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A. Game Theory
In the context of this paper, a strategy of a primitive ω is equivalent to its bidding policy ψ. A strategy profile is the
set of strategies ψ1:N for all primitives ω1:N . For emphasis, we equivalently write the utility U i

(
ψ1:N

)
for player i as

U i
(
ψi;ψ−i

)
, where ψi is the strategy for player i and ψ−i is the strategy for all other players.

Definition A.1. Best Response: A strategy ψi is the best response for player i if given the strategies of all other players
ψ−i, ψi maximizes player i’s utility U i

(
ψi;ψ−i

)
.

Definition A.2. Nash Equilibrium: A strategy profile is in a Nash equilibrium if given the strategies of other players, each
player’s strategy is a best response.

Definition A.3. Dominant Strategy Equilibrium: A strategy ψ is a dominant strategy if it is the best response for a player
no matter what strategies the other players play. A dominant strategy equilibrium is the unique Nash equilibrium where
every player plays their dominant strategy.

Definition A.4. Weakly Dominated Strategies: Consider player i playing strategy ψi. Let the strategies for all other
players be ψ−i. A strategy ψi weakly dominates ψ̃i if for all strategies of other players ψ−i, U i(ψ;ψ−i) ≥ U i(ψ̃;ψ−i),
and there exists a ψ̃−i such that U i(ψi; ψ̃−i) > U i(ψ̃i; ψ̃−i). ψ is dominated if there exists a strategy which dominates it.

Definition A.5. Iterated Deletion of Dominated Strategies: Iterated deletion of dominated strategies repeatedly (a)
removes all dominated strategies for each player, then (b) updates the dominance relation (as now there are fewer strategies
of other players to consider). It terminates when all remaining strategies are undominated.

Vickrey Auction The Vickrey Auction is a type of single-item sealed bid auction. It is single-item, which means there is a
single auction item up for sale. It is sealed-bid, which means that the players have no knowledge of each others’ bids.

B. Societal Decision-Making Framework

Abstraction Level Global Local

Agent Society Ω = {ωi}Ni=1 Primitive ωi =
(
ψi, φi

)
Environment global MDP local auction at state s

State Space S the single state {s}

Action Space the indices of the primitives A = {1, 2, ..., N} the space of non-negative bids B = R≥0

Objective J(πΩ) = Eτ∼pπ(τ)

[∑T
t=0 γ

tr (st, ωt)
]

U is(ψ
1:N ) = vis ·Xi(b)− P i(b)

Problem maxπΩ
J(πΩ) maxψi U

i
s(ψ

1:N )

Table 1. Societal Decision-Making. This table specifies the agent, environment, objective, and problem at both the global and local
levels of abstraction in the societal-decision-making framework.

Though both the monolithic decision-making framework as well as the societal decision-making (in which the transformations
φ correspond to literal actions) can both be used for reinforcement learning, the key difference between the two is that the
learnable parameters are trained to optimize the objective of the MDP in the monolithic framework, whereas the learnable
parameters are trained to optimize the objective of the auction at each state of the MDP in the societal framework.

C. The Cloned Vickrey Society as a Solution to Societal Decision-Making
The MDP specifies the environment. The society specifies the abstract agent that interacts in the environment. The Market
MDP is a global MDP governed by a specific type of auction mechanism (the Vickrey mechanism) that is agnostic to the
architecture of the society that interacts with it. A cloned society is a specific architecture of society (one with redundant
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primitives) that is agnostic to the auction mechanism governing the global MDP. The cloned Vickrey society specifies a
specific architecture of a society (a cloned society) that interacts with a specific type of global MDP (a Market MDP).

C.1. Proofs

Proposition 5.1. Assume at each state s the local auction allocates Xi(b) = 1 if i wins and Xi(b) = 0 if i loses. Then all
primitives ωi bidding their optimal societal Q-values Q∗Ω(s, ωi) collectively induce an optimal global policy.

