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Abstract
The task of text classification is usually divided
into two stages: text feature extraction and classi-
fication. In this standard formalization, categories
are merely represented as indexes in the label vo-
cabulary, and the model lacks for explicit instruc-
tions on what to classify. Inspired by the current
trend of formalizing NLP problems as question
answering tasks, we propose a new framework
for text classification, in which each category
label is associated with a category description.
Descriptions are generated by hand-crafted tem-
plates or using abstractive/extractive models from
reinforcement learning. The concatenation of the
description and the text is fed to the classifier to
decide whether or not the current label should be
assigned to the text. The proposed strategy forces
the model to attend to the most salient texts with
respect to the label description, which can be re-
garded as a hard version of attention, leading to
better performances. We observe significant per-
formance boosts over strong baselines on a wide
range of text classification tasks including single-
label classification, multi-label classification and
multi-aspect sentiment analysis.

1. Introduction
Text classification (Kim, 2014; Joulin et al., 2016; Yang
et al., 2016) is a fundamental problem in natural language
processing. The task is to assign one or multiple category
label(s) to a sequence of text tokens. It has broad applica-
tions such as sentiment analysis (Pang et al., 2002; Maas
et al., 2011; Socher et al., 2013; Tang et al., 2014; 2015b),
aspect sentiment classification (Jo & Oh, 2011; Tang et al.,
2015a; Wang et al., 2015; Nguyen & Shirai, 2015; Tang
et al., 2016b; Pontiki et al., 2016; Sun et al., 2019b), topic
classification (Schwartz et al., 1997; Quercia et al., 2012;
Wang & Manning, 2012), spam detection (Ott et al., 2011;
2013; Li et al., 2014), etc.
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Standardly, text classification is divided into the following
two steps: (1) text feature extraction: a sequence of texts
is mapped to a feature representation based on handcrafted
features such as bag of words (Pang et al., 2002), topics
(Blei et al., 2003; Mcauliffe & Blei, 2008), or distributed
vectors using neural models such as LSTMs (Hochreiter
& Schmidhuber, 1997), CNNs (Kalchbrenner et al., 2014;
Kim, 2014) or recursive nets (Socher et al., 2013; Irsoy &
Cardie, 2014; Li et al., 2015; Bowman et al., 2016); and
(2) classification: the extracted representation is fed to a
classifier such as SVM, logistic regression or the softmax
function to output the category label.

This standard formalization for the task of text classification
has an intrinsic drawback: categories are merely represented
as indexes in the label vocabulary, and lack for explicit
instructions on what to classify. Labels can only influence
the training process when the supervision signals are back
propagated to feature vectors extracted from the feature
extraction step. Class indicators in the text, which might
just be one or two keywords, could be deeply buried in the
huge chunk of text, making it hard for the model to separate
grain from chaff. Additionally, signals for different classes
might entangle in the text. Take the task of aspect sentiment
classification (Lei et al., 2016) as an example, the goal of
which is to classify the sentiment of a specific aspect of a
review. A review might contain diverse sentiments towards
different aspects and that they are entangled together, e.g.

“clean updated room. friendly efficient staff . rate was too
high.”. Under the standard formalization, the label of a text
sequence is merely an index indicating the sentiment of a
predefined but not explicitly mentioned aspect from the view
of the model. The model needs to first learn to associate
the relevant text with the target aspect, and then decide the
sentiment, which inevitably adds to the difficulty.

Inspired by the current trend of formalizing NLP problems
as question answering tasks (Levy et al., 2017; McCann
et al., 2018; Li et al., 2019a;b; Gardner et al., 2019; Raffel
et al., 2019), we propose a new framework for text classifi-
cation by formalizing it as a SQuAD-style machine reading
comprehension task. The key point for this formalization is
to associate each class with a class description to explicitly
tell the model what to classify. For example, the task of
classifying hotel reviews with positive location in aspect
sentiment classification for review x = {x1, x2, ..., xn} is
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transformed to assigning a “yes/no” label to “[CLS] positive
location [SEP] x”, indicating whether the attribute towards
the location of the hotel in review x is positive. By explic-
itly mentioning what to classify, the incorporation of class
description forces the model to attend to the most salient
texts with respect to the label, which can be regarded as a
hard version of attention. This strategy provides a straight-
forward resolution to the issues mentioned in the previous
paragraph.

