
A. Derivations
A.1. Proof of Lemma 1

Proof. Under the assumptions that
`(y,xt; θ) := − log pθ(y|t,x);

and the prior p(t|x) is a uniform distribution over t, the β-VAE objective can be written as

Jβ-VAE(θ, qφ;x,y) :=

Eqφ log pθ(y|t,x)− βKL(qφ(t)||p(t|x))

=− Eqφ`(y,xt; θ)− βEqφ(t) log
qφ(t)

p(t|x)
=− Eqφ`(y,xt; θ)− βEqφ(t) log qφ(t)
+ βEqφ(t) log p(t|x)

=−
(
Eqφ`(y,xt; θ)− βH(qφ)

)
+ βEqφ(t) log

1

T
=− L(θ, qφ;x,y)− β log T.

Since the second term −β log T is a constant, maximizing Jβ-VAE(θ, qφ;x,y) is equivalent to minimizing L(θ, qφ;x,y).

A.2. Equivalence of reverse KL and maximum-entropy RL

The variational distribution qφ actually depends on the input instance x. For notation simplicity, we only write qφ(t) instead
of qφ(t|x).

min
φ

KL(qφ(t)||q∗θ(t|y,x)) (A.1)

=min
φ
−

T∑
t=1

qφ(t) log q
∗
θ(t|y,x))−H(qφ) (A.2)

=min
φ
−

T∑
t=1

qφ(t) log pθ(y|t,x)β)−H(qφ) (A.3)

+

T∑
t=1

qφ(t) log

T∑
τ=1

pθ(y|τ,x)β (A.4)

=min
φ
−

T∑
t=1

qφ(t) log pθ(y|t,x)β −H(qφ) (A.5)

+

T∑
t=1

qφ(t)C(x,y) (A.6)

=min
φ
−

T∑
t=1

qφ(t) log pθ(y|t,x)β −H(qφ) (A.7)

+ C(x,y) (A.8)

=min
φ
−

T∑
t=1

qφ(t) log pθ(y|t,x)β −H(qφ) (A.9)

=max
φ

T∑
t=1

qφ(t) log pθ(y|t,x)β +H(qφ) (A.10)

=max
φ

T∑
t=1

qφ(t)β`(y,xt; θ) +H(qφ) (A.11)

=max
φ

Et∼qφ [−β`(y,xt; θ)− log qφ(t)] (A.12)

Define the action as at ∼ πt = πφ(x,xt), the reward function as

r(xt, at;y) :=

{
−β`(y,xt; θ) if at = 1 (i.e. stop),
0 if at = 0 (i.e. continue),

and the transition probability as

P (xt+1|xt, at) =

{
1 if xt+1 = Fθ(xt) and at = 0,

0 else.

Then the above optimization can be written as

max
φ

Et∼qφ [−β`(y,xt; θ)− log qφ(t)] (A.13)

=max
φ

Eπφ
T∑
t=1

r(xt, at; y)− log πt(at|x,xt) (A.14)

=max
φ

Eπφ
T∑
t=1

[r(xt, at; y) +H(πt)] . (A.15)

B. Experiment Details
B.1. Learning To Learn: Sparse Recovery

Synthetic data. We follow Chen et al. (2018) to choose m = 250, n = 500, sample the entries of A i.i.d. from the standard
Gaussian distribution, i.e., Aij ∼ N (0, 1

m), and then normalize its columns to have the unit `2 norm. To generate y∗, we
decide each of its entry to be non-zero following the Bernoulli distribution with pb = 0.1. The values of the non-zero entries
are sampled from the standard Gaussian distribution. The noise ε is Gaussian white noise. The signal-to-noise ratio (SNR)
for each sample is uniformly sampled from 20, 30 and 40. For the testing phase, a test set of 3000 samples are generated,
where there are 1000 samples for each noise level. This test set is fixed for all experiments in our simulations.

Evaluation metric. The performance is evaluated by NMSE (in dB), which is defined as 10 log10(
∑N
i=1 ‖x̂

i−x∗,i‖22∑N
i=1 ‖x∗,i‖22

) where

x̂i is the estimator returned by an algorithm or deep model.