Proof. For state s, the index of the primitive with the highest bid is equal to the primitive with the highest optimal societal
Q-value for that state. That is, arg maxi b

i
t = arg maxiQ

∗
Ω(st, ω

i
t). Thus, selecting the highest-bidding primitive to win by

definition follows the optimal policy for the Market MDP.

Theorem 5.2 If the valuations vis for each state s are the optimal societal Q-values Q∗Ω(s, ωi), then the society’s optimal
global policy coincides with the primitives’ unique dominant strategy equilibrium under the Vickrey mechanism.

Proof. By defining the valuation of each primitive ωi to be its optimal societal Q-value Q∗Ω(st, ω
i
t), the DSIC property of

the Vickrey auction guarantees the dominant strategy equilibrium is to bid exactly Q∗Ω(st, ω
i
t). The welfare-maximization

property of the Vickrey auction guarantees if all primitives played their dominant strategies, then the primitive with the
highest valuation wins, so specifying the valuations such that activating the primitive with the highest valuation at time t
follows the optimal global policy at that timestep.

Proposition 5.3. In a Market MDP, it is a Nash equilibrium for every primitive to bid Q∗Ω(s, ωi). Moreover, if the Market
MDP is finite horizon, then bidding Q∗Ω(s, ωi) is the unique Nash equilibrium that survives iterated deletion of weakly
dominated strategies.

Proof. Consider time-step t. Assuming that every other primitive at every other time-step bids Q∗Ω, the best response under
the Vickrey mechanism for primitive ωi at timestep t would be to truthfully bid r(st, ωit) + γ ·maxk Q

∗
Ω(st+1, ω

k), which
by definition of the Bellman optimality equations (Bellmann, 1957) is Q∗Ω(st, ω

i
t).

For the finite horizon case, we proceed by backwards induction.

Base Case: The last time-step T is a bandit problem where Q∗Ω(sT , ω
i
T ) = r(sT , ω

i
T ), so by Theorem 5.2 bidding

Q∗Ω(st, ω
i
t) is the unique dominant strategy.

Inductive Hypothesis: In time-step t+ 1, the strategy which survives iterated deletion of dominated strategies is to bid the
optimal societal Q-value.

Inductive Step: By the Inductive Hypothesis, in time-step t+ 1, all primitives bid their optimal societal Q-values if they
use any strategy which survives iterated deletion of dominated strategies. This means that in time-step t, each primitive’s
valuation for winning is given exactly by their optimal societal Q-value: r(st, ωit) + γ ·maxk Q

∗
Ω(st+1, ω

k). Therefore, it
is a dominant strategy to bid Q∗Ω, and all other bids are dominated (and therefore removed).

Lemma 5.4 For a cloned society, at the Nash equilibrium specified in Proposition 5.3, what the winning primitive ω̂i at
time t receives from the winning primitive ω̂k at t+ 1 is exactly what ω̂k pays: bkst+1

.

Proof. If two primitives have the same φ, then their societal Q-values are identical, so their optimal strategies ψ are identical.
Then at the Nash equilibrium specified in Proposition 5.3, their bids are also identical.

Theorem 5.5. Define a cloned Vickrey society as a cloned society that solves a Market MDP. Then it is a Nash equilibrium
for every primitive in the cloned Vickrey society to bid Q∗Ω(s, ωi). In addition, the price that the winning primitive pays for
winning is equivalent to what it bid.

Proof. (1) is by Proposition 5.3 and (2) is by Lemma 5.4.
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D. Decentralized Reinforcement Learning Algorithms for the Cloned Vickrey Society
Section 5 presented the cloned Vickrey society as a concrete instantiation of the societal decision-making framework whose
optimal global policy emerges as a Nash equilibrium of self-interested primitives engaging in local economic transactions.
Section 6 removed the assumption that primitives know their valuations and presented decentralized RL algorithms for
learning these valuations through interaction.