One key issue with this method is how to obtain category
descriptions. Recent models that cast NLP problems as QA
tasks (Li et al., 2019a;b; Gardner et al., 2019) use hand-
crafted templates to generate descriptions, and have two
major drawbacks: (1) it is labor-intensive to predefine de-
scriptions for each category, especially when the number
of category is large; and (2) the model performance is sen-
sitive to how the descriptions are constructed and human-
generated templates might be sub-optimal. To handle this
issue, we propose to automatically generate descriptions
using reinforcement learning. The description can be gen-
erated in an extractive way, extracting a substring of the
input text and using it as the description, or in an abstractive
way, using generative model to generate a string of tokens
and using it as the description. The model is trained in an
end-to-end fashion to jointly learn to generate proper class
descriptions and to assign correct class labels to texts.

We are able to observe significant performance boosts
against strong baselines on a wide range of text classification
benchmarks including single-label classification, multi-label
classification and multi-aspect sentiment analysis.

2. Related Work
2.1. Text Classification
Neural models such as CNNs (Kim, 2014), LSTMs (Hochre-
iter & Schmidhuber, 1997; Tang et al., 2016a), recursive
nets (Socher et al., 2013) or Transformers (Vaswani et al.,
2017; Devlin et al., 2019), have been shown to be effective
in text classification. Joulin et al. (2017); Bojanowski et al.
(2017) proposed fastText, representing the whole text using
the average of embeddings of constituent words.

There has been work investigating the rich information be-
hind class labels. In the literature of zero-shot text classifi-
cation, knowledge of labels are incorporated in the form of
word embeddings (Yogatama et al., 2017; Rios & Kavuluru,
2018), or class descriptions (Zhang et al., 2019; Srivas-
tava et al., 2018). Wang et al. (2018a) proposed a label-
embedding attentive model that jointly embeds words and
labels in the same latent space, and the text representations
are constructed directly using the text-label compatibility.
Sun et al. (2019a) constructed auxiliary sentences from the
aspect in the task of aspect based sentiment analysis (ABSA)
by using four different sentence templates, and thus con-

verted ABSA to a sentence-pair classification task. Wang
et al. (2019) proposed to frame ABSA towards question
answering (QA), and designed an attention network to se-
lect aspect-specific words, which alleviates the effects of
noisy words for a specific aspect. Descriptions in Sun et al.
(2019a) and Wang et al. (2019) are generated from crowd-
sourcing. This work takes a major step forward, in which
the model is able to learn to automatically generate proper
label descriptions from reinforcement learning.

2.2. Formalizing NLP Tasks as Question Answering
Question Answering MRC models (Rajpurkar et al.,
2016; Seo et al., 2016; Wang et al., 2016; Wang & Jiang,
2016; Xiong et al., 2016; 2017; Wang et al., 2016; Shen
et al., 2017; Chen et al., 2017b; Rajpurkar et al., 2018) ex-
tract answer spans from passages given questions. The task
can be formalized as two multi-class classification tasks, i.e.,
predicting the starting and ending positions of the answer
spans given questions. The context can either be prepared
in advance (Seo et al., 2017) or selected from a large scale
open-domain corpus such as Wikipedia (Chen et al., 2017a).