B.2. Task-imbalanced Meta Learning

B.2.1. DETAILS OF SETUP

Hyperparameters We train MAML with batch size 16 on Omniglot imbalanced and batch size 2 on MiniImagenet
imbalanced datasets. In both scenario we train with 60000 of mini-batch updates for the outer-loop of MAML. We report the
results with 5 inner SGD steps for Omniglot imbalanced and 10 inner SGD steps for MiniImagenet imbalanced with other
best hyperparameters suggested in (Finn et al., 2017), respectively. For MAML-stop we run 10 inner SGD steps for both
datasets, with the inner learning rate to be 0.1 and 0.05 for Omniglot and MiniImagenet, respectively. The outer learning
rate for MAML-stop is 1e−4 as we use batch size 1 for training.

When generating each meta-training dataset, we randomly select the number of observations within k1 to k2 for k1-k2-shot
learning. The number of observations in test set is always kept the same within each round of experiment.

B.2.2. MEMORY EFFICIENT IMPLEMENTATION

As our MAML-stop allows the automated decision of optimal stopping, it is preferable that the maximum number of SGD
updates per each task is set to a larger number to fully utilize the capacity of the approach. This brings the challenge during
training, as the loss on each meta-test set during training is required for each single inner update step. That is to say, if we
allow maximumly 10 steps of inner SGD update, then the memory cost for running CNN prediction on meta-test set is 10x
larger than vanilla MAML. Thus a straightforward implementation will not give us a feasible training mechanism.

To make the training of MAML-stop feasible on a single GPU, we utilize the following techniques:

• We use stochastic EM for learning the predictive model, as well as the stopping policy. Specifically, we sample
t ∼ q∗θ(·|y,x) in each round of training, and only maximize pθ(y|t,x) in this round.

• As the auto differentiation in PyTorch is unable to distinguish between ‘no gradient’ and ‘zero gradient’, it causes extra
storage for the unnecessary gradient computation. To overcome this, we first calculate q∗θ(t|y,x) for each t without any
gradient storage (which corresponds to no grad() in PyTorch), then recompute pθ(y|t,x) for the sampled t.

With the above techniques, we can train MAML-stop almost as (memory) efficient as MAML.

B.2.3. STANDARD META-LEARNING TASKS

For completeness, we also include the MAML-stop in the standard setting of few-shot learning. We mainly compared with
the vanilla MAML for the sake of ablation study.

Hyperparameters The hyperparameter setup mainly follows the vanilla MAML paper. For both MAML and MAML-
stop, we use the same batch size, number of training epochs and the learning rate. For Omniglot 20-way experiments and
MiniImagenet 5-way experiments, we tune the number of unrolling steps in {5, 6, . . . , 10}, β in {0, 0.1, 0.01, 0.001} and
the learning rate of inner update in {0.1, 0.05}. We simply use grid search with a random held-out set with 600 tasks to
select the best model configuration.

B.3. Image Denoising

B.3.1. IMPLEMENTATION DETAILS

When training the denoising models, the raw images were cropped and augmented into 403K 50 ∗ 50 patchs. The training
batch size was 256. We used Adam optimizer with the initial learning rate as 1e − 4. We first trained the deep learning
model with the unweighted loss for 50 epochs. Then, we further train the model with the weighted loss for another 50
epoches. After hyper-parameter searching, we set the exploration coefficient β as 0.1. When training the policy network, we
used the Adam optimizer with the learning rate as 1e− 4. We reused the above hyper-parameters during joint training.

B.3.2. VISUALIZATION

Ground Truth Noisy Image BM3D

WNNM DnCNN DnCNN-stop
Figure B.1. Denoising results of an image with noise level 65.

Ground Truth Noisy Image BM3D

WNNM DnCNN DnCNN-stop
Figure B.2. Denoising results of an image with noise level 65.

B.4. Computing infrastructure

Most of the experiments were run a hetergeneous GPU cluster. For each experiment, we typically used one or two V100
cards, with the typical CPU processor as Intel Xeon Platinum 8260L. We assigned 6 threads and 64 GB CPU memory for
each V100 card to maximize the utilization of the card.

References
Chen, X., Liu, J., Wang, Z., and Yin, W. Theoretical linear convergence of unfolded ista and its practical weights and

thresholds. In Advances in Neural Information Processing Systems, pp. 9061–9071, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

	Derivations
	Proof of Lemma 1
	Equivalence of reverse KL and maximum-entropy RL

	Experiment Details
	Learning To Learn: Sparse Recovery
	Task-imbalanced Meta Learning
	Details of setup
	Memory efficient implementation
	Standard meta-learning tasks

	Image Denoising
	Implementation Details
	Visualization

	Computing infrastructure