In this paper, we specified the class of decentralized RL algorithms by the learning objective – the set of local auction utilities
at every state. We present in Algorithm 1 the algorithm pseudocode for an on-policy variant of such a decentralized RL
algorithm, but the learning objective is in principle agnostic to the RL algorithm use to train each primitive. However, simply
specifying only one variant within this class of algorithm in this paper leaves much to still be explored. Adapting methods
developed in the monolithic framework, including bandit algorithms, off-policy algorithms, and on-policy algorithms, for
optimizing the local auction utilities the would be an interesting direction for future work.

Algorithm 1 On-Policy Decentralized RL

1: Initialize: Primitives ω1:N , Memory m1:N , RL update rule f
2: while True do
3: . Sample Episode
4: while episode has not terminated do
5: ω1:N observe state s
6: ω1:N produce bids b1

s, ...,b
N
s

7: Auction selects winner ω̂ with transformation φ̂T
8: ω̂ produces s′ = φ̂T (s)
9: Record environment reward r(s, ω̂)

10: s← s′

11: end while
12: . Compute Utilities
13: for each time-step t until the end of sampled episode do
14: ω̂t gets Û i

st(ω
1:N ) = r(st, ω̂t) + γ ·max

k
bk
st+1
−max

j 6=i
bj
st

15: Losers ωj
t get U j

st(ω
1:N ) = 0

16: for all primitives ωi do
17: Primitive ωi

t stores (st,bi
st , st+1, U

i
st(ω

i
t)) into mi

18: end for
19: end for
20: . Update
21: if time to update then
22: for all primitives ωi do
23: Update primitive ωi with update rule f with memory mi

24: end for
25: end if
26: end while

E. Implementations of an On-Policy Decentralized Reinforcement Learning Algorithm
Stochastic policy gradient In this paper, we considered optimizing the bidding policies with a stochastic policy gradient
algorithm, which means that the bidding policies parameterize a distribution of bids. The stochasticity of the bidding policy
means that there need not be an explicit exploration strategy such as ε-greedy, which simplifies the analysis in this paper. In
future work it would be interesting to explore deterministic bidding policies as well.

Bidding Policies We implement all bidding policies as neural networks that output the parameters of a Beta-distribution.
Because the Beta-distribution has support between 0 and 1, we normalized environment rewards so returns fit in this range.
In theory, the range of possible bids could be [0,∞) and need not be restricted to [0, 1]. The society decision-making
framework prescribes a different unique local auction, with different primitives, at each state s. However, because the
state space could be extremely large or even continuous, in practice we share the same set of primitives ω1:N across all
states, express their bidding policies as functions of the state, and rely on the function approximation capabilities of neural
networks to learn different state-conditioned bidding strategies.
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Redundancy Implementing two clones of each primitive means that each clone should share the same transformation
φ: if φ were the literal action of go-left, then there would be two primitives that bid in the local auction to execute the
go-left action. We implemented redundant clones by sharing the weights of their bidding policies ψ. Therefore, cloned
primitives have identical bidding distributions, from which different bids are sampled. Alternatively, we also explored giving
clone primitives the same transformation φ but independently parameterized bidding policies ψ. While we did not find much
difference in global performance with independently parameterized bidding policies, such a scheme could be useful for
multi-task learning where the same transformation could have different optimal societal Q-values depending on the task.

Learning Objectives The utility of the cloned Vickrey society is the learning objective. We compared three possible
implementations of this learning objective: bucket-brigade (BB), Vickrey (V), and credit-conserving Vickrey (CCV) as
described in Section 7.1.2 and Figure 4. We also compared with a baseline that sets the learning objective to be the
environment reward. For all implementations and the baseline, the learning objective that a loser ω that the auction receives
is 0 because its allocation Xi(b) and payment P i(b) are both 0. Letting b̂st and b′st denote the highest and second highest
bid at time t respectively, the learning objective Û ist(ω

1:N ) of the winner ω̂ for state st is given below.