Query Generation In the standard version of MRC QA
systems, queries are defined in advance. Some of recent
works have studied how to generate queries for better an-
swer extraction. Yuan et al. (2017) combines supervised
learning and reinforcement learning to generate natural lan-
guage descriptions; Yang et al. (2017) trained a generative
model to generate queries based on unlabeled texts to train
QA models; Du et al. (2017) framed the task of description
generation as a seq2seq task, where descriptions are gener-
ated conditioning on the texts; Zhao et al. (2018) utilized the
copy mechanism (Gu et al., 2016; Vinyals et al., 2015) and
Kumar et al. (2018) proposed a generator-evaluator frame-
work that directly optimizes objectives. Our work is similar
to Yuan et al. (2017) and Kumar et al. (2018) in terms of
description generation, in which reinforcement learning is
applied for description/query generation.

Formalizing NLP tasks as QA There has recently been
a trend of casting NLP problem as QA tasks. Gardner
et al. (2019) posed three motivations for using question an-
swering as a format for a particular task, i.e., to fill human
information needs, to probe a system’s understanding of
some context and to transfer learned parameters from one
task to another. , Levy et al. (2017) transformed the task of
relation extraction to a QA task, in which each relation type
r(x,y) is characterized as a question q(x) whose answer
is y. In a followup, Li et al. (2019b) formalized the task of
entity-relation extraction as a multi-turn QA task by utiliz-
ing a template-based procedure to construct descriptions for
relations and extract pairs of entities between which a rela-
tion holds. Li et al. (2019a) introduced a QA framework for
the task of named entity recognition, in which the extraction
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of an entity within the text is formalized as answering ques-
tions like ”which person is mentioned in the text?”. McCann
et al. (2018) built a multi-task question answering network
for different NLP tasks, for example, the generation of a
summary given a chunk of text is formalized as answering
the question “What is the summary?”. Wu et al. (2019)
formalized the task of coreference as a question answering
task.

3. description-based Text Classification
Consider a sequence of text x = {x1, · · · , xL} to classify,
where L denotes the length of the text x. Each x is associ-
ated with a class label y ∈ Y = [1, N ], where N denotes
the number of the predefined classes. It is worth noting that
in the task of single-label classification, y can take only one
value. While for the multi-label classification task, y can
take multiple values.

We use BERT (Devlin et al., 2019) as the backbone to illus-
trate how the proposed method works. It is worth noting that
the proposed method is a general one and can be easily ex-
tended to other model bases with minor adjustments. Under
the formalization of the description-based text classification,
each class y is associated with a unique natural language
description qy = {qy1, · · · , qyL}. The description encodes
prior information about the label and facilitates the process
of classification.

For an N-class multi-class classification task, empirically,
one can train N binary classifiers or an N-class classifier, as
will be separately described below.

N binary classifiers For the strategy of training N binary
classifers, we iterate over all qy to decide whether the label
y should be assigned to a given instance x. More concretely,
we first concatenate the text x and with the description qy
to generate {[CLS]; qy; [SEP];x}, where [CLS] and [SEP]
are special tokens. Next, the concatenated sequence is fed
to transformers in BERT, from which we we obtain the con-
textual representations h[CLS]. Now that the representation
h[CLS] has encoded interactions between the text and the
description, another two-layer feed forward network is used
to transform h[CLS] to a real value between 0 and 1 by using
the sigmoid function, representing the probability of label y
being assigned to the text x, as follows:

p(y|x) = sigmoid(W2ReLU(W1h[CLS] + b1) + b2) (1)

where W1,W2, b1, b2 are parameters to optimize. At test
time, for a multi-label classification task, in which multiple
labels can be assigned to an instance, the resulting label set
is as follows:

ỹ = {y | p(y|x) > 0.5,∀y ∈ Y} (2)

and for single-label classification, the resulting label set is
as follows:

ỹ = argmax
y

({p(y|x),∀y ∈ Y}) (3)

One N-class classifier For the strategy of training an N-
class classifier, we concatenate all descriptions with the
input x, which is given as follows:

{[CLS1]; q1; [CLS2]; q2; ...; [CLS-N]; qN ; [SEP];x}

where [CLSn] 1 ≤ n ≤ N are the special place-holding to-
kens. The concatenated input is then fed to the transformer,
from which we obtain the the contextual representations
h[CLS1], h[CLS2], ..., h[CLSN]. The probability of assigning
class n to instance x is obtained by first mapping h[CLSn]
to scalars, and then outputting them to a softmax function,
which is given as follows:

an = ĥT · h[CLSn]

p(y = n|x) = exp (an)∑t=N
t=1 exp (at)

(4)

It is worth noting that the on N-class classifier strategy can
not handle the multi-label classification case.

