
Concise Explanations of Neural Networks using Adversarial Training

References
Abramovich, F. and Grinshtein, V. High-dimensional clas-

sification by sparse logistic regression. June 2017. URL
http://arxiv.org/abs/1706.08344.

Alvarez-Melis, D. and Jaakkola, T. S. On the ro-
bustness of interpretability methods. arXiv preprint
arXiv:1806. 08049, 2018. URL http://arxiv.org/
abs/1806.08049.

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. To-
wards better understanding of gradient-based attribution
methods for deep neural networks. November 2017. URL
http://arxiv.org/abs/1711.06104.

Arya, V., Bellamy, R. K. E., Chen, P.-Y., Dhurandhar, A.,
Hind, M., Hoffman, S. C., Houde, S., Vera Liao, Q.,
Luss, R., Mojsilović, A., Mourad, S., Pedemonte, P.,
Raghavendra, R., Richards, J., Sattigeri, P., Shanmugam,
K., Singh, M., Varshney, K. R., Wei, D., and Zhang, Y.
One explanation does not fit all: A toolkit and taxonomy
of AI explainability techniques. September 2019. URL
http://arxiv.org/abs/1909.03012.

Baehrens, D., Schroeter, T., Harmeling, S., Kawan-
abe, M., Hansen, K., and Müller, K.-R. How
to explain individual classification decisions. J.
Mach. Learn. Res., 11(Jun):1803–1831, 2010. URL
http://www.jmlr.org/papers/volume11/

baehrens10a/baehrens10a.pdf.
Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,

Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. In Machine Learn-
ing and Knowledge Discovery in Databases, pp. 387–402.
Springer Berlin Heidelberg, 2013. URL http://dx.

doi.org/10.1007/978-3-642-40994-3_25.
Dheeru, D. and Karra Taniskidou, E. UCI machine learning

repository, 2017. URL http://archive.ics.uci.

edu/ml.
Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples. December 2014.
URL http://arxiv.org/abs/1412.6572.

Guest, O. and Love, B. C. What the success of brain
imaging implies about the neural code. Elife, 6, Jan-
uary 2017. URL http://dx.doi.org/10.7554/

eLife.21397.
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hurley, N. and Rickard, S. Comparing measures of spar-
sity. IEEE Trans. Inf. Theory, 55(10):4723–4741, October
2009. URL http://dx.doi.org/10.1109/TIT.

2009.2027527.
Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,

and Madry, A. Adversarial examples are not bugs, they
are features. May 2019. URL http://arxiv.org/

abs/1905.02175.
Kim, B., Seo, J., and Jeon, T. Bridging adversarial robust-

ness and gradient interpretability. Safe Machine Learning
workshop at ICLR, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database. 2010. URL http://yann.lecun.com/

exdb/mnist/.
Lundberg, S. M. and Lee, S.-I. A unified approach to in-

terpreting model predictions. In Advances in Neural
Information Processing Systems, pp. 4765–4774, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. June 2017.

Molnar, C. Interpretable Machine Learning.
2019. https://christophm.github.io/

interpretable-ml-book/.
Noack, A., Ahern, I., Dou, D., and Li, B. Does inter-

pretability of neural networks imply adversarial robust-
ness? ArXiv, abs/1912.03430, 2019.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M.,
Berkay Celik, Z., and Swami, A. The limitations of
deep learning in adversarial settings. November 2015.
URL http://arxiv.org/abs/1511.07528.

Ribeiro, M. T., Singh, S., and Guestrin, C. “why should
I trust you?”: Explaining the predictions of any clas-
sifier. February 2016. URL http://arxiv.org/

abs/1602.04938.
Sankaranarayanan, S., Jain, A., Chellappa, R., and Lim,

S. N. Regularizing deep networks using efficient lay-
erwise adversarial training. May 2017. URL http:

//arxiv.org/abs/1705.07819.
Shaham, U., Yamada, Y., and Negahban, S. Understanding

adversarial training: Increasing local stability of neural
nets through robust optimization. November 2015. URL
http://arxiv.org/abs/1511.05432.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. CoRR, abs/1312.6034, 2013.

Sinha, A., Namkoong, H., and Duchi, J. Certifying some
distributional robustness with principled adversarial train-
ing. February 2018. URL https://openreview.

net/pdf?id=Hk6kPgZA-.
Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-

tion for deep networks. March 2017.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties
of neural networks. December 2013. URL http://

arxiv.org/abs/1312.6199.
Tan, M., Tsang, I. W., and Wang, L. Minimax sparse lo-

gistic regression for very high-dimensional feature selec-
tion. IEEE Trans Neural Netw Learn Syst, 24(10):1609–
1622, October 2013. URL http://dx.doi.org/10.

Concise Explanations of Neural Networks using Adversarial Training

1109/TNNLS.2013.2263427.
Tan, M., Tsang, I. W., and Wang, L. To-

wards ultrahigh dimensional feature selection for
big data. J. Mach. Learn. Res., 15(1):1371–1429,
2014. URL http://www.jmlr.org/papers/

volume15/tan14a/tan14a.pdf.
Tanay, T. and Griffin, L. D. A new angle on l2 regularization.

CoRR, abs/1806.11186, 2018.
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and

Madry, A. Robustness may be at odds with accuracy.
May 2018. URL http://arxiv.org/abs/1805.

12152.
Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a

novel image dataset for benchmarking machine learning
algorithms. August 2017. URL http://arxiv.org/
abs/1708.07747.

Xu, H., Caramanis, C., and Mannor, S. Ro-
bustness and regularization of support vector ma-
chines. J. Mach. Learn. Res., 10(Jul):1485–1510,
2009. URL http://www.jmlr.org/papers/

volume10/xu09b/xu09b.pdf.
Yeh, C.-K., Hsieh, C.-Y., Suggala, A., Inouye, D. I., and

Ravikumar, P. K. On the (in)fidelity and sensitivity of
explanations. In Wallach, H., Larochelle, H., Beygelz-
imer, A., dAlché Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32,
pp. 10967–10978. Curran Associates, Inc., 2019.

Yuan, X., He, P., Zhu, Q., and Li, X. Adversarial examples:
Attacks and defenses for deep learning. December 2017.
URL http://arxiv.org/abs/1712.07107.

Concise Explanations of Neural Networks using Adversarial Training

A. Additional Related Work
Section 7 discussed some of the work most directly related to this paper. Here we describe some additional related work.

Adversarial Robustness and Interpretability. Through a very different analysis, (Yeh et al., 2019) show a result closely
related to our Theorem 5.1: the show that adversarial training is analogous to making gradient-based explanations more
“smooth”, which lowers the sensitivity of gradient explanation. The paper of (Noack et al., 2019) considers a question that is
the converse of the one we examine in our paper: They show evidence that models that are forced to have interpretable
gradients are more robust to adversarial examples than models trained in a standard manner. Another recent paper (Kim
et al., 2019) analyzes the effect of adversarial training on the interpretability of neural network loss gradients.

