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Abstract

We show new connections between adversarial
learning and explainability for deep neural net-
works (DNNSs). One form of explanation of the
output of a neural network model in terms of its
input features, is a vector of feature-attributions.
Two desirable characteristics of an attribution-
based explanation are: (1) sparseness: the at-
tributions of irrelevant or weakly relevant fea-
tures should be negligible, thus resulting in con-
cise explanations in terms of the significant fea-
tures, and (2) stability: it should not vary sig-
nificantly within a small local neighborhood of
the input. Our first contribution is a theoretical
exploration of how these two properties (when
using attributions based on Integrated Gradients,
or IG) are related to adversarial training, for a
class of 1-layer networks (which includes logis-
tic regression models for binary and multi-class
classification); for these networks we show that
(a) adversarial training using an ¢,-bounded ad-
versary produces models with sparse attribution
vectors, and (b) natural model-training while en-
couraging stable explanations (via an extra term
in the loss function), is equivalent to adversarial
training. Our second contribution is an empir-
ical verification of phenomenon (a), which we
show, somewhat surprisingly, occurs not only
in I-layer networks, but also DNNs trained on
standard image datasets, and extends beyond 1G-
based attributions, to those based on DeepSHAP:
adversarial training with ¢,,-bounded perturba-
tions yields significantly sparser attribution vec-
tors, with little degradation in performance on
natural test data, compared to natural training.
Moreover, the sparseness of the attribution vec-
tors is significantly better than that achievable via
¢1-regularized natural training.
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1. Introduction

Despite the recent dramatic success of deep learning models
in a variety of domains, two serious concerns have surfaced
about these models.

Vulnerability to Adversarial Attacks: We can abstractly
think of a neural network model as a function F'(z) of a
d-dimensional input vector z € R%, and the range of F'
is either a discrete set of class-labels, or a continuous set
of class probabilities. Many of these models can be foiled
by an adversary who imperceptibly (to humans) alters the
input z by adding a perturbation § € R? so that F(z +9)
is very different from F'(x) (Szegedy et al., 2013; Goodfel-
low et al., 2014; Papernot et al., 2015; Biggio et al., 2013).
Adversarial training (or adversarial learning) has recently
been proposed as a method for training models that are ro-
bust to such attacks, by applying techniques from the area
of Robust Optimization (Madry et al., 2017; Sinha et al.,
2018). The core idea of adversarial training is simple: we
define a set S of allowed perturbations § € R? that we want
to “robustify” against (e.g. S could be the set of § where
[10]lcc < €), and perform model-training using Stochas-
tic Gradient Descent (SGD) exactly as in natural training,
except that each training example z is perturbed adversari-
ally, i.e. replaced by x + 0* where §* € S maximizes the
example’s loss-contribution.

Explainability: One way to address the well-known lack
of explainability of deep learning models is feature attribu-
tion, which aims to explain the output of a model F'(x) as
an attribution vector A% (z) of the contributions from the
features x. There are several feature-attribution techniques
in the literature, such as Integrated Gradients (IG) (Sun-
dararajan et al., 2017), DeepSHAP (Lundberg & Lee, 2017),
and LIME (Ribeiro et al., 2016). For such an explanation
to be human-friendly, it is highly desirable (Molnar, 2019)
that the attribution-vector is sparse, i.e., only the features
that are truly predictive of the output F'(z) should have
significant contributions, and irrelevant or weakly-relevant
features should have negligible contributions. A sparse attri-
bution makes it possible to produce a concise explanation,
where only the input features with significant contributions
are included. For instance, if the model F' is used for a loan
approval decision, then various stakeholders (like customers,
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data-scientists and regulators) would like to know the reason
for a specific decision in simple terms. In practice however,
due to artifacts in the training data or process, the attribution
vector is often not sparse and irrelevant or weakly-relevant
features end up having significant contributions (Tan et al.,
2013). Another desirable property of a good explanation is
stability: the attribution vector should not vary significantly
within a small local neighborhood of the input z. Similar
to the lack of concise explainability, natural training often
results in explanations that lack stability (Alvarez-Melis &
Jaakkola, 2018).

Our paper shows new connections between adversarial ro-
bustness and the above-mentioned desirable properties of
explanations, namely conciseness and stability. Specifically,
let F be an adversarially trained version of a classifier F/,
and for a given input vector  and attribution method A,
let A" (z) and A () denote the corresponding attribution
vectors. The central research question this paper addresses
is:

Is AF(z) sparser and more stable than AF (z)?