4. Description Construction
In this section, we describe the three proposed strategies to
construct descriptions: the template (Tem) strategy (Sec-
tion 4.1), the extractive (Ext) strategy (Section 4.2) and the
abstractive (Abs) strategy (Section 4.3). An example of
descriptions constructed by different strategies is shown in
Figure 1.

4.1. The Template Strategy
As previous works (Li et al., 2019b;a; Levy et al., 2017) did,
the most straightforward way to construct label descriptions
is to use handcrafted templates. Templates can come from
various sources, such as Wikipedia definitions, or human
annotators. Example explnanations for some of the 20 news
categoroes are shown in Table 1. More comprehensive tem-
plate descriptions are listed in the supplementary material.

4.2. The Extractive Strategy
Generating descriptions using templates is suboptimal since
(1) it is labor-intensive to ask humans to write down tem-
plates for different classes, especially when the number of
classes is large; and (2) inappropriately constructed tem-
plates will actually lead to inferior performances, as demon-
strated in Li et al. (2019a). The model should have the
ability to learn to generate the most appropriate descriptions
regarding different classes conditioning on the current text
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Text X

sure sounds like they got a ringer.  the 325is i drove was definitely faster than that.  if you want to quote numbers, my 

AW AutoFile shows 0-60 in 7.4, 1/4 mile in 15.9.  it quotes Car and Driver's figures of 6.9 and 15.3.  …  i don't know 

how the addition of variable valve timing for 1993 affects it. but don't take my word for it.  go drive it.

Template Description
A car (or automobile) is a 

wheeled motor ... transport 
people rather than goods.

Abstractive Description
the car I drive is fast

Extractive Description

the 325is i drove was definitely 

faster than that

Figure 1. An example of descriptions constructed via different strategies. Text is from the 20news dataset.

Label Description

COMP.SYS.MAC.HARDWARE The Macintosh is a family of personal computers designed ... since January 1984.
REC.AUTOS A car (or automobile) is a wheeled motor ... transport people rather than goods.
TALK.POLITICS.MISC Politics is a set of activities ... making decisions that apply to groups of members.

Table 1. Examples of template descriptions drawn from Wikipedia for the 20news dataset. For other labels and datasets, we also use
their Wikipedia definitions as template descriptions.

to classify, and the appropriateness of the generated descrip-
tions should directly correlate with the final classification
performance. To this end, we describe two ways to generate
descriptions, the extractive strategy, as will be detailed in
this subsection, and the abstractive strategy, which will be
detailed in the next subsection.

For the extractive strategy, for each input x =
{x1, · · · , xT }, the extractive model generates a descrip-
tion qyx for each class label y, where qyx is a substring of
x. As can be seen, for different inputs x, the descriptions
for the same class can be different. For the golden class y
that should be assigned to x, there should be a substring
of x relevant to y, and this substring will be chosen as the
description for y. But classes that should not be assigned,
there might not be corresponding substrings in x that can
be used as descriptions. To deal with this issue, we append
N dummy tokens to x, providing the model the flexibil-
ity of handling the case where there is no corresponding
substring within x to a class label. If the extractive model
picks a dummy token, it will use hand-crafted templates for
different categories as descriptions.

To back-propagate the signal indicating which span con-
tributes how much to the classification performance, we
turn to reinforcement learning, an approach that encourages
the model to act toward higher rewards. A typical reinforce-
ment learning algorithm consists of three components: the
action a, the policy π and the reward R.