Relation to work on Regularization Benefits of AML. There has been prior work on the regularization benefits of
adversarial training (Xu et al., 2009; Szegedy et al., 2013; Goodfellow et al., 2014; Shaham et al., 2015; Sankaranarayanan
et al., 2017; Tanay & Griffin, 2018), primarily in image-classification applications: when a model is adversarially trained,
its classification accuracy on natural (i.e. un-perturbed) test data can improve. All of this prior work has focused on the
performance-improvement (on natural test data) aspect of regularization, but none have examined the feature-pruning
benefits explicitly. In contrast to this work, our primary interest is in the explainability benefits of adversarial training, and
specifically the ability of adversarial training to significantly improve feature-concentration while maintaining (and often
improving) performance on natural test data.

Adversarial Training vs Feature-Selection. Since our results show that adversarial training can effectively shrink the
weights of irrelevant or weakly-relevant features (while preserving weights on relevant features), a legitimate counter-
proposal might be that one could weed out such features beforehand via a pre-processing step where features with negligible
label-correlations can be “removed” from the training process. Besides the fact that this scheme has no guarantees whatsoever
with regard to adversarial robustness, there are some practical reasons why correlation-based feature selection is not as
effective as adversarial training, in producing pruned models: (a) With adversarial training, one needs to simply try different
values of the adversarial strength parameter " and find a level where accuracy (or other metric such as AUC-ROC) is
not impacted much but model-weights are significantly more concentrated; on the other hand with the correlation-based
feature-pruning method, one needs to set up an iterative loop with gradually increasing correlation thresholds, and each time
the input pre-processing pipeline needs to be re-executed with a reduced set of features. (b) When there are categorical
features with large cardinalities, where just some of the categorical values have negligible feature-correlations, it is not
even clear how one can “remove” these specific feature values, since the feature itself must still be used; at the very least it
would require a re-encoding of the categorical feature each time a subset of its values is “dropped” (for example if a one-hot
encoding or hashing scheme is used). Thus correlation-based feature-pruning is a much more cumbersome and inefficient
process compared to adversarial training.

Adversarial Training vs Other Methods to Train Sparse Logistic Regression Models. (Tan et al., 2013; 2014) propose
an approach to train sparse logistic regression models based on a min-max optimization problem that can be solved by
the cutting plane algorithm. This requires a specially implemented custom optimization procedure. By contrast, `1(")-
adversarial training can be implemented as a simple and efficient “bolt-on” layer on top of existing ML pipelines based on
TensorFlow, PyTorch or SciKit-Learn, which makes it highly practical. Another paper (Abramovich & Grinshtein, 2017)
proposes a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size,
but once again this requires special-purpose optimization code.

B. Discussion of Assumptions
B.1. Loss Functions Satisfying Assumption LOSS-CVX

We show here that several popular loss functions satisfy the Assumption LOSS-CVX.

Logistic NLL (Negative Log Likelihood) Loss.
L(xxx, y;www) = � ln(�(yhwww, xxxi)) = ln(1+exp(�yhwww, xxxi)), which can be written as g(�yhwww, xxxi) where g(z) = ln(1+ e

z
)

is a non-decreasing and convex function.

Hinge Loss
L(xxx, y;www) = (1� yhwww, xxxi)+, which can be written as g(�yhwww, xxxi) where g(z) = (1 + z)

+ is non-decreasing and convex.

Concise Explanations of Neural Networks using Adversarial Training

Softplus Hinge Loss.
L(xxx, y;www) = ln(1 + exp(1� yhwww, xxxi)), which can be written as g(�yhwww, xxxi) where g(z) = ln(1 + e

1+z
), and clearly g

is non-decreasing. Moreover the first derivative of g, g0(z) = 1/(1 + e
�1�z

) is non-decreasing, and therefore g is convex.

B.2. Implications of Assumption FEAT-TRANS

Lemma 1. Given random variables X 0
, Y where Y 2 {±1}, if we define X = X

0 � [E(X 0|Y = 1) + E(X 0|Y = �1)]/2,
then:

E(X|Y) = aY (B.23)

E(Y X) = E[E(Y X|Y)] = E[Y E(X|Y)] = E[Y 2
a] = a (B.24)

E(Y X|Y) = Y E[X|Y] = Y
2
a = a, (B.25)

where a = [E(X 0|Y = 1)� E(X 0|Y = �1)]/2.

Proof. Consider the function f(Y) = E(X 0|Y), and let b0 := f(�1) and b1 := f(1). Since there are only two values of
Y that are of interest, we can represent f(Y) by a linear function aY + c, and it is trivial to verify that a = (b1 � b0)/2

and c = (b1 + b0)/2 are the unique values that are consistent with f(�1) = b0 and f(1) = b1. Thus if X = X
0 � c, then

E(X|Y) = aY , proving (B.23), and the other two properties follow trivially.

C. Expressions for adversarial perturbation and loss-gradient
We show two simple preliminary results for loss functions that satisfy Assumption LOSS-INC: Lemma 2 shows a simple
closed form expression for the `1(")-adversarial perturbation, and we use this result to derive an expression for the gradient
of the `1(")-adversarial loss L(xxx+�

⇤
, y;www) with respect to a weight wi (Lemma 3).

Lemma 2 (Closed form for `1(")-adversarial perturbation). For a data point (xxx, y), given model weights www, if the loss
function L(xxx, y;www) satisfies Assumption LOSS-INC, the `1(")-adversarial perturbation �

⇤ is given by:

�
⇤
= �y sgn(www)", (7)

and the corresponding `1(")-adversarial loss is

L(xxx+�
⇤
, y; www) = g("||www ||1 � yhwww, xxxi) (8)

Proof. Assumption LOSS-INC implies that the loss is non-increasing in yhwww, xi, and therefore the `1(")-perturbation �
⇤ of

x that maximizes the loss would be such that, for each i 2 [d], xi is changed by an amount " in the direction of �y sgn(wi),
and the result immediately follows.

Lemma 3 (Gradient of adversarial loss). For any loss function satisfying Assumption LOSS-INC, for a given data point
(xxx, y), the gradient of the `1(")-adversarial loss is given by:

@L(xxx+�
⇤
, y; www)

@wi
= �g

0
("||www ||1 � yhwww,xxxi) (yxi � sgn(wi)") (9)

Proof. This is straightforward by substituting the expression (7) for �⇤ in g(�yhwww,xxx+�
⇤i), and applying the chain rule.