Learning Objective

Bucket-Brigade Û ist(ω
1:N ) =

[
r(st, ω̂t) + γ · b̂st+1

]
− b̂st

Vickrey Û ist(ω
1:N ) =

[
r(st, ω̂t) + γ · b̂st+1

]
− b′st

Credit-Conserving Vickrey Û ist(ω
1:N ) =

[
r(st, ω̂t) + γ · b′st+1

]
− b′st

Environment Reward Û ist(ω
1:N ) = [r(st, ω̂t)]

F. Experimental Details
We implemented our experiments using the PyTorch library (Paszke et al., 2019). For all experiments, for proximal policy
optimization we used a policy learning rate of 4 · 10−5, a value function learning rate of 5 · 10−3, a clipping ratio of 0.2, a
GAE (Schulman et al., 2015) smoothing parameter of 0.95, a discount factor of 0.99, and the Adam (Kingma & Ba, 2014)
optimizer. Each bidding policy has its own replay buffer. Each bidding policy is updated every 4096 transitions with a
minibatch size of 256. For Two Rooms and Mental Rotation we added an entropy bonus, with a weighting coefficient of 0.1,
to the PPO loss.

The plots for Market Bandit, Two Rooms, and Mental Rotation were averaged over 3 seeds and the other plots were averaged
over 5 seeds. The metric for the learning curves is the mean return over 4096 environment steps. The error bars represent the
10th, 50th, 90th quantile. All experiments were run on CPU, except for the TwoRooms environment, which was run on GPU.

F.1. Numerical Simulations

All transformations φ correspond to literal actions. The bidding policies ψ are implemented as linear neural networks with a
single hidden layer of 16 units that output the α and β parameters of the Beta distribution. There is no activation function
for the hidden layer. We used the softplus activation function to output α and β. The valuation functions for the bidding
policies are also implemented as linear neural networks with a single hidden layer of 16 units.

F.1.1. MARKET BANDIT

At every round, we stochastically drop out a subset of primitives. For cloned societies, one clone could be dropped out
while the other clone stays in the auction. The drop-out sampling procedure is as follows. Letting N be the number of
total primitives (which means there are N/2 unique primitives in cloned societies), we first sample a random integer m in
{2, 3, ..., N}. Then we sample a subset of m primitives from the N total primitives without replacement. For a given round,
only the primitives that participated in that round are updated.
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F.1.2. DUALITY

Figure 11. The Duality environment.

As stated in Figure 4, without redundant primitives the solitary CCV implementation sacrifices Bellman optimality in
general. We now use the Duality environment as an example to illustrate such an instance where the dominant strategy of the
primitives does not coincide with the global optimal policy of the society, even if the primitives have full knowledge of their
own valuations. The DSIC property of the Vickrey auction makes it straightforward to analyze the dominant strategies of the
primitives, which the following paragraphs illustrate. Recall that based on the CCV learning objective, the valuation of the
winner ω̂ at time t is the immediate reward plus the discounted second-highest bid (not the highest bid) at the next time-step:
r(st, ω̂t) + γ · b′st+1

. Let r0 be equal to the environment reward r(s1, ω
0), r1 be equal to the environment reward r(s1, ω

1),
and r2 be equal to the environment reward r(s0, ω

1), where in Figure 11 we see that r0 = 0.5, r1 = 0.3, and r2 = 0.5

At state s0, primitive ω0 will bid 0, the lowest possible bid, because the local auction at state s0 would lead to unbounded
negative reward at s−1. This means that the valuation that ω0 has for winning at state s1 is r0 + γ · 0 = r(s1, ω

0), since 0
must be the second highest bid at state s0. Thus the dominant strategy for ω0 is to truthfully bid r0. At s1, primitive ω1

will bid some number c. Since activating ω1 is a self-loop, ω1 can sell s1 back to itself in the next time-step. Thus the
valuation that ω1 has for winning at state s1 is r1 + γ ·min(r0, c). Thus the dominant strategy for ω0 is to truthfully bid
c = r1 + γ ·min(r0, c).