Action and Policy For each class label y, the action is
to pick a text span {xis , · · · , xie} from x to represent qyx.
Since a span is a sequence of continuous tokens in the text,

we only need to select the starting index is and the ending
index ie, denoted by ais,ie .

For each class label y, the policy π defines the probability
of selecting the starting index is and the ending index ie.
Following previous work (Chen et al., 2017a; Devlin et al.,
2019), each token xk within x is mapped to a representation
hk using BERT, and the probability of xi being the starting
index and the ending index of qyx are given as follows:

Pstart(y, k) =
exp(W yshk)∑t=T
t=1 exp(W ysht)

Pend(y, k) =
exp(W yehk)∑t=T
t=1 exp(W yeht)

(5)

where W ys and W ye are 1×K dimensional vectors to map
ht to a scalar. Each class y has a class-specific W ys and
W ye. The probability of a text span with the starting index
is and ending index ie being the description for class y ,
denoted by Pspan(y, ais,ie), is given as follows:

Pspan(y, ais,ie) = Pstart(y, is)× Pend(y, ie) (6)

Reward Given x and a description qyx, the classification
model in Section 3 will output the probability of assigning
the correct label to x, which will be used as the reward
to update both the classification model and the extractive
model. Specifically, for multi-class classification, all qyx
are concatenated with x, and the reward is given as follows

R(x, qyxfor all y) = p(y = n|x) (7)

where n is the gold label for x.
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For N-binary-classification model, each qyx is separately
concatenated with x, and the reward is given as follows:

R(x, qyx) = p(y = ŷ|x) (8)

where ŷ is the golden binary label. 1

REINFORCE To find the optimal policy, we use the
REINFORCE algorithm (Williams, 1992), a kind of pol-
icy gradient method which maximizes the expected reward
Eπ[R(x, qy)]. For each generated description qyx and the
corresponding x, we define its loss as follows:

L = −Eπ[R(qyx, x)] (9)

REINFORCE approximates the expectation in Eq. 9 with
sampled descriptions from the policy distribution. The gra-
dient to update parameters is given as follows:

∇L ≈ −
B∑
i=1

∇ log π(ais,ie |x, y)[R(qy)− b] (10)

where b denotes the baseline value, which is set to the av-
erage of all previous rewards. The extractive policy is ini-
tialized to generate dummy tokens as descriptions. Then
the extractive model and the classification model are jointly
trained based on the reward.

4.3. The Abstractive Strategy
An alternative generation strategy is to generate descrip-
tions using generation models. The generation model uses
the sequence-to-sequence structure (Sutskever et al., 2014;
Vaswani et al., 2017) as a backbone. It takes x as an input,
and generate different descriptions qyx for different x.

Action and Policy For each class label y, the action is to
generate the description qyx = {q1, · · · , qL}, defined by pθ.
The policy PSEQ2SEQ defines the probability of generating the
entire string of the description given x, which is equivalent
to generating each token within the description, and is given
as follows:

PSEQ2SEQ(qy|x) =
L∏
i=1

pθ(qi|q<i, x, y) (11)

where q<i denotes all the already generated tokens.
PSEQ2SEQ(qy|x) for different class y share the structures
and parameters, with the only difference being that a class-
specific embedding hy is appended to each source and target
token.

1Experiments show that using the probability as the reward
performs better than using the log probability.

Reward The RL reward and the training loss for the ab-
stractive strategy are similar to those for the extractive strat-
egy, as in Eq. 7 and in Eq. 9. A widely recognized challenge
for training language models using RL is the high variance,
since the action space is huge (Ranzato et al., 2015; Yu et al.,
2017; Li et al., 2017). To deal with this issue, we use the
REGS – Reward for Every Generation Step proposed by
Li et al. (2017). Unlike standard REINFORCE training, in
which the same reward is used to update the probability of
all tokens within the description, REGS trains a a discrim-
inator that is able to assign rewards to partially decoded
sequences. The gradient is given by:

∇L ≈ −
L∑
i=1

∇ log π(qi|q<i, hy)[R(q<i)− b(q<i)] (12)

Here R(q<i) denotes the reward given the partially decoded
sequence q<i as the description, and b(q<i) denotes the
baseline.