D. Expectation of SGD Weight Update
The following Lemma will be used to prove Theorem 3.1.

D.1. Upper bound on E[Zf(Z, V)]

Lemma 4 (Upper Bound on expectation of Zf(Z, V) when f is non-increasing in Z, (Z ? V)|Y , and E(Z|Y) = E(Z)).
For any random variables Z, V , if:

• f(Z, V) is non-increasing in Z,

Concise Explanations of Neural Networks using Adversarial Training

• Z, V are conditionally independent given a third r.v. Y , and

• E(Z|Y) = E(Z),

then
E[Zf(Z, V)]  E(Z)E[f(Z, V)] (D.26)

Proof. Let z = E(Z) = E(Z|Y) and note that

E[Zf(Z, V)]� E[Z]E[f(Z, V)] = E[Zf(Z, V)]� zE[f(Z, V)] (D.27)
= E[(Z � z)f(Z, V)] (D.28)

We want to now argue that E[(Z � z)f(z, V)] = 0. To see this, apply the Law of Total Expectation by conditioning on Y :

E[(Z � z)f(z, V)] = E
h
E
⇥
(Z � z)f(z, V)|Y

⇤i

= E
h
E
⇥
(Z � z)|Y

⇤
E
⇥
f(z, V)|Y

⇤i
(since (Z ? V)|Y) (D.29)

= 0. (since E(Z|Y) = E(Z) = z) (D.30)

Since E[(Z � z)f(z, V)] = 0, we can subtract it from the last expectation in (D.28), and by linearity of expectations the
RHS of (D.28) can be replaced by

E
⇥
(Z � z)(f(Z, V)� f(z, V))

⇤
. (D.31)

That fact that f(Z, V) is non-increasing in Z implies that (Z � z)(f(Z, V)� f(z, V))  0 for any value of Z and V , with
equality when Z = z. Therefore the expectation (D.31) is bounded above by zero, which implies the desired result.

Theorem 3.1 (Expected SGD Update in Adversarial Training). For any loss function L satisfying Assumption LOSS-CVX, a
dataset D satisfying Assumption FEAT-TRANS, a subset S of features that are conditionally independent of the rest given the
label y, if a data point (xxx, y) is randomly drawn from D, andxxx is perturbed toxxx0

= xxx+�
⇤, where �⇤ is an `1(")-adversarial

perturbation, then during SGD using the `1(")-adversarial loss L(xxx0
, y;www), the expected weight-updates �i := E�wi for

i 2 S and the corresponding w-weighted average �
w
S satisfy the following properties:

1. If wi = 0 8i 2 S, then for each i 2 S,
�i = g0 ai, (11)

2. and otherwise,
�

w
S  g0(awS � "), (12)

and equality holds in the limit as wi ! 0 8i 2 S,

where g0 is the expectation in (10), ai = E(xiy) is the directed strength of feature xi from Eq. (4), and a
w
S is the

corresponding w-weighted average over S.

Proof. Consider the adversarial loss gradient expression (9) from Lemma 3. For the case where wi = 0 for all i 2 S, for
any given i 2 S, the negative expectation of the adversarial loss gradient is

�i = E
⇥
yxi g

0
("||www ||1 � yhwww, xxxi)

⇤

= E
h
E
⇥
yxi g

0
("||www ||1 � yhwww, xxxi) |y

⇤i
(Law of Total Expectation)

= E
h
y E

⇥
xi g

0
("||www ||1 � yhwww, xxxi) |y

⇤i
,

and in the last expectation above, we note that since wi = 0 8i 2 S, the argument of g0 does not depend on xi for any i 2 S,
and since the features in S are conditionally independent of the rest given the label y, xi is independent of the g

0 term in

Concise Explanations of Neural Networks using Adversarial Training

the inner conditional expectation. Therefore the inner conditional expectation can be factored as a product of conditional
expectations, which gives

�i = E
h
yE(xi|y)E

⇥
g
0
("||www ||1 � yhwww, xxxi) |y

⇤i

= E
h
y
2
aiE

⇥
g
0
("||www ||1 � yhwww, xxxi) |y

⇤i
(Assumption FEAT-TRANS, Eq B.23)

= aiE
h
E
⇥
g
0
("||www ||1 � yhwww, xxxi) |y

⇤i
(since y = ±1)

= aig
0, (D.32)

which establishes the first result.

Now consider the case where wi 6= 0 for at least one i 2 S. Starting with the adversarial loss gradient expression (9) from
Lemma 3, for any i 2 S, multiplying throughout by � sgn(wi) and taking expectations results in

sgn(wi)�i = E
h⇥
yxi sgn(wi)� "

⇤
g
0
("||w||1 � yhwww, xxxi)

i
(D.33)

where the expectation is with respect to a random choice of data-point (xxx, y). The argument of g0 can be written as

"||w||1 � yhwww, xxxi = �
dX

j=1

|wj |(yxj sgn(wj)� "),

and for j 2 [d] if we let Zj denote the random variable corresponding to yxj sgn(wj)� ", then (D.33) can be written as

sgn(wi)�i = E

2

4Zi g
0

0

@�
dX

j=1

|wj |Zj

1

A

3

5 . (D.34)

Taking the |wi|-weighted average of both sides of (D.34) over i 2 S yields

�
w
S =

1P
i2S |wi|

E

2

4g0
0

@�
dX

j=1

|wj |Zj

1

A
X

i2S

(|wi|Zi)

3

5 . (D.35)

If we now define ZS :=
P

i2S(|wi|Zi), the argument of g0 in the expectation above can be written as VS � ZS where VS

denotes the negative sum of |wj |Zj terms over all j 62 S, and thus (D.35) can be written as

�
w
S =

1P
i2S |wi|

E [g
0
(VS � ZS)ZS] . (D.36)

Note that ZS is a function of Y and the features in S, and VS is a function of Y and the features in the complement of S. Since
the features in S are conditionally independent of the rest given the label Y (this is a condition of the Theorem), it follows
that (VS ? ZS)|Y . Since by Assumption LOSS-CVX, g0 is a non-decreasing function, g0(VS � ZS) is non-increasing in
ZS . Thus all three conditions of Lemma 4 are satisfied, with the random variables Z, V, Y and function f in the Lemma
corresponding to random variables ZS , VS , Y and function g

0 respectively in the present Theorem. It then follows from
Lemma 4 that

�
w
S  1P

i2S |wi|
E(ZS)g

0. (D.37)

The definition of ZS , and the fact that E(Zi) = sgn(wi)E(yxi)� " = ai sgn(wi)� " (property (4)), imply

E(ZS) =

X

i2S

[|wi| sgn(wi)ai]� "

X

i2S

|wi|,

and the definition of awS allows us to simplify (D.37) to

�
w
S  g0(awS � "),

Concise Explanations of Neural Networks using Adversarial Training

which establishes the upper bound (12).