The main contributions of our paper are as follows:

Theoretical Analysis of Adversarial Training: Our first
set of results show via a theoretical analysis that £ (¢)-
adversarial training 1-layer networks tends to produce sparse
attribution vectors for IG, which in turn leads to concise ex-
planations. In particular, under some assumptions, we show
(Theorems 3.1 and E.1) that for a general class of convex
loss functions (which includes popular loss functions used
in 1-layer networks, such as logistic and hinge loss, used
for binary or multi-class classification), and adversarial per-
turbations § satisfying ||d||c < €, the weights of “weak”
features are on average more aggressively shrunk toward
zero than during natural training, and the rate of shrinkage
is proportional to the amount by which € exceeds a certain
measure of the “strength” of the feature. This shows that
{(£)-adversarial training tends to produce sparse weight
vectors in popular 1-layer models. In Section 4 we show
(Lemma 4.1) a closed form formula for the IG vector of
1-layer models, that makes it clear that in these models,
sparseness of the weight vector directly implies sparseness
of the IG vector.

Empirically Demonstrate Attribution Sparseness: In Sec-
tion 6 we empirically demonstrate that this “sparsification”
effect of ¢ (£)-adversarial training holds not only for 1-
layer networks (e.g. logistic regression models), but also for
Deep Convolutional Networks used for image classification,
and extends beyond IG-based attributions, to those based
on DeepSHAP. Specifically, we show this phenomenon via
experiments applying ¢ (¢)-adversarial training to (a) Con-
volutional Neural Networks on public benchmark image
datasets MNIST (LeCun & Cortes, 2010) and Fashion-

MNIST (Xiao et al., 2017), and (b) logistic regression
models on the Mushroom and Spambase tabular datasets
from the UCI Data Repository (Dheeru & Karra Taniskidou,
2017). In all of our experiments, we find that it is possible
to choose an ¢, bound ¢ so that adversarial learning under
this bound produces attribution vectors that are sparse on
average, with little or no drop in performance on natural test
data. A visually striking example of this effect is shown in
Figure 1 (the Gini Index, introduced in Section 6, measures
the sparseness of the map).

It is natural to wonder whether a traditional weight-
regularization technique such as ¢; -regularization can pro-
duce models with sparse attribution vectors. In fact, our
experiments show that for logistic regression models, ;-
regularized training does yield attribution vectors that are
on average significantly sparser compared to attribution vec-
tors from natural (un-regularized) model-training, and the
sparseness improvement is almost as good as that obtained
with £ (¢)-adversarial training. This is not too surprising
given our result (Lemma 4.1) that implies a direct link be-
tween sparseness of weights and sparseness of /G vectors,
for 1-layer models. Intriguingly, this does not carry over to
DNNs: for multi-layer models (such as the ConvNets we
trained for the image datasets mentioned above) we find that
with ¢;-regularization, the sparseness improvement is sig-
nificantly inferior to that obtainable from ¢ (¢)-adversarial
training (when controlling for model accuracy on natural test
data), as we show in Table 1, Figure 2 and Figure 3. Thus
it appears that for DNNSs, the attribution-sparseness that
results from adversarial training is not necessarily related to
sparseness of weights.

Connection between Adversarial Training and Attribution
Stability: We also show theoretically (Section 5) that train-
ing 1-layer networks naturally, while encouraging stability
of explanations (via a suitable term added to the loss func-
tion), is in fact equivalent to adversarial training.

Natural Training Adpversarial Training

saenc| Ma| saenc} Ma|

Gini: 0.6150 Gini: 0.7084

Image

f.'wu

Figure 1: Both models correctly predict “Bird”, but the
IG-based saliency map of the adversarially trained model is
much sparser than that of the naturally trained model.
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2. Setup and Assumptions

For ease of understanding, we consider the case of binary
classification for the rest of our discussion in the main paper.
We assume there is a distribution D of data points (z,y)
where € R? is an input feature vector, and y € {£1} is
its true label'. For each i € [d], the ¢’th component of z
represents an input feature, and is denoted by x;. The model
is assumed to have learnable parameters (“weights”) w €
R, and for a given data point (z,y), the loss is given by
some function £(z, y; w). Natural model training *> consists
of minimizing the expected loss, known as empirical risk:

E(z,y)~p[L(Z, y;w)]. (1)

We sometimes assume the existence of an £ (£)-adversary
who may perturb the input example z by adding a vector § €
R? whose £.-norm is bounded by &; such a perturbation d is
referred to as an ¢ (&)-perturbation. For a given data point
(x,y) and a given loss function £(.), an £, (g)-adversarial
perturbation is a §* that maximizes the adversarial loss
Lz +5* y;w).

