch size to 32. We use the unsupervised model

based described above for initialization. We select the best

model based on the same hyperparameters as for unsuper-

vised models, with the number of epochs as an additional

hyperparameter as used in Xu et al. (2019). Note that we do

not use DropOut or batch normalization, which are typically

used in GNNs such as Xu et al. (2019). Importantly, the

number of filters needed for supervised models is always

much smaller (e.g., 32 vs 512) than that for unsupervised

models to achieve comparable performance.

5.2. Results

Graphs with categorical node labels We use the same

benchmark datasets as in Du et al. (2019), including 4 bio-

chemical datasets MUTAG, PROTEINS, PTC and NCI1

and 3 social network datasets IMDB-B, IMDB-MULTI and

COLLAB. All the biochemical datasets have categorical

node labels while none of the social network datasets has

node features. We use degrees as node labels for these

datasets, following the protocols of previous works (Du

et al., 2019; Xu et al., 2019; Togninalli et al., 2019). Sim-

ilarly, we also transform all the categorical node labels to

one-hot representations. The results are reported in Table 1.

With a few exceptions, GCKN-walk has a small edge on

graph kernels and GNNs—both implicitly relying on walks

too—probably because of the soft structure comparison al-

lowed by the Gaussian kernel. GCKN-path often brings

some further improvement, which can be explained by its

increasing the expressivity. Both multilayer GCKNs bring a

stronger increase, whereas supervising the filter learning of

GCKN-subtree does not help. Yet, the number of filters se-

lected by GCKN-subtree-sup is smaller than GCKN-subtree-

unsup (see Appendix B), allowing for faster classification

at test time. GCKN-3layers-unsup performs in the same

ballpark as GCKN-subtree-unsup, but benefits from lower

complexity due to smaller path length k1.

Graphs with continuous node attributes We use 4 real-

world graph classification datasets with continuous node

attributes: ENZYMES, PROTEINS full, BZR, COX2. All

datasets and size information about the graphs can be found

in Kersting et al. (2016). The node attributes are prepro-

cessed with standardization as in Togninalli et al. (2019).

To make a fair comparison, we follow the same protocol

as used in Togninalli et al. (2019). Specifically, we per-

form 10 different 10-fold cross validations, using the same

hyperparameters that give the best average validation ac-

curacy. The hyperparameter search grids remain the same

as for training graphs with categorical node labels. The

results are shown in Table 2. They are comparable to the

http://julien.mairal.org/cyanure/
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Table 1. Classification accuracies on graphs with discrete node attributes. The accuracies of other models are taken from Du et al. (2019)

except LDP, which we evaluate on our splits and for which we tune bin size, the regularization parameter in the SVM and Gaussian kernel

bandwidth. Note that RetGK uses a different protocol, performing 10-fold cross-validation 10 times and reporting the average accuracy.

Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M COLLAB

size 188 1113 344 4110 1000 1500 5000

classes 2 2 2 2 2 3 3

avg ♯nodes 18 39 26 30 20 13 74

avg ♯edges 20 73 51 32 97 66 2458

LDP 88.9± 9.6 73.3± 5.7 63.8± 6.6 72.0± 2.0 68.5± 4.0 42.9± 3.7 76.1± 1.4

WL subtree 90.4± 5.7 75.0± 3.1 59.9± 4.3 86.0± 1.8 73.8± 3.9 50.9± 3.8 78.9± 1.9
AWL 87.9± 9.8 - - - 74.5± 5.9 51.5± 3.6 73.9± 1.9
RetGK 90.3± 1.1 75.8± 0.6 62.5± 1.6 84.5± 0.2 71.9± 1.0 47.7± 0.3 81.0± 0.3
GNTK 90.0± 8.5 75.6± 4.2 67.9± 6.9 84.2± 1.5 76.9± 3.6 52.8± 4.6 83.6± 1.0