To analyze the limiting case where wi ! 0 for all i 2 S, write Eq. (D.36) as follows:

�
w
S = E


g
0
(VS � ZS)

ZSP
i2S |wi|

�
. (D.38)

If we let |wi| ! 0 for all i 2 S, the ZS in the argument of g0 can be set to 0, and we can write the RHS of (D.38) as

�
w
S = E


g
0
(VS)

ZSP
i2S |wi|

�
= E


E

g
0
(VS)

ZSP
i2S |wi|

��� Y
� �

, (D.39)

where the inner conditional expectation can be factored as a product of conditional expectations since (ZS ? VS |Y):

�
w
S = E


E
h
g
0
(VS)

��� Y
i
E


ZSP
i2S |wi|

��� Y
� �

. (D.40)

Now notice that

E(ZS |Y) = E
"
X

i2S

(|wi|Zi)

��� Y
#
=

X

i2S

|wi| E [sgn(wi)Y xi � " | Y] . (D.41)

From Property (5) of datasets satisfying Assumption FEAT-TRANS, E[Y xi|Y] = E(Y xi) = ai, and so the second inner
expectation in (D.40) simplifies to a constant:

E


ZSP
i2S |wi|

��� Y
�
=

P
i2S [|wi| sgn(wi)ai]P

i2S |wi|
� " = a

w
S � ". (D.42)

Eq. (D.40) can therefore be simplified to

�
w
S = E


E
h
g
0
(VS)

��� Y
i �

(a
w
S � ") = g0(awS � "), (D.43)

which shows the final statement of the Theorem, namely, that if wi ! 0 for all i 2 S, then (12) holds with equality.

D.2. Implications of Theorem 3.1

Keeping in mind the interpretations of the w-weighted average quantities awS and �
w
S described in the paragraph after the

statement of Theorem 3.1, we can state the following implications of this result:

If all weights of S are zero, then they grow in the correct direction. When wi = 0 for all i 2 S (recall that S is a
subset of features, conditionally independent of the rest given the label y), the expected SGD update �i for each i 2 S is
proportional to the directed strength ai of feature xi, and if g0 6= 0, this means that on average the SGD update causes the
weight wi to grow from zero in the correct direction. This is what one would expect from an SGD training procedure.

If the weights of S are mis-aligned weights on average, then they shrink at a rate proportional to "+ |awS |. Suppose
for at least one i 2 S, wi 6= 0, and a

w
S < 0, i.e. the weights of the features in S are mis-aligned on average. In this case

by (12), �
w
S < 0, i.e. the weights of the features in S, in aggregate (i.e. in the |wi|-weighted sense) shrink toward zero in

expectation. The aggregate rate of this shrinkage is proportional to "+ |awS |. In other words, all other factors remaining the
same, adversarial training (i.e. with " > 0) shrinks mis-aligned faster than natural training (i.e. with " = 0).

If the weights of S are aligned on average, and " > |awS | then they shrink at a rate proportional to "� |awS |. Suppose
that wi 6= 0 for at least one i 2 S, and the weights of S are aligned on average, i.e. awS > 0. Even in this case, the weights
of S shrink on average, provided the alignment strength a

w
S is dominated by the adversarial "; the rate of shrinkage is

proportional to "� |awS |, by Eq. (12). Thus adversarial training with a sufficiently large " that dominates the average strength
of the features in S, will cause the weights of these features to shrink on average. This observation is key to explaining the
“feature-pruning” behavior of adversarial training: “weak” features (relative to ") are weeded out by the SGD updates.

If the weights of S are aligned, " < |awS |, then the weights of S expand up to a certain point. Consider the case where
at least one of the S weights is non-zero, and the adversarial " does not dominate the average strength a

w
S . Again from Eq.

Concise Explanations of Neural Networks using Adversarial Training

(12), if awS > 0 and " < |awS |, then the upper bound (12) on �
w
S is non-negative. Since the Theorem states that equality

holds in the limit as wi ! 0 for all i 2 S, this means if all |wi| for i 2 S are sufficiently small, the expected SGD update
�

w
S is non-negative, i.e., the S weights expand on average. In other words, the weights of a conditionally independent

feature-subset S, if they are aligned on average, then their aggregate weights expand on average up to a certain point, if "
does not dominate their strength.

Note that Assumption LOSS-CVX implies that g0 � 0, and when the model www is “far” from the optimum, the values of
�yhwww, xxxi will tend to be large, and since g0 is a non-decreasing function (Assumption LOSS-CVX), g0 will be large as well.
So we can interpret g0 as being a proxy for “average model error”. Thus during the initial iterations of SGD, this quantity
will tend to be large and positive, and shrinks toward zero as the model approaches optimality. Since g0 appears as a factor
in (11) and (12), we can conclude that the above effects will be more pronounced in the initial stages of SGD and less so in
the later stages. The experimental results described in Section 6 are consistent with several of the above effects.

E. Generalization of Theorem 3.1 for the multi-class setting
E.1. Setting and Assumptions

Let there be k � 3 classes. For a given data point x 2 Rd, its true label, i 2 [k], is represented by a vector y =

[�1 · · ·� 1| {z }
i-1

1�1 · · ·� 1| {z }
k-i

]. We assume that the input (x,y) is drawn from the distribution D. For this multi-class classification

problem, we assume the usage of the standard one-vs-all classifiers, i.e., there are k different classifiers with the i-th classifier
(ideally) predicting +1 iff the true label of x is i, else it predicts �1. Let w represent the k ⇥ d weight matrix where wi

represents the 1⇥ d weight vector for the i-th classifier. wij represents the j-th entry of wi. Let yi represent the i-th entry
of y.

The assumptions presented in the main paper (Sec. 2) are slightly tweaked as follows and hold true for each of the k

one-vs-all classifiers:

Assumption LOSS-INC: The loss function for each of the one-vs-all classifier is of the form L(x, yi;wi) = g(�yihwi,xi)
where g is a non-decreasing function.

Assumption LOSS-CVX: The loss function for each of the one-vs-all classifier is of the form L(x, yi;wi) = g(�yihwi,xi)
where g is non-decreasing, almost-everywhere differentiable and convex.

Assumption FEAT-INDEP: The features x are conditionally independent given the label yi for the i-th one-vs-
all classifier, i.e., for any two distinct induces s, t, xs is independent of xt given yi, or more compactly, (xs ? xt) | yi.

Assumption FEAT-EXP: For each feature xj , j 2 [d] and the i-th one-vs-all classifier E(xj |yi) = aij .yi for
some constant aij .

Additionally, we introduce a new assumption on the distribution D as follows.