Given a function F' : RY — [0, 1] representing a neural
network, an input vector £ € Rd, and a suitable baseline
vector u € RY, an artribution of the prediction of F at in-
put z relative to u is a vector A" (z,u) € R? whose i’th
component A (z,u) represents the “contribution” of z;
to the prediction F'(z). A variety of attribution methods
have been proposed in the literature (see (Arya et al., 2019)
for a survey), but in this paper we will focus on two of
the most popular ones: Integrated Gradients (Sundarara-
jan et al., 2017), and DeepSHAP (Lundberg & Lee, 2017).
When discussing a specific attribution method, we will de-
note the IG-based attribution vector as IG” (2, u), and the
DeepSHAP-based attribution vector as SHY (2, ). In all
cases we will drop the superscript F' and/or the baseline
vector « when those are clear from the context.

The aim of adversarial training(Madry et al., 2017) is to
train a model that is robust to an £, (¢)-adversary (i.e. per-
forms well in the presence of such an adversary), and con-
sists of minimizing the expected £, (¢)-adversarial loss:
E(m,y)ND[ max £($ +67 va)] (2)
[16]]0c <e
In the expectations (1) and (2) we often drop the subscript

under E when it is clear that the expectation is over (z,y) ~
D.

Some of our theoretical results make assumptions regarding
the form and properties of the loss function £, the properties
of its first derivative. For the sake of clarify, we highlight
these assumptions (with mnemonic names) here for ease of
future reference.

't is trivial to convert -1/1 labels to 0/1 labels and vice versa
2Also referred to as standard training by (Madry et al., 2017)

Assumption LOSS-INC. The loss function is of the form
L(z,y;w) = g(—y(w,x)) where g is a non-decreasing
function.

Assumption LOSS-CVX. The loss function is of the form
L(z,y;w) = g(—y(w,x)) where g is non-decreasing,
almost-everywhere differentiable, and convex.

Section B.1 in the Supplement shows that these Assump-
tions are satisfied by popular loss functions such as logistic
and hinge loss. Incidentally, note that for any differentiable
function g, g is convex if and only if its first-derivative g’
is non-decreasing, and we will use this property in some of
the proofs.

Assumption FEAT-TRANS. For each i € [d], if «} is the

feature in the original dataset, x; is the translated version of
x} defined by x; = x}, — [E(xily = 1) + E(z}|ly = —1)]/2.

In Section B.2 (Supplement) we show that this mild assump-
tion implies that for each feature x; there is a constant a;
such that

E(zily) = aiy (3)
E(yz;) = E[E(yzily)] = E[y*a;] = a; 4)
E(yzily) = yE[zi|y] = v*a; = a; (5)

For any i € [d], we can think of E(yx;) as the degree of asso-
ciation® between feature x; and label y. Since E(yx;) = a;
(Eq. 4), we refer to a; as the directed strength* of feature z;,
and |a;| is referred to as the absolute strength of x;. In par-
ticular when |a;| is large (small) we say that x; is a strong
(weak) feature.

2.1. Averaging over a group of features

For our main theoretical result (Theorem 3.1), we need a
notion of weighted average defined as follows:

Definition WTD-AV. Given a quantity q; defined for each

feature-index i € [d], a subset S C [d] (where |S| > 1) of

feature-indices, and a feature weight-vector w with w; # 0

for at least one i € S, the w-weighted average of q over S
is defined as

¢y = Dies Widi

5 Yies [wil

Note that the quantity w;¢g; can be written as |w; | sgn(w;)qg;,
so q¥ is essentially a |w;|-weighted average of sgn(w;)g;
overi € S.

(6)

For our result we will use the above w-weighted average
definition for two particular quantities g;. The first one is

*When the features are standardized to have mean 0, E(yx;) is
in fact the covariance of y and x;.

“This is related to the feature “robustness” notion introduced
in (Ilyas et al., 2019)
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q; ‘= a;, the directed strength of feature z; (Eq. 4). Intu-
itively, the quantity sgn(w; )E(yz;) = a; sgn(w;) captures
the aligned strength of feature x; in the following sense: if
this quantity is large and positive (large and negative), it
indicates both that the current weight w; of x; is aligned
(misaligned) with the directed strength of x;, and that this
directed strength is large. Thus a represents an average of
the aligned strength over the feature-group .S.