In the undiscounted case, where γ = 1, if we solve for c, we have that if r1 > 0, then c = r1 + r0, which is greater than r0,
which is what ω0 would bid as its dominant strategy. Therefore, in the case that r1 > 0, ω1 will continue to sell s1 to itself.
As long as r1 < r0 + r2, the self-loop at s1 will be less optimal than cycling back and forth between s0 and s1.

In the discounted case, where 0 < γ < 1 and we again assume that r1 > 0. Solving c again, we see that if in the case that
r0 < r1

1−γ , then c = r1 + γr0 and c > r0. In this case ω1 will bid higher than ω0 at state s1, creating a perpetual self-loop.

If instead r0 > r1

1−γ , then c = r1

1−γ and c < r0. In this case ω0 will bid higher than ω1 at state s1, which is the optimal
global policy.

Therefore the Duality environment illustrates that without redundancy, for fortuitous settings of r0 and r1, the dominant
strategy equilibrium of the society may coincide with the optimal global policy, but if the for other choices of r0 and r1, the
dominant strategy equilibrium of the society may be globally suboptimal. Adding redundant primitives makes the auction
utilities consistent with the Bellman optimality equations and therefore does not suffer from such suboptimal equilibria.

F.2. Two Rooms

Figure 12. The Two Rooms environment.

The transformations φ0:2 are subpolicies pre-trained with PPO and have an action space equivalent to the action space of
the Minigrid environment. For these transformation subpolicies, the bidding policies, the value functions for the bidding
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policies, the non-hierarchical monolithic baseline, and the hierarchical monolithic baseline, we adapted the convolutional
neural network architecture from https://github.com/lcswillems/rl-starter-files.

φ0 is initialized randomly in the room on the left and is pre-trained to take the done action once it opens the red door and
enters the room on the right, upon which it receives a terminal reward. φ1 is initialized randomly in the room on the right
and is pre-trained to take the done action upon reaching the green square, upon which it receives a terminal reward. φ2 is
initialized randomly in the room on the right and is pre-trained to take the done action upon reaching the blue square, upon
which it receives a terminal reward.

In the pre-training task, the society receives a terminal reward upon reaching the green square and no intermediate rewards.
In the transfer task, the society receives a terminal reward upon reaching the blue square and no intermediate rewards.
These subpolicies φ0:2 are frozen for these tasks. For all learners, we trained to convergence on the pre-training task, then
we initialized training for the transfer task from the best saved checkpoint on the pre-training task. The non-hierarchical
monolithic baseline could not solve the pre-training task so we did not consider it for the transfer task.

F.3. Mental Rotation

Figure 13. The Mental Rotation environment.

Environment Each 28× 28 image in the MNIST training set was first inset into a black background of 64× 64. Then
the image first rotated either clockwise or counterclockwise by 60 degrees, then translated left, up, down, right by 29% of
the image width, for a total of eight possible transformation combinations given these six affine transformations. These
transformation combinations were taken from Chang et al. (2018).

Primitives The transformations φ correspond to the same six affine transformations, summarized below:

φ0, φ0′ rotate-counterclockwise

φ1, φ1′ rotate-clockwise

φ2, φ2′ translate-up

φ3, φ3′ translate-down

φ4, φ4′ translate-left

φ5, φ5′ translate-right

The primitive ωi, and its bidding policy ψi, correspond to the transformation φi. The clones are indicate by i and i′.

Neural network architecture The pre-trained MNIST classifier, the bidding policies, and the value functions for the
bidding policies follow the same architecture as the convolutional neural network used in Chang et al. (2018), with different
output dimensions (10 as the output dimension of the MNIST classifier, 1 for the other networks). The PyTorch architecture
is given below:

https://github.com/lcswillems/rl-starter-files
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network = nn.Sequential(
nn.Conv2d(1, 8, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(8, 8 * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(8 * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(8 * 2, 8 * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(8 * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(8 * 4, 8 * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(8 * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(8 * 8, outdim, 4, 1, 0, bias=False))