Assumption DIST-EXPC: The input distribution D satisfies the following expectation for a function hi, i 2 [k]

(defined by Eqs. (E.47),(E.48), (E.49)) and constant g⇤ (defined by Eq. (E.46))

E
h
hi(sgn(wij)yi,x,wi, ✏)

i
= 0 (E.44)

Concise Explanations of Neural Networks using Adversarial Training

PrD[✏ < xj < ✏+ ⇢] = 0, ⇢ is a small constant (E.45)
xj � ✏+ ⇢ =) (xj � ✏)g

⇤
i � (xj + ✏)g

0
(�yihwi,x+ �

⇤i) (E.46)
If yisgn(wij) = �1, then

h(sgn(wij)yi,x,wi, ✏) � (xj + ✏)g
⇤
i � (xj � ✏)g

0
(�yihwi,x+ �

⇤i) (E.47)
If yisgn(wij) = 1 ^ xj > ✏, then

�
⇣
(xj � ✏)g

⇤
i � (xj + ✏)g

0
(�yihwi,x+ �

⇤i)
⌘
 h(sgn(wij)yi,x,wi, ✏)  0 (E.48)

If yisgn(wij) = 1 ^ xj  ✏, then
h(sgn(wij)yi,x,wi, ✏) � (xj + ✏)g

0
(�yihwi,x+ �

⇤i)� (xj � ✏)g
⇤
i (E.49)

This assumption is not as restrictive as it may appear. Eq. E.45 can be satisfied naturally for discrete domains. For example,
for images xj 2 {0, 1, 2, · · · , 254, 255}; thus ⇢ 2 (0, 1). For continuous domains, ⇢ can be set to a small value and the
values of xj can be appropriately rounded in the input dataset.
For the rest of the discussion let us consider the case where g0(z) = c (for example for hinge loss function c = 1 for z > �1)
and xj 2 [0, 1]. Now consider,

g
⇤
= (1 + ✏)c/⇢, ⇢ = 0.01

f1(x) := ((x+ ✏)g
⇤ � (x� ✏)c)

f2(x) := ((x+ ✏)c� (x� ✏)g
⇤
)

hi(sgn(wij)yi,x,wi, ✏) =

(
f1(xj) if sgn(wij)yi = +1

f2(xj) otherwise

E[hi(sgn(wij)yi,x,wi, ✏)] =

Z 1

0
Pr[xj |yisgn(wij) = �1] · f1(xj)dx+

Z 1

✏
Pr[xj |yisgn(wij) = +1] · f2(x)dx+

Z ✏

0
Pr[xj |yisgn(wij) = +1] · f2(x)dx

We observe that f1(x) is increasing in x 2 [0, 1], and x � ✏ + � =) f2(x)  0 and f2(x) is decreasing in
x 2 [✏+ �, 1]. Thus intuitively for E(hi) to be zero, Pr[xj |sgn(wij)yi = �1] must have high values for lower magnitudes
of xj (say xj < 0.5), and Pr[xj |sgn(wij)yi = �1] has low values for xj  ✏ and high values for xj � ✏ + �. For
example, let us assume ✏ = 0.1 and that the distributions Pr[xi|sgn(wij)yi = +1] and Pr[xi|sgn(wij)yi = �1] can be
approximated by truncated Gaussian distributions (with appropriate adjustments to ensure Pr[✏ < xj < ✏ + �] = 0])
with means m1 and m2 respectively. Then, it can be seen that there exists hi for m1 < 0.3 and m2 > 0.6 such that E[hi] = 0.

The overall loss function, LT for the multi-class classifier is the sum of the loss functions of each individual
one-vs-all classifiers and is given by

LT (x,y;w) =

kX

i=1

L(x, yi;wi)

=

kX

i=1

g(�yihwi,xi) [From Assumption LOSS-CVX]

The expected SGD update �wij is defined as follows:

�wij =

(
E@LT (x+�⇤,y;w)

@wij
when wi = 0

�sgn(wij)E@LT (x+�⇤,y;w)
@wij

when wi 6= 0
(E.50)

Also let

g
0
i := E[g0(�yihwi,x+ �

⇤i)], i 2 [k] (E.51)

Concise Explanations of Neural Networks using Adversarial Training

Theorem E.1 (Expected SGD Update in Adversarial Training for Multi-Class Classification). For any loss function L
satisfying assumptions LOSS-CVX, FEAT-INDEP and FEAT-EXP, if a data point (x,y) is randomly drawn from D that
satisfies Assumption DIST-EXPC, and x is perturbed to x0

= x+ �
⇤, where �

⇤ is an l1(✏)-adversarial perturbation, then
under the l1(✏)-adversarial loss LT (x,y;w) the expected SGD-update of weight wij , namely �wij satisfies the following
properties

1. If wij = 0, then

�wij = aijg
0
i

2. If wij 6= 0, then

�wij  g̃[aij sgn(wij)� ✏]

g̃ 2 {g0i, g
⇤
i }

Proof. For

�
⇤ 2 Rd s.t (E.52)

LT (x+ �
⇤
,y;w) = Ex,y⇠D[max

||�||1✏
LT (x+ �,y;w)] (E.53)

the shift by ✏ in xj can be in either of the two directions, yisgn(wij) or �yisgn(wij). We have,

@LT (x,y;w))

@wij
=

kX

s=1

@
�
g(�yshws,x+ �

⇤i)
�

@wij
=

@g(�yihwi,x+ �
⇤i)

@wij
(E.54)

Thus by Assumption LOSS-CVX either of the following two equations hold true

@LT (x,y;w))

@wij
= g

0
(�yihwi,x+ �

⇤i)(�yixj + sgn(wij)✏) (E.55)

@LT (x,y;w))

@wij
= g

0
(�yihwi,x+ �

⇤i)(�yixj � sgn(wij)✏) (E.56)

Thus when wij = 0,

�wij = E
h
yixjg

0
(�yihwi,x+ �

⇤i)
i

= aijg
0
i[Follows from the proof in Theorem 3.1 in the paper]

Now let us consider the case when wij 6= 0.
Case I: Eq. E.55 is satisfied
This means that for �

⇤, xj is changed by ✏ in the direction of �yisgn(wij). Thus after multiplying throughout with
�sgn(wij) and taking expectations, we have

�wij = E
h
[yixjsgn(wij)� ✏]g

0
(

dX

l=1,l 6=j

sl✏|wil|+ ✏|wij |� yihwi,xi)
i

(E.57)

where sl represents the corresponding sign for the value ✏|wl| (based on which direction is xl perturbed in) and the
expectation is with respect to a random choice of data point (x,y). Let us define two random variables V and Z as follows

Z = yixjsgn(wij)� ✏ (E.58)

V = �
dX

l=1,l 6=j

|wil|
⇣
yixlsgn(wil)� sl✏

⌘
(E.59)