The second quantity for which we define the above w-
weighted average is ¢; :== A;, where A; := —E[0L/0w;]
represents the expected SGD update (over random draws
from the data distribution) of the weight w;, given the loss
function £, for a unit learning rate (details are in the next
Section). The quantity sgn(w;)A; has a natural interpreta-
tion, analogous to the above interpretation of a; sgn(w;):
a large positive (large negative) value of sgn(w;)A; corre-
sponds to an large expansion (large shrinkage), in expecta-
tion, of the weight w; away from zero magnitude (toward
zero magnitude). Thus the w-weighted average ng” rep-
resents the |w;|-weighted average of this effect over the
feature-group S.

3. Analysis of SGD Updates in Adversarial
Training

One way to understand the characteristics of the weights in
an adversarially-trained neural network model, is to analyze
how the weights evolve during adversarial training under
Stochastic Gradient Descent (SGD) optimization. One of
the main results of this work is a theoretical characteriza-
tion of the weight updates during a single SGD step, when
applied to a randomly drawn data point (z,y) ~ D that is
subjected to an £ (¢)-adversarial perturbation.

Although the holy grail would be to do this for general
DNN s (and we expect this will be quite difficult) we take a
first step in this direction by analyzing single-layer networks
for binary or multi-class classification, where each weight
is associated with an input feature. Intriguingly, our results
(Theorem 3.1 for binary classification and E.1 for multi-
class classification in the Supplement) show that for these
models, /. (¢)-adversarial training tends to selectively re-
duce the weight-magnitude of weakly relevant or irrelevant
features, and does so much more aggressively than natu-
ral training. In other words, natural training can result in
models where many weak features have significant weights,
whereas adversarial training would tend to push most of
these weights close to zero. The resulting model weights
would thus be more sparse, and the corresponding IG-based
attribution vectors would on average be more sparse as well
(since in linear models, sparse weights imply sparse 1G
vectors; this is a consequence of Lemma 4.1) compared to
naturally-trained models.

Our experiments (Sec. 6) show that indeed for logistic re-
gression models (which satisfy the conditions of Theorem
3.1), adversarial training leads to sparse IG vectors. Interest-
ingly, our extensive experiments with Deep Convolutional
Neural Networks on public image datasets demonstrate that
this phenomenon extends to DNNs as well, and to attri-
butions based on DeepSHAP, even though our theoretical
results only apply to 1-layer networks and IG-based attribu-
tions.

As a preliminary, it is easy to show the following expres-
sions related to the ¢, (¢)-adversarial perturbation ¢* (See
Lemmas 2 and 3 in Section C of the Supplement): For
loss functions satisfying Assumption LOSS-ING, the £+ (¢)-
adversarial perturbation §* is given by:

0" = —ysgn(w)e, 7
the corresponding ¢ (£)-adversarial loss is
Lz +6",y; w) = gellwll —y(w, ),  ®)
and the gradient of this loss w.r.t. a weight w; is

oL(x 40", y; w)
8wz- -
—g'(ellw i —ylw, ) (yi —sgn(w;)e). (9)

In our main result, the expectation of the ¢’ term in (9) plays
an important role, so we will use the following notation:

g =Elg'Ellwlh - ylw,z))], (10)

and by Assumption LOSS-INC, ¢’ is non-negative.

Ideally, we would like to understand the nature of the weight-
vector w* that minimizes the expected adversarial loss (2).
This is quite challenging, so rather than analyzing the final
optimum of (2), we instead analyze how an SGD-based
optimizer for (2) updates the model weights w. We assume
an idealized SGD process: (a) a data point (z, y) is drawn
from distribution D, (b) x is replaced by ' = x +J* where
d* is an /o (€)-adversarial perturbation with respect to the
loss function £, (c) each weight w; is updated by an amount
Aw; = —0L(z',y;w)/Ow; (assuming a unit learning rate
to avoid notational clutter). We are interested in the expec-
tation A; := EAw; = —E[0L(z', y; w)/Ow;], in order to
understand how a weight w; evolves on average during a
single SGD step. Where there is a conditionally independent
feature subset S € [d] (i.e. the features in S are condition-
ally independent of the rest given the label y), our main
theoretical result characterizes the behavior of A, fori € S,
and the corresponding w-weighted average Zg:

Theorem 3.1 (Expected SGD Update in Adversarial Train-
ing). For any loss function L satisfying Assumption LOSS-
CVX, a dataset D satisfying Assumption FEAT-TRANS, a
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subset S of features that are conditionally independent of
the rest given the label y, if a data point (x,y) is randomly
drawn from D, and x is perturbed to x' = x +6*, where
8% is an L (¢)-adversarial perturbation, then during SGD
using the . (g)-adversarial loss L(x', y;w), the expected
weight-updates A; := EAw; for i € S and the correspond-
ing w-weighted average Z‘g satisfy the following proper-
ties:

1. Ifw; =0VYi € S, then for eachi € S,
A =g (1D
2. and otherwise,
Ay <g(a¥ —e), (12)
and equality holds in the limit as w; — 0 Vi € S,

where g is the expectation in (10), a; = E(x;y) is the
directed strength of feature x; from Eq. (4), and o is the
corresponding w-weighted average over S.

For space reasons, a detailed discussion of the implications
of this result is presented in Sec. D.2 of the Supplement, but
here we note the following. Recalling the interpretation of
the w-weighted averages a¥ and Zg in Section 2.1, we can
interpret the above result as follows. For any conditionally
independent feature subset S, if the weights of all features
in S are zero, then by Eq. (11), an SGD update causes,
on average, each of these weights w; to grow (from 0) in
a direction consistent with the directed feature-strength a;
(since ¢’ > 0 as noted above). If at least one of the features
in S has a non-zero weight, (12) implies ZZY < 0, ie.,
an aggregate shrinkage of the weights of features in S, if
either of the following hold: (a) a§ < 0, i.e., the weights of
features in S are mis-aligned on average, or (b) the weights
of features in S are aligned on average, i.e., a¥ is positive,
but dominated by ¢, i.e. the features S are weakly correlated
with the label. In the latter case the weights of features in S
are (in aggregate and in expectation) aggressively pushed
toward zero, and this aggressiveness is proportional to the
extent to which € dominates a§. A partial generalization
of the above result for the multi-class setting (for a single
conditionally-independent feature) is presented in Section E
(Theorem E.1) of the Supplement.

4. FEATURE ATTRIBUTION USING
INTEGRATED GRADIENTS

Theorem 3.1 showed that £, (¢)-adversarial training tends
to shrink the weights of features that are “weak” (relative to
€). We now show a link between weights and explanations,
specifically explanations in the form of a vector of feature-
attributions given by the Integrated Gradients (1G) method

(Sundararajan et al., 2017), which is defined as follows:
Suppose F : R¢ — R is a real-valued function of an input
vector. For example F' could represent the output of a neural
network, or even a loss function £(z, y; w) when the label
y and weights w are held fixed. Let € R? be a specific
input, and u € R? be a baseline input. The IG is defined
as the path integral of the gradients along the straight-line
path from the baseline u to the input . The IG along the
1’th dimension for an input = and baseline u is defined as:

1G] (z,u) := (2 — u;) X /1_0 O F (u+a(x —u))da,

(13)
where 0; F(z) denotes the gradient of F'(v) along the i’th
dimension, at v = 2. The vector of all IG components
IGS (x,u) is denoted as IG (z,u). Although we do not
show w explicitly as an argument in the notation IG* (z, ),
it should be understood that the IG depends on the model
weights w since the function F' depends on w.

The following Lemma (proved in Sec. F of the Supplement)
shows a closed form exact expression for the IG* (2, u)
when F'(z) is of the form

Fz) = A((w, 2)), (14)

where w € R? is a vector of weights, A is a differen-
tiable scalar-valued function, and (w, ) denotes the dot
product of w and z. Note that this form of F' could
represent a single-layer neural network with any differ-
entiable activation function (e.g., logistic (sigmoid) acti-
vation A(z) = 1/[1 + exp(—z)] or Poisson activation
A(z) = exp(z)), or a differentiable loss function, such
as those that satisfy Assumption LOSS-INC for a fixed label
y and weight-vector w. For brevity, we will refer to a func-
tion of the form (14) as representing a “l1-Layer Network”,
with the understanding that it could equally well represent a
suitable loss function.

Lemma 4.1 (IG Attribution for 1-layer Networks). If F(z)
is computed by a I-layer network (14) with weights vector
w, then the Integrated Gradients for all dimensions of
relative to a baseline u are given by:

IGH (z,u) = [F(x) — (15)

where the ® operator denotes the entry-wise product of
vectors.