The generative policy PSEQ2SEQ is initialized using a pre-
trained encoder-decoder with input being x and output be-
ing template descriptions. Then the description generation
model and the classification model are jointly trained based
on the reward.

5. Experiments
5.1. Benchmarks
We use the following widely used benchmarks to test the
proposed model. The detailed descriptions for benchmarks
are found in the supplementary material.

• Single-label Classification: The task of single-label
classification is to assign a single class label to the text
to classify. We use the following widely used bench-
marks: (1) AGNews: Topic classification over four
categories of Internet news articles (Del Corso et al.,
2005). (2) 20newsgroups2: The 20 Newsgroups data
set is a collection of documents over 20 different news-
groups. (3) DBPedia: Ontology classification over
fourteen non-overlapping classes picked from DBpe-
dia 2014 (Wikipedia). (4) Yahoo! Answers: Topic
classification ten largest main categories from Yahoo!
Answers. (5) Yelp Review Polarity (YelpP): Binary
sentiment classification over yelp reviews. (6) IMDB:
Binary sentiment classification over IMDB reviews.

• Multi-label Classification: The goal of multi-label
classification is to assign multiple class labels to a
single text. We use (1) Reuters3: A multi-label
benchmark dataset for document classification with
90 classes. (2) AAPD: The arXiv Academic Paper
dataset (Yang et al., 2018) with 54 classes.

2http://qwone.com/˜jason/20Newsgroups/
3https://martin-thoma.com/nlp-reuters/

http://qwone.com/~jason/20Newsgroups/
https://martin-thoma.com/nlp-reuters/
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Table 2. Test error rates on the AGNews, 20news, DBPedia, Yahoo, Yelp P and IMDB datasets for single-label classification.

Model AGNews 20news DBPedia Yahoo YelpP IMDB

Char-level CNN (Zhang et al., 2015) 8.5 – 1.4 28.8 4.4 –
VDCNN (Conneau et al., 2016) 8.7 – 1.3 26.6 4.3 –
DPCNN (Johnson & Zhang, 2017) 6.9 – 0.91 23.9 2.6 –
Label Embedding (Wang et al., 2018b) 7.5 – 1.0 22.6 4.7 –

LSTMs (Zhang et al., 2015) 13.9 22.5 1.4 29.2 5.3 9.6
Hierarchical Attention (Yang et al., 2016) 11.8 19.6 1.6 24.2 5.0 8.0
D-LSTM(Yogatama et al., 2017) 7.9 – 1.3 26.3 7.4 –
Skim-LSTM (Seo et al., 2018) 6.4 – – – – 8.8

BERT (Devlin et al., 2018) 5.9 16.9 0.72 22.7 2.4 6.8

Description (Tem.) 5.2 15.8 0.65 22.1 2.2 5.8
Description (Ext.) 5.0 15.6 0.63 22.0 2.1 5.5
Description (Abs.) 5.1 15.4 0.62 21.8 2.0 5.5

Table 3. Test error rates on the Reuters and AAPD datasets for
multi-label classification.