Concise Explanations of Neural Networks using Adversarial Training

Thus,

�wij = E[Zg
0
(V � |wij |Z)] (E.60)

Let random variable Y correspond to the label yi of the data point. Since Z is a function of feature xj and Y , and V is a
function of the remaining features and Y , Assumption FEAT-INDEP implies (V ? Z)|Y . Additionally by Assumption
FEAT-EXP

E(Z) = E(Z|Y) = ajsgn(wij)� ✏ (E.61)

Since by Assumption LOSS-CVX, g’ is a non-decreasing function, g0(V � |wij |Z) is non-increasing in Z. Thus all three
conditions of Lemma 4 are satisfied, with the random variables Z, V, Y and function f in the Lemma corresponding to
random variables Z, V, Y and function g

0 respectively in the present theorem. Following an analysis similar to the one
presented in the proof for Theorem 3.1, we have

�wij  E(Z)g
0
i = g

0
i[aijsgn(wij)� ✏] (E.62)

Case II: Eq. E.56 is satisfied
In this case, for �⇤ xj is perturbed by ✏ in the direction yisgn(wij). Now multiplying both sides by �sgn(wij)

�wij = (yixjsgn(wij) + ✏)g
0
(�yihwi,x+ �

⇤i) (E.63)

Now let us consider the case when yisgn(wij) = �1. From Assumption DIST-EXPC (Eqs. (E.63),(E.46) and (E.47)), we
have

�wij  (yixjsgn(wij)� ✏)g
⇤
i + hi(sgn(wij)yi,x,wi, ✏) (E.64)

For the case when yisgn(wij) = �1 ^ xj > ✏, again from Eqs. (E.63),(E.46) and (E.48) Eq. (E.64) holds true. Similarly,
for the case of yisgn(wij) = �1 ^ xj  ✏, the validity of Eq. (E.64) can be verified from Eqs. (E.63),(E.46) and (E.49).
Now taking expectations over both sides of Eq. (E.64) results in

�wij  (aijsgn(wij)� ✏)g
⇤
i [From Eq. (E.44)] (E.65)

This concludes our proof.

F. Proof of Lemma 4.1
Lemma 4.1 (IG Attribution for 1-layer Networks). If F (xxx) is computed by a 1-layer network (14) with weights vector www,
then the Integrated Gradients for all dimensions of xxx relative to a baseline uuu are given by:

IG
F
(xxx,uuu) = [F (xxx)� F (uuu)]

(xxx�uuu)�www

hxxx�uuu, wwwi , (15)

where the � operator denotes the entry-wise product of vectors.

Proof. Since the function F , the baseline input uuu and weight vector www are fixed, we omit them from IG
F
(xxx,uuu) and

IG
F
i (xxx,uuu) for brevity. Consider the partial derivative @iF (uuu+↵(xxx�uuu)) in the definition (13) of IGi(xxx). For a given xxx, uuu

and ↵, let vvv denote the vector uuu+↵(xxx�uuu). Then @iF (vvv) = @F (vvv)/@vi, and by applying the chain rule we get:

@iF (vvv) :=
@F (vvv)

@vi
=

@A(hwww, vvvi)
@vi

= A
0
(z)

@hwww, vvvi
@vi

= wiA
0
(z),

where A
0
(z) is the gradient of the activation A at z = hwww, vvvi. This implies that:

@F (vvv)

@↵
=

dX

i=1

✓
@F (vvv)

@vi

@vi

@↵

◆

=

dX

i=1

[wiA
0
(z)(xi � ui)]

= hxxx�uuu, wwwiA0
(z)

Concise Explanations of Neural Networks using Adversarial Training

We can therefore write
dF (vvv) = hxxx�uuu, wwwiA0

(z)d↵,

and since hxxx�uuu, wwwi is a scalar, this yields

A
0
(z)d↵ =

dF (vvv)

hxxx�uuu, wwwi
Using this equation the integral in the definition of IGi(x) can be written as

Z 1

↵=0
@iF (vvv)d↵ =

Z 1

↵=0
wiA

0
(z)d↵

=

Z 1

↵=0
wi

dF (vvv)

hxxx�uuu, wwwi

=
wi

hxxx�uuu, wwwi

Z 1

↵=0
dF (vvv) (F.66)

=
wi

hxxx�uuu, wwwi [F (xxx)� F (uuu)],

where (F.66) follows from the fact that (xxx�uuu) and www do not depend on ↵. Therefore from the definition (13) of IGi(xxx):

IGi(xxx) = [F (xxx)� F (uuu)]
(xi � ui)wi

hxxx�uuu, wwwi ,

and this yields the expression (15) for IG(xxx).

G. Proof of Theorem 5.1
Theorem 5.1 (Equivalence of Stable IG and Adversarial Robustness). For loss functions L(xxx, y;www) satisfying Assumption
LOSS-CVX, the augmented loss inside the expectation (17) equals the `1(")-adversarial loss inside the expectation (2), i.e.

L(xxx, y;www) + max
||xxx0 �xxx ||1"

|| IGLy (xxx,xxx
0
)||1 =

max
||�||1"

L(xxx+�, y;www) (18)

Proof. Recall that Assumption LOSS-CVX implies L(xxx, y;www) = g(�yhwww, xxxi) for some non-decreasing, differentiable,
convex function g. Due to this special form of L(xxx, y;www), the function Ly is a differential function of hwww, xxxi, and by Lemma
4.1 the i’th component of the IG term in (18) is

IG
Ly

i (xxx,xxx
0
; www) =

wwwi(xxx
0 �xxx)i

hwww,xxx0 �xxxi ·
�
g(�yhwww,xxx0i)� g(�yhwww,xxxi),

�

and if we let � = xxx
0 �xxx (which satisfies that k�k1  "), its absolute value can be written as

��g(�yhwww,xxxi � yhwww,�i) � g(�yhwww,xxxi)
��

|hwww,�i| · |wwwi �i|

Let z = �yhwww,xxxi and � = �yhwww,�i, this is further simplified as |g(z+�)�g(z)|
|�| |wi�i|. By Assumption LOSS-CVX, g is

convex, and therefore the “chord slope” [g(z + �)� g(z)]/� cannot decrease as � is increased. In particular to maximize the
`1-norm of the IG term in Eq (18), we can set � to be largest possible value subject to the constraint ||�||1  ", and we
achieve this by setting �i = �y sgn(wwwi)", for each dimension i. This yields � = kwww k1", and the second term on the LHS
of (18) becomes

|g(z + �)� g(z)| ·
P

i |wwwi �i|
|�| = |g(z + "kwww k1)� g(z)| ·

P
i |wwwi |"

kwww k1"
= |g(z + "kwww k1)� g(z)|
= g(z + "kwww k1)� g(z)

Concise Explanations of Neural Networks using Adversarial Training

where the last equality follows because g is nondecreasing. Since L(xxx, y;www) = g(z) by Assumption LOSS-CVX, the LHS
of (18) simplifies to

g(�yhwww,xxxi+ "kwww k1),
and by Eq. (7), this is exactly the `1(")-adversarial loss on the RHS of (18).