Thus for 1-layer networks, the IG of each feature is essen-
tially proportional to the feature’s fractional contribution
to the logit-change (x — u, w). This makes it clear that in
such models, if the weight-vector w is sparse, then the IG
vector will also be correspondingly sparse.
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5. Training with Explanation Stability is
equivalent to Adversarial Training

Suppose we use the IG method described in Sec. 4 as an
explanation for the output of a model F'(z) on a specific
input . A desirable property of an explainable model is
that the explanation for the value of F'() is stable(Alvarez-
Melis & Jaakkola, 2018), i.e., does not change much under
small perturbations of the input . One way to formalize
this is to say the following worst-case ¢1-norm of the change
in IG should be small:

11G" (2, u) —1G" (z,u)|[1,  (16)

max

z'EN(x,€)
where N (z, ) denotes a suitable e-neighborhood of z, and
u is an appropriate baseline input vector. If the model F'is a
single-layer neural network, it would be a function of (w, x)
for some weights w, and typically when training such net-
works the loss is a function of (w, ) as well, so we would
not change the essence of (16) much if instead of F' in each
IG, we use L(z, y;w) for a fixed y; let us denote this func-
tion by £,,. Also intuitively, || IG*¥ (z’,u) — IG*¥ (2, u)||;
is not too different from || IG*¥ (', x)||;. These observa-
tions motivate the following definition of Stable-IG Empiri-
cal Risk, which is a modification of the usual empirical risk
(1), with a regularizer to encourage stable IG explanations:

Egy~p| L2, y;w) +

[[ 1G5 (z,2)||1 |. (17)

max
|2’ —z|lo<e

The following somewhat surprising result is proved in Sec-
tion G of the Supplement.

Theorem 5.1 (Equivalence of Stable IG and Adversarial
Robustness). For loss functions L(x,y;w) satisfying As-
sumption LOSS-CVX, the augmented loss inside the expec-
tation (17) equals the {(c)-adversarial loss inside the
expectation (2), i.e.

L(z,y;w) + max

[/ — 2|l <

6E (@2l =

max L(x+0,y;w) (18)

[16]] 0 <e

This implies that for loss functions satisfying Assumption
LOSS-CVX, minimizing the Stable-IG Empirical Risk (17)
is equivalent to minimizing the expected £ (¢)-adversarial
loss. In other words, for this class of loss functions, natural
model training while encouraging 1G stability is equivalent
to U (€)-adversarial training! Combined with Theorem
3.1 and the corresponding experimental results in Sec 6, this
equivalence implies that, for this class of loss functions, and
data distributions satisfying Assumption FEAT-TRANS, the
explanations for the models produced by ¢ (¢)-adversarial
training are both concise (due to the sparseness of the mod-
els), and stable.

6. Experiments
6.1. Hypotheses

Recall that one implication of Theorem 3.1 is the following:
For 1-layer networks where the loss function satisfies As-
sumption LOSS-CVX, ¢ (¢)-adversarial training tends to
more-aggressively prune the weight-magnitudes of “weak”
features compared to natural training. In Sec. 4 we observed
that a consequence of Lemma 4.1 is that for 1-layer models
the sparseness of the weight vector implies sparseness of
the IG vector. Thus a reasonable conjecture is that, for 1-
layer networks, ¢ (£)-adversarial training leads to models
with sparse attribution vectors in general (whether using
IG or a different method, such as DeepSHAP). We further
conjecture that this sparsification phenomenon extends to
practical multi-layer Deep Neural Networks, not just 1-layer
networks, and that this benefit can be realized without sig-
nificantly impacting accuracy on natural test data. Finally,
we hypothesize that the resulting sparseness of attribution
vectors is better than what can be achieved by a traditional
weight regularization technique such as L1-regularization,
for a comparable level of natural test accuracy.

6.2. Measuring Sparseness of an Attribution Vector

For an attribution method A, we quantify the sparseness of
the attribution vector A (x,u) using the Gini Index applied
to the vector of absolute values A (z,u). For a vector
v of non-negative values, the Gini Index, denoted G(v)
(defined formally in Sec. I in the Supplement), is a metric
for sparseness of v that is known (Hurley & Rickard, 2009)
to satisfy a number of desirable properties, and has been
used to quantify sparseness of weights in a neural network
(Guest & Love, 2017). The Gini Index by definition lies in
[0,1], and a higher value indicates more sparseness.

Since the model F' is clear from the context, and the base-
line vector u are fixed for a given dataset, we will denote
the attribution vector on input & simply as A(z), and our
measure of sparseness is G(]A(z)|), which we denote for
brevity as G[A](x), and refer to informally as the Gini of A,
where A can stand for IG (when using IG-based attributions)
or SH (when using DeepSHAP for attribution). As men-
tioned above, one of our hypotheses is that the sparseness
of attributions of models produced by /. (g)-adversarial
training is much better than what can be achieved by natu-
ral training using ¢; -regularization, for a comparable level
of accuracy. To verify this hypothesis we will compare
the sparseness of attribution vectors resulting from three
types of models: (a) n-model: naturally-trained model
with no adversarial perturbations and no ¢;-regularization,
(b) a-model: ¢, (g)-adversarially trained model, and (c)
I-model: naturally trained model with ¢;-regularization
strength A\ > 0. For an attribution method A, we denote the
Gini indices G[A](z) resulting from these models respec-
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tively as G"[A](z), G*[A](z; €) and G![A](z; N).

In several of our datasets, individual feature vectors are
already quite sparse: for example in the MNIST dataset,
most of the area consists of black pixels, and in the Mush-
room dataset, after 1-hot encoding the 22 categorical fea-
tures, the resulting 120-dimensional feature-vector is sparse.
On such datasets, even an n-model can achieve a “good”
level of sparseness of attributions in the absolute sense, i.e.
G"[A](z) can be quite high. Therefore for all datasets we
compare the sparseness improvement resulting from an a-
model relative to an n-model, with that from an I-model
relative to a n-model. Or more precisely, we will compare
the two quantities defined below, for a given attribution
method A:

dG*[Al(z; €) == G*[A](x; €) — G"[Al(x), (19
dG'A](z; \) == G'[A](z; \) — G"[A](x).  (20)

The above quantities define the IG sparseness improvements
for a single example z. It will be convenient to define the
overall sparseness improvement from a model, as measured
on a test dataset, by averaging over all examples z in that
dataset. We denote the corresponding average sparseness
metrics by G[A](g), G'[A]()\) and G™[A] respectively. We
then define the average sparseness improvement of an a-
model and I-model as:

dG[A](e) := G*[A](e) — G"[A], 21)
dG'[A]()) := G'[A](\) — G™[A]. (22)

We can thus re-state our hypotheses in terms of this notation:
For each of the attribution methods A € {IG,SH}, the
average sparseness improvement dG®[A](e) resulting from
type-a models is high, and is significantly higher than the
average sparseness improvement dG'[A]()) resulting from
type-1 models.

6.3. Results

We ran experiments on five standard public benchmark
datasets: three image datasets MNIST, Fashion-MNIST,
and CIFAR-10, and two tabular datasets from the UCI
Data Repository: Mushroom and Spambase. Details of
the datasets and training methodology are in Sec. J.1 of
the Supplement. The code for all experiments is at this
repository: https://github.com/jfc43/advex.

For each of the two tabular datasets (where we train logistic
regression models), for a given model-type (a, 1 or n), we
found the average Gini index of the attribution vectors is
virtually identical when using IG or DeepSHAP. This is
not surprising: as pointed out in (Ancona et al., 2017),
DeepSHAP is a variant of DeepLIFT, and for simple linear
models, DeepLIFT gives a very close approximation of IG.
To avoid clutter, we therefore omit DeepSHAP-based results

on the tabular datasets. Table 1 shows a summary of some
results on the above 5 datasets, and Fig. 2 and 3 display
results graphically °

Table 1: Results on 5 datasets. For each dataset, “a” indi-
cates an {(g)-adversarially trained model with the indi-
cated ¢, and “1” indicates a naturally trained model with
the indicated ¢, -regularization strength A. The attr column
indicates the feature attribution method (IG or DeepSHAP).
Column dG shows the average sparseness improvements of
the models relative to the baseline naturally trained model,
as measured by the dG%[A](e) and dG'[A]()\) defined in
Eqgs. (21, 22). Column AcDrop indicates the drop in accu-
racy relative to the baseline model.

dataset attr model dG AcDrop
MNIST IG a(e=0.3) 0.06 0.8%
G 1(A=0.01) 0004 0.4%
SHAP a(¢=03) 006 0.8%
SHAP 1(A=0.01) 0.007 0.4%
Fashion IG a(e=0.1) 0.06 4.7%
-MNIST IG 1(A=0.01) 0.008 3.4%
SHAP a(c=01) 008 47%
SHAP 1(A=0.01) 0.003 3.4%
CIFAR-10 IG a(e =1.0) 0.081 0.57%
IG 1(A=10"5) 0022 1.51%
Mushroom IG a(e=0.1) 0.06 2.5%
G 1(A=002) 006 2.6%
Spambase  IG a(e=0.1) 0.17  0.9%
IG 1(A=002) 015 0.1%

These results make it clear that for comparable levels of
accuracy, the sparseness of attribution vectors from ¢ (¢)-
adversarially trained models is much better than the sparse-
ness from natural training with ¢;-regularization. The effect
is especially pronounced in the two image datasets. The
effect is less dramatic in the two tabular datasets, for which
we train logistic regression models. Our discussion at the
end of Sec. 4 suggests a possible explanation.

In the Introduction we gave an example of a saliency map
(Simonyan et al., 2013; Baehrens et al., 2010) (Fig. 1) to
dramatically highlight the sparseness induced by adversarial
training. We show several more examples of saliency maps
in the supplement (Section J.4).

SThe official implementation of DeepSHAP (https://
github.com/slundberg/shap) doesn’t support the net-
work we use for CIFAR-10 well, so we do not show results for this
combination.
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Figure 2: Boxplot of pointwise sparseness-improvements from adversarially trained models (dG*[A](x, £)) and naturally
trained models with ¢ -regularization (dG'[A](z, \)), for attribution methods A € {IG,SH}.

7. Related Work

In contrast to the growing body of work on defenses against
adversarial attacks (Yuan et al., 2017; Madry et al., 2017;
Biggio et al., 2013) or explaining adversarial examples
(Goodfellow et al., 2014; Tsipras et al., 2018), the focus
of our paper is the connection between adversarial robust-
ness and explainability. We view the process of adversarial
training as a tool to produce more explainable models. A re-
cent series of papers (Tsipras et al., 2018; Ilyas et al., 2019)
essentially argues that adversarial examples exist because
standard training produces models are heavily reliant on
highly predictive but non-robust features (which is simi-
lar to our notion of “weak” features in Sec 3) which are
vulnerable to an adversary who can “flip” them and cause
performance to degrade. Indeed the authors of (Ilyas et al.,
2019) touch upon some connections between explainability
and robustness, and conclude, “As such, producing human-
meaningful explanations that remain faithful to underlying
models cannot be pursued independently from the training
of the models themselves”, by which they are implying that
good explainability may require intervening in the model-
training procedure itself; this is consistent with our findings.
We discuss other related work in the Supplement Section A.

8. Conclusion

We presented theoretical and experimental results that show
a strong connection between adversarial robustness (under
{~.-bounded perturbations) and two desirable properties
of model explanations: conciseness and stability. Specif-
ically, we considered model explanations in the form of
feature-attributions based on the Integrated Gradients (IG)
and DeepSHAP techniques. For 1-layer models using a
popular family of loss functions, we theoretically showed
that ¢ (¢)-adversarial training tends to produce sparse and
stable 1G-based attribution vectors. With extensive experi-
ments on benchmark tabular and image datasets, we demon-
strated that the “attribution sparsification” effect extends to
Deep Neural Networks, when using two popular attribution
methods. Intriguingly, especially in DNN models for image
classification, the attribution sparseness from natural train-
ing with ¢; -regularization is much inferior to that achievable
via o (€)-adversarial training. Our theoretical results are a
first step in explaining some of these phenomena.
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Figure 3: For four benchmark datasets, each line-plot labeled M[A] shows the tradeoff between Accuracy and Attribution
Sparseness achievable by various combinations of models A/ and attribution methods A. M = A denotes ¢ (¢)-adversarial
training, and the plot shows the accuracy/sparseness for various choices of e. M = L denotes ¢;-regularized natural
training, and the plot shows accuracy/sparseness for various choices of £ -regularization parameter \. A = IG denotes
the IG attribution method, whereas A = S H denotes DeepSHAP. Attribution sparseness is measured by the Average Gini
Index over the dataset (G°[A] () and G'[A](\), for adversarial training and /1 -regularized natural training respectively). In
all cases, and especially in the image datasets, adversarial training achieves a significantly better accuracy vs attribution
sparseness tradeoff.