GCN 85.6± 5.8 76.0± 3.2 64.2± 4.3 80.2± 2.0 74.0± 3.4 51.9± 3.8 79.0± 1.8
PatchySAN 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9 71.0± 2.2 45.2± 2.8 72.6± 2.2
GIN 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9

GCKN-walk-unsup 92.8± 6.1 75.7± 4.0 65.9± 2.0 80.1± 1.8 75.9± 3.7 53.4± 4.7 81.7± 1.4
GCKN-path-unsup 92.8± 6.1 76.0± 3.4 67.3± 5.0 81.4± 1.6 75.9± 3.7 53.0± 3.1 82.3± 1.1
GCKN-subtree-unsup 95.0± 5.2 76.4± 3.9 70.8± 4.6 83.9± 1.6 77.8± 2.6 53.5± 4.1 83.2± 1.1
GCKN-3layer-unsup 97.2± 2.8 75.9± 3.2 69.4± 3.5 83.9± 1.2 77.2± 3.8 53.4± 3.6 83.4± 1.5

GCKN-subtree-sup 91.6± 6.7 76.2± 2.5 68.4± 7.4 82.0± 1.2 76.5± 5.7 53.3± 3.9 82.9± 1.6

ones obtained with categorical attributes, except that in 2/4

datasets, the multilayer versions of GCKN underperform

compared to GCKN-path, but they achieve lower computa-

tional complexity. Paths were indeed presumably predictive

enough for these datasets. Besides, the supervised version

of GCKN-subtree outperforms its unsupervised counterpart

in 2/4 datasets.

Table 2. Classification accuracies on graphs with continuous at-

tributes. The accuracies of other models except GNTK are taken

from Togninalli et al. (2019). The accuracies of GNTK are ob-

tained by running the code of Du et al. (2019) on a similar setting.

Dataset ENZYMES PROTEINS BZR COX2

size 600 1113 405 467

classes 6 2 2 2

attr. dim. 18 29 3 3

avg ♯nodes 32.6 39.0 35.8 41.2

avg ♯edges 62.1 72.8 38.3 43.5

RBF-WL 68.4± 1.5 75.4± 0.3 81.0± 1.7 75.5± 1.5
HGK-WL 63.0± 0.7 75.9± 0.2 78.6± 0.6 78.1± 0.5
HGK-SP 66.4± 0.4 75.8± 0.2 76.4± 0.7 72.6± 1.2
WWL 73.3± 0.9 77.9± 0.8 84.4± 2.0 78.3± 0.5
GNTK 69.6± 0.9 75.7± 0.2 85.5± 0.8 79.6± 0.4

GCKN-walk-unsup 73.5± 0.5 76.5± 0.3 85.3± 0.5 80.6± 1.2
GCKN-path-unsup 75.7± 1.1 76.3± 0.5 85.9± 0.5 81.2± 0.8
GCKN-subtree-unsup 74.8± 0.7 77.5± 0.3 85.8± 0.9 81.8± 0.8
GCKN-3layer-unsup 74.6± 0.8 77.5± 0.4 84.7± 1.0 82.0± 0.6

GCKN-subtree-sup 72.8± 1.0 77.6± 0.4 86.4± 0.5 81.7± 0.7

5.3. Model Interpretation

We train a supervised GCKN-subtree model on the Muta-

genicity dataset (Kersting et al., 2016), and use our method

described in Section 4 to identify important subgraphs. Fig-

ure 3 shows examples of detected subgraphs. Our method

is able to identify chemical groups known for their mu-

tagenicity such as Polycyclic aromatic hydrocarbon (top

row left), Diphenyl ether (top row middle) or NO2 (top

row right), thus admitting simple model interpretation. We

also find some groups whose mutagenicity is not known,

such as polyphenylene sulfide (bottom row middle) and 2-

chloroethyl- (bottom row right). More details and additional

results are provided in Appendix B.

GCKN

Original

GCKN

Original

Figure 3. Motifs extracted by GCKN on the Mutagenicity dataset.
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