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A. Proof of Claim 2
Proof. For p = 3, the desired equation holds, since the matrix A> becomes just

A> =
(

1 1
1 0

)
,

with characteristic polynomial (λ − 1)λ − 1 = λ2 − λ − 1. Let I denote the identity matrix of size (p − 1) × (p − 1).
Assume p ≥ 5. We consider the matrix:

A> − λI =
(
A11 A12
A21 A22

)

where A11 :=


1− λ 0 0 0 0 . . . 0

0 −λ 0 0 0 . . . 0
0 0 −λ 0 0 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . −λ

 , A12 :=


1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1

 ,

A21 :=


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1
1 1 1 1 . . . 1 1

 , and A22 :=


−λ 0 0 . . . 0 0
0 −λ 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . −λ 0
0 0 0 . . . 0 −λ

 .

Observe that λ = 0 is not an eigenvalue of the matrix A>. Suppose that A11, A12, A21, A22 are the four block submatrices
of the matrix above. Using Schur’s complement, we get that det(A> − λI) = det(A22)× det(A11 −A12A

−1
22 A21), where

det(A22) = (−λ)
p−1

2 and
λ

p−1
2 det(A11 −A12A

−1
22 A21) =

λ− λ2 1 0 0 0 . . . 0
0 −λ2 1 0 0 . . . 0
0 0 −λ2 1 0 . . . 0
...

...
...

...
...

...
...

1 1 1 1 . . . 1 −λ2 + 1

 .

We can multiply the first row by 1
λ(λ−1) , the second row by 1

λ2 + 1
λ2λ(λ−1) , the third row by 1

λ2 + 1
λ4 + 1

λ4λ(λ−1) ,. . . , the
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i-th row by
∑i−1
j=1

1
λ2j + 1

λ2(i−1)·λ(λ−1) (and so on) and add them to the last row. Let B be the resulting matrix:

B =


λ− λ2 1 0 0 0 . . . 0

0 −λ2 1 0 0 . . . 0
0 0 −λ2 1 0 . . . 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 K

 ,

where K = −λ2 + 1 +
∑ p−5

2
j=1

1
λ2j + 1

λp−5·λ(λ−1) . It is clear that the equation det(B) = 0 has the same roots as
det(A> − λI) = 0. Since B is an upper triangular matrix, it follows that

det(B) = (−1)
p−5

2 λ(λ− 1)λp−5 ·
(
−λ2 + 1 +

∑ p−5
2

j=1
1
λ2j + 1

λp−5·λ(λ−1)

)
.

We conclude that the eigenvalues of A> (and hence of A) must be roots of

(λp−3 − λp−4)

1− λ2 +

p−5
2∑
j=1

1
λ2j

+ 1 = −λp−1 + λp−2 + λp−3 − λp−4 +

p−5
2∑
j=1

λp−3−2j − λp−4−2j + 1

=− λp−1 + λp−2 +
p−3∑
j=0

(−1)jλj = −λ
p + λp−2

λ+ 1 + 1 + λp−2

λ+ 1 = −λ
p + 2λp−2 + 1
λ+ 1 ,

and the claim follows.

B. Proof of Corollary 3.5
Proof. We first need to relate the spectral radius with the number of oscillations. We follow the idea from (Chatziafratis
et al., 2020) which concludes that δt0 ≥ ‖At‖∞ ≥ spec(At) = spec(A)t = ρtp (where spec(A) denotes the spectral radius),
that is the growth rate of the number of oscillations of compositions of f is at least ρp.

Assume 1 < p be an odd number. It suffices to show that ρp+2 < ρp (and then use induction). Observe that λp+2−2λp−1 =
λ2(λp − 2λp−2 − 1) + λ2 − 1. Therefore

0 = qp+2(ρp+2) = ρ2
p+2qp(ρp+2) + ρ2

p+2 − 1,

hence since ρp+2 > 1 we conclude that qp(ρp+2) < 0. Since limλ→∞ qp(λ) = +∞, by Bolzano’s theorem it follows that
qp has a root in the interval (ρp+2,+∞). Thus ρp > ρp+2. One can also see that

√
2p − 2

√
2p−2 − 1 = −1 < 0 and

2p − 2 · 2p−2 − 1 > 0, thus from Bolzano’s again, it follows that ρp >
√

2 for all p.

C. Proof of Lemma 3.6
Proof. It suffices to show that f has period p (the Lipschitz constant is trivially ρp). We start from z0 = 0 and we get
zt = f(zt−1) = ρp|zt−1| − 1 for 1 ≤ t ≤ p. Observe that z1 = −1, z2 = ρp − 1 > 0. Set qi(λ) = λi−2λi−2−1

λ+1 .
First, we shall show that for t ∈ {3, . . . , p − 1}, we have zt ≤ 0 and that zt = qt(ρp), whereas for t even, we have
zt = −qt−1(ρp)ρp − 1 in the interval above.

For t = 3 we get that z3 = ρ2
p − ρp − 1 = q3(ρp) ≤ 0 because we showed ρp is decreasing in p and moreover holds

q3(ρ3) = 0. Since z3 ≤ 0 we get that z4 = −ρpz3 − 1 = q3(ρp)ρp − 1. Let us show that z4 ≤ 0. Observe that
z4 = −ρ3

p + ρ2
p + ρp − 1 = (ρp − 1)(1− ρ2

p) < 0 (since ρp >
√

2).

We will use induction. Assume now, that we have the result for some t even, we need to show that zt+1 = qt+1(ρp), zt+2 =
−qt+1(ρp)ρp − 1 and moreover zt+1, zt+2 ≤ 0.

By induction, we have that zt−1, zt ≤ 0 and zt = −qt−1(ρp)ρp − 1, hence zt+1 = −ρp(−qt−1(ρp)ρp − 1) − 1 =
ρt+1

p −2ρt
p−ρ

2
p

ρp+1 + ρp − 1 = qt+1(ρp). Since ρp is decreasing in p and qt+1(ρt+1) = 0, we conclude that zt+1 ≤ 0. Since
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zt+1 ≤ 0, we get that zt+2 = −ρpzt+1 − 1 = −ρpqt+1(ρp) − 1. To finish the claim, it suffices to show that zt+2 ≤ 0.
Observe that

−ρpqt+1(ρp)− 1 = −ρp

ρtp − ρt−1
p −

t−2∑
j=0

(−ρp)j
− 1

= −ρt+1
p + ρtp −

t−1∑
j=1

(−ρp)j − 1

= −2ρt+1
p + 2ρtp + qt+1(ρp)

ρp + 1 .

The term −2(ρt+1
p − ρtp) < 0 (since ρp > 1) and moreover qt+1(ρp)

ρp+1 ≤ 0 because ρp is decreasing in p and t+ 1 ≤ p− 1.
Hence zt+2 ≤ 0 and the induction is complete.

From the above, we conclude that zp = −ρpzp−1 − 1 = qp(ρp) = 0, thus z0, ..., zp−1 form a cycle. If we show that
z0, ..., zp−1 are distinct, the proof of the lemma follows.

First observe that qt(λ) = λt−2λt−2−1
λ+1 is strictly increasing in t as long as λ >

√
2 (by computing the derivative). Therefore

it holds that z3 < z5 < . . . < zp = 0 (for all the odd indices) and also z1 < z3. Furthermore, −λqt(λ)− 1 is decreasing in
t for λ >

√
2, therefore we conclude z4 > . . . > zp−1 (and also z2 > 0 ≥ z4).

We will show that z3 > z4 and finally zp−1 > −1 = z1 and the lemma will follow. Recall z3 = ρ2
p − ρp − 1 and

z4 = −ρ3
p + ρ2

p + ρp − 1. Equivalently, we need to show that ρ2
p − ρp − 1 > −ρ3

p + ρ2
p + ρp − 1 or ρ3

p − 2ρp > 0 which
holds because ρp >

√
2. Finally zp−1 = −ρpzp−2 − 1 > −1 since zp−2 < zp = 0.

D. Sensitivity to Lipschitzness and separation examples based on periods
We consider three regimes. The first regime corresponds to the functions that appear in Lemma 3.2, where L = ρp and
ρp ∈ [

√
2, φ], where φ = 1+

√
5

2 ≈ 1.618 is the golden ratio. The second regime corresponds to the case when L > φ and
the third regime corresponds to the case when L <

√
2. We can see in Figure 1 that the function f(x) := 2|x| − 1 has

period 3 and a Lipschitz constant of L = 2, while in Figure 2, we can see that the function f(x) := 1.2|x| − 1, does not
have any odd period and L = 1.2.

Figure 1 and Figure 2 correspond to cases where the Lipschitz constant of the function does not match ρp.

• When
√

2 ≤ L ≤ φ, we see from Figure 3, how small differences in the values of the slope can lead to the existence of
different (prime) periods, which consequently lead to different depth-width trade-offs.

• When L > φ, we can see from Figure 1 that L = 2 and also the growth rate of oscillations is 2. This means that L = ρ
and that L1 separation is achievable. Note that period 3 is present in the tent map, so ρ3 = φ for this case.

• When L <
√

2, we can see from Figure 2 that the oscillations do not grow exponentially with compositions and that
the existing ones are of small magnitude, which means that the L1 error can be made arbitrarily small. Observe here
that no odd period is present in the function (as this would imply that L ≥ ρ ≥

√
2).
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(a) Graph of f(x) intersected with y = x, to identify
period 1 points.
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(b) Graph of f3(x) intersected with y = x, to identify
period 3 points.
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(c) Graph of f5(x) intersected with y = x, to identify
period 5 points.
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(d) Graph of f7(x) intersected with y = x, to identify
period 7 points.

Figure 1. Here L = 2, and this function has period 3. However, the growth rate of oscillations is exactly 2 and since we have equality
L = ρ we get L1 separations even though the largest root ρ3 = φ < 2.
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(a) Graph of f(x) intersected with y = x, to identify
period 1 points.
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(b) Graph of f3(x) intersected with y = x, to identify
period 3 points.
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(c) Graph of f5(x) intersected with y = x, to identify
period 5 points.
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(d) Graph of f7(x) intersected with y = x, to identify
period 7 points.

Figure 2. Here L = 1.2 that corresponds to the regime where L <
√

2. It follows that this function cannot have any odd period (because
then L ≥ ρ ≥

√
2). Observe that the oscillations do not grow exponentially fast and they shrink in area, hence no L1 separation is

achievable.
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(a) Graph of f(x) is shown. The regime
√

2 ≤ L ≤ φ
with small slope variations.
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(b) Graph of f3(x). When L = φ, period 3 is present
(trade-offs with base φ).
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(c) Graph of f5(x). WhenL = 1.513, period 5 is present
(trade-offs with base 1.513).
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(d) Graph of f7(x). When L = 1.465, period 7 is
present (trade-offs with base 1.465).

Figure 3. Functions parameterized by ρp for L = ρp and ρ = 1.618, 1.513, 1.465 with periods 3, 5 and 7 respectively (see intersection
with y = x). Slight changes lead to different trade-offs.