H. Aggregate IG Attribution over a Dataset
Recall that in Section 4 we defined IG

F
(xxx,uuu) in Eq. (13) for a single input xxx (relative to a baseline input uuu). This gives us a

sense of the “importance” of each input feature in explaining a specific model prediction F (xxx). Now we describe some
ways to produce aggregate importance metrics over an entire dataset. For brevity let us simply write IG(xxx) and IGi(xxx) and
omit F and uuu since these are fixed for a given model and a given dataset.

Note that in Eq. 13, xxx is assumed to be an input vector in “exploded” space, i.e., all categorical features are (explicitly or
implicitly) one-hot encoded, and i is the position-index corresponding to either a specific numerical feature, or a categorical
feature-value. Thus if i corresponds to a categorical feature-value, then for any input xxx where xi = 0 (i.e. the corresponding
categorical feature-value is not “active” for that input), IGi(xxx) = 0. A natural definition of the overall importance of a
feature (or feature-value) i for a given model F and dataset D, is the average of | IGi(xxx)| over all inputs xxx 2 D, which we
refer to as the Feature Value Impact FVi[D]. For a categorical feature with m possible values, we can further define its
Feature-Impact (FI) as the sum of FVi[D] over all i corresponding to possible values of this categorical feature.

The FI metric is particularly useful in tabular datasets to gain an understanding of the aggregate importance of high-cardinality
categorical features.

I. Definition of the Gini Index
The definition is adapted from (Hurley & Rickard, 2009): Suppose we are given a vector of non-negative values vvv =

[v1, v2, v3, . . . , vd]. The vector is first sorted in non-decreasing order, so that the resulting indices after sorting are
(1), (2), (3), . . . , (d), i.e., v(k) denotes the k’th value in this sequence. Then the Gini Index is given by:

G(vvv) = 1� 2

dX

k=1

v(k)

||vvv ||1

⇣
d� k + 0.5

d

⌘
. (I.67)

Another equivalent definition of the Gini Index is based on plotting the cumulative fractional contribution of the sorted
values. In particular if the sorted non-negative values are [v(1), v(2), . . . , v(d)], and for k 2 [d], we plot k/d (the fraction of

dimensions up to k) vs
Pk

i=1 v(i)
||vvv ||1 (the fraction of values until the k’th dimension), then the Gini Index G(vvv) is 0.5 minus the

area under this curve

The Gini Index by definition lies in [0,1], and a higher value indicates more sparseness. For example if just one of the
vi > 0 and all the rest are 0, then G(v) = 1.0, indicating perfect sparseness. At the other extreme, if all vi are equal to some
positive constant, then G(v) = 0.

J. Experiments
J.1. Experiment Datasets and Methodology

We experiment with 5 public benchmark datasets. Below we briefly describe each dataset and model-training details.

MNIST. This is a classic image benchmark dataset consisting of grayscale images of handwritten digits 0 to 9 in the form
of 28 x 28 pixels, along with the correct class label (0 to 9) (LeCun & Cortes, 2010). We train a Deep Neural Network
consisting of two convolutional layers with 32 and 64 filters respectively, each followed by 2x2 max-pooling, and a fully
connected layer of size 1024. Note that this is identical to the state-of-the-art adversarially trained model used by (Madry
et al., 2017). We use 50,000 images for training, and 10,000 images for testing. When computing the IG vector for an
input image, we use the predicted probability of the true class as the function F in the definition (13) of IG. For training
each of the model types on MNIST, we use the Adam optimizer with a learning rate 10

�4, with a batch size of 50. For
the naturally-trained model (with or without `1-regularization) we use 25,000 training steps. For adversarial training, we
use 100,000 training steps overall, and to generate adversarial examples we use Projected Gradient Descent (PGD) with

Concise Explanations of Neural Networks using Adversarial Training

random start. The PGD hyperparameters depend on the specific " bound on the `1-norm of the adversarial perturbations:
the number of PGD steps was set as " ⇤ 100 + 10, and the PGD step size was set to 0.01.

Fashion-MNIST. This is another image benchmark dataset which is a drop-in replacement for MNIST (Xiao et al., 2017).
Images in this dataset depict wearables such as shirts and boots instead of digits. The image format, the number of classes,
as well as the number of train/test examples are all identical to MNIST. We use the same model and training details as for
MNIST.

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) is a dataset of 32x32 color images with ten classes, each
consisting of 5,000 training images and 1,000 test images. The classes correspond to dogs, frogs, ships, trucks, etc. The
pixel values are in range of [0, 255]. We use a wide Residual Network (He et al., 2016), which is identical to the state-of-art
adversarially trained model on CIFAR-10 used by (Madry et al., 2017). When computing the IG vector for an input image,
we use the predicted probability of the true class as the function F in the definition (13) of IG. For training each of the
model types on CIFAR-10, we use Momentum Optimizer with weight decay. We set momentum rate as 0.9, weight decay
rate as 0.0002, batch size as 128, and training steps as 70,000. We use learning rate schedule: the first 40000 steps, we use
learning rate of 10�1; after 40000 steps and before 60,000 steps, we use learning rate of 10�2; after 60,000 steps, we use
learning rate of 10�3. We use Projected Gradient Descent (PGD) with random start to generate adversarial examples. The
PGD hyperparameters depend on the specific " bound on the `1-norm of the adversarial perturbations: the number of PGD
steps was set as "+ 1, and the PGD step size was set to 1.

Mushroom. This is a standard tabular public dataset from the UCI Data Repository (Dheeru & Karra Taniskidou, 2017).
The dataset consists of 8142 instances, each of which corresponds to a different mushroom species, and has 22 categorical
features (and no numerical features), whose cardinalities are all under 10. The task is to classify an instance as edible
(label=1) or not (label=0). We train a simple logistic regression model to predict the probability that the mushroom is
edible, with a 70/30 train/test split, and use a 0.5 threshold to make the final classification. We train the models on 1-hot
encoded feature vectors, and the IG computation is on these (sparse) 1-hot vectors, with the output function F being the
final predicted probability. We train logistic regression models for this dataset, and for natural model training (with or
without `1-regularization) we use the Adam optimizer with a learning rate of 0.01, batch size of 32, and 30 training epochs.
Adversarial training is similar, except that each example batch is perturbed using the closed-form expression (7).

Spambase. This is another tabular dataset from the UCI Repository, consisting of 4601 instances with 57 numerical
attributes (and no categorical ones). The instances are various numerical features of a specific email, and the task is classify
the email as spam (label = 1) or not (label = 0). The model and training details are similar to those for the mushroom dataset.

The code for all experiments (included along with the supplement) was written using Tensorflow 2.0. The following
subsections contain results that were left out of the main body of the paper due to space constraints.

J.2. Mushroom Dataset: Average IG-based Feature Impact

We contrast between the weights learned by natural training and adversarial training with " = 0.1. Since all features in this
dataset are categorical, many with cardinalities close to 10, there are too many features in the “exploded” space to allow a
clean display, so we instead look at the average Feature Impact (FI, defined in Section H) over the (natural, unperturbed) test
dataset, see Figure J.4. It is worth noting that several features that have a significant impact on the naturally-trained model
have essentially no impact on the adversarially trained model.

J.3. Spambase: Average IG-based Feature Impact

We fix " = 0.1 for adversarial training and show in Figure J.5 a bar-plot comparing the average Feature-Impacts (FI),
between naturally-trained and adversarially-trained models. Note how the adversarially trained model has significantly
fewer features with non-negligible impacts, compared to a naturally trained model.

J.4. MNIST, Fashion-MNIST and CIFAR-10: examples

Figs. J.6, J.7 and J.8 below show IG-based saliency maps of images correctly classified by three model types: Naturally
trained un-regularized model, naturally trained model with `1-regularization, and an `1(")-adversarially trained model.
The values of � and " are those indicated in Table 1. In each example, all three models predict the correct class with high
probability, and we compare the Gini Indices of the IG-vectors (with respect to the predicted probability of the true class).

Concise Explanations of Neural Networks using Adversarial Training

Figure J.4: Comparison of aggregate Feature Impact (FI) for a naturally-trained model, and an adversarially-trained model with " = 0.1,
on the mushroom dataset. The features are arranged left to right in decreasing order of the FI value in the naturally-trained model.

The sparseness of the saliency maps of the adversarially-trained models is visually striking compared to those of the other
two models, and this is reflected in the Gini Indices as well. Figs. J.9 and J.10 show analogous results, but using the
DeepSHAP (Lundberg & Lee, 2017) attribution method instead of IG. The effect of adversarial training on the sparseness
of the saliency maps is even more visually striking when using DeepSHAP, compared to IG (We had difficulty running
DeepSHAP on CIFAR-10 data, so we are only able to show results for DeepSHAP on MNIST and Fashion-MNIST).

Concise Explanations of Neural Networks using Adversarial Training

Figure J.5: Comparison of aggregate Feature Impact (FI) for a naturally-trained model, and an adversarially-trained model with " = 0.1,
on the spambase dataset. The features are arranged left to right in decreasing order of their FI in the naturally-trained model. To avoid
clutter, we show only features that have an FI at least 5% of the highest FI (across both models).

Concise Explanations of Neural Networks using Adversarial Training

Natural Training L1-norm Regularization Adversarial Training

Gini: 0.9271 Gini: 0.9266 Gini: 0.9728

(a) For all images, the models give correct prediction – 6.

Gini: 0.8112 Gini: 0.8356 Gini: 0.9383

(b) For all images, the models give correct prediction – 3.

Gini: 0.9315 Gini: 0.9366 Gini: 0.9738

(c) For all images, the models give correct prediction – 4.

Gini: 0.8843 Gini: 0.8807 Gini: 0.9595

(d) For all images, the models give correct prediction – 2.

Figure J.6: Some examples on MNIST. We can see the saliency maps (also called feature importance maps), computed via
IG, of adversarially trained model are much sparser compared to other models.

Concise Explanations of Neural Networks using Adversarial Training

Natural Training L1-norm Regularization Adversarial Training

Gini: 0.8190 Gini: 0.8183 Gini: 0.8532

(a) For all images, the models give correct prediction – Dress.

Gini: 0.5777 Gini: 0.5925 Gini: 0.7024

(b) For all images, the models give correct prediction – Pullover.

Gini: 0.7698 Gini: 0.7784 Gini: 0.7981

(c) For all images, the models give correct prediction – Bag.

Gini: 0.6840 Gini: 0.6899 Gini: 0.7503

(d) For all images, the models give correct prediction – T-shirt.

Figure J.7: Some examples on Fashion-MNIST. We can see the saliency maps (also called feature importance maps),
computed via IG, of adversarially trained model are much sparser compared to other models.

Concise Explanations of Neural Networks using Adversarial Training

Natural Training L1-norm Regularization Adversarial Training

Gini: 0.6395 Gini: 0.6556 Gini: 0.7309

(a) For all images, the models give correct prediction – automobile.

Gini: 0.5736 Gini: 0.6175 Gini: 0.6914

(b) For all images, the models give correct prediction – airplane.

Gini: 0.5505 Gini: 0.5844 Gini: 0.6778

(c) For all images, the models give correct prediction – ship.

Gini: 0.6150 Gini: 0.6198 Gini: 0.7084

(d) For all images, the models give correct prediction – bird.

Figure J.8: Some examples on CIFAR-10. We can see the saliency maps (also called feature importance maps), computed
via IG, of adversarially trained model are much sparser compared to other models.

Concise Explanations of Neural Networks using Adversarial Training

Natural Training L1-norm Regularization Adversarial Training

Gini: 0.8982 Gini: 0.9000 Gini: 0.9528

(a) For all images, the models give correct prediction – 0.

Gini: 0.9156 Gini: 0.9156 Gini: 0.9685

(b) For all images, the models give correct prediction – 7.

Gini: 0.9373 Gini: 0.9452 Gini: 0.9773

(c) For all images, the models give correct prediction – 3.

Gini: 0.9476 Gini: 0.9473 Gini: 0.9825

(d) For all images, the models give correct prediction – 5.

Figure J.9: Some examples on MNIST. We can see the saliency maps (also called feature importance maps), computed via
DeepSHAP, of adversarially trained model are much sparser compared to other models.

Concise Explanations of Neural Networks using Adversarial Training

Natural Training L1-norm Regularization Adversarial Training

Gini: 0.6749 Gini: 0.6676 Gini: 0.7435

(a) For all images, the models give correct prediction – Pullover.

Gini: 0.8322 Gini: 0.8628 Gini: 0.8953

(b) For all images, the models give correct prediction – Trouser.

Gini: 0.8343 Gini: 0.8374 Gini: 0.8683

(c) For all images, the models give correct prediction – Bag.

Gini: 0.7701 Gini: 0.7575 Gini: 0.7920

(d) For all images, the models give correct prediction – Ankle boot.

Figure J.10: Some examples on Fashion-MNIST. We can see the saliency maps (also called feature importance maps),
computed via DeepSHAP, of adversarially trained model are much sparser compared to other models.