Model Reuters AAPD

LSTMs (Zhang et al., 2015) 16.8 33.5
Hi-Attention (Yang et al., 2016) 13.9 30.3
Label-Emb (Wang et al., 2018b) 13.6 29.9

LSTMreg (Adhikari et al., 2019a) 13.0 29.5
BERT (Adhikari et al., 2019b) 11.0 26.6

Description (Tem.) 10.3 25.9
Description (Ext.) 10.1 26.0
Description (Abs.) 10.0 25.7

• Multi-aspect Sentiment Analysis: The goal of the
task is to test a model’s ability to identify entangled
sentiments for different aspects of a review. Each re-
view might contain diverse sentiments towards differ-
ent aspects. Widely used datasets include (1) the Beer-
Advocate review dataset over aspects appearance,
smell. Lei et al. (2016) processed the dataset by
picking examples with less correlated aspects, lead-
ing to a de-correlated subset for each aspect (aroma)
and palate. (2) the hotel TripAdvisor review
(Li et al., 2016) over four aspects, i.e., service,
cleanliness, location and rooms. Li et al.
(2016) processed the dataset by picking examples with
less correlated aspects. There are three classes, posi-
tive, negative and neutral for both datasets.

5.2. Baselines
We implement the following widely-used models as base-
lines. Hyper-parameters for baselines are tuned on the de-
velopment sets to enforce apple-to-apple comparison. In
addition, we also copy results of models from relevant pa-
pers.

Table 4. Test error rates on the BeerAdvocate (Beer), TripAdvisor
(Trip) for multi-aspect sentiment classification.

Model Beer Trip

LSTMs (Zhang et al., 2015) 34.9 47.6
Hi-Attention (Yang et al., 2016) 33.3 42.2
Label-Emb (Wang et al., 2018b) 32.0 43.5

BERT (Devlin et al., 2018) 27.8 35.6

Description (Tem.) 17.4 18.1
Description (Ext.) 16.0 17.0
Description (Abs.) 15.6 17.6

• LSTM: The vanilla LSTM model (Zhang et al., 2015),
which first maps the text sequence to a vector using
LSTMs (Hochreiter & Schmidhuber, 1997). For single-
label datasets, the obtained document embeddings are
output to the softmax layer. For multi-label datasets,
we follow Adhikari et al. (2019b), in which each label
is associated with a binary sigmoid function, and then
the document embedding is fed to output the class
label.

• Hierarchical Attention (Yang et al., 2016): The hier-
archical attention model which uses word-level atten-
tion to obtain sentence embeddings and uses sentence-
level attention to obtain document embeddings. We
follow the strategy adopted in the LSTM model to
handle multi-label tasks.

• Label Embedding : Model proposed by Wang et al.
(2018b) that jointly learns the label embeddings and
document embeddings.

• BERT: We use the BERT-base model (Devlin et al.,
2018; Adhikari et al., 2019b) as the baseline. We follow
the standard classification setup in BERT, in which the
embedding of [CLS] is fed to a softmax layer to output
the probability of a class being assigned to an instance.
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We follow the strategy adopted in the LSTM model to
handle multi-label tasks.

5.3. Results and Discussion
Table 2 presents the results for single-label classification
tasks. The three proposed strategies consistently outperform
the BERT baseline. Specifically, the template-based strategy
outperforms BERT, decreasing error rates by i.e., -0.7 on
AGNews, -1.1 on 20news, -0.07 on DBPedia, -0.6 on Yahoo,
-0.2 on YelpP and -1.0 on IMDB. The extractive and abstrac-
tive strategies consistently outperform the template-based
strategy, which is because of their ability to automatically
learn the proper descriptions. The extractive strategy per-
forms better than the abstractive strategy on the AGNews
and IMDB, but worse on the others.

Table 3 shows the results on the two multi-label classifi-
cation datasets – Reuters and AAPD. Again, we observe
performance gains over the BERT baseline on both datasets
in terms of F1 score.

Table 4 shows the experimental results on the two multi-
aspect sentiment analysis datasets BeerAdvocate and Tri-
pAdvisor. Surprisingly huge gains are observed on both
datasets. Specifically, for BeerAdvocate, our method (Abs.)
decreases the error rate from 27.8 to 15.6, and for TripAd-
visor, our method (Ext.) decreases the error rate from 35.6
to 17.0. The explanation for this huge boost is as follows:
both datasets are deliberately constructed in a way that each
review contains aspects with opposite sentiments entangling
with each other. This makes it extremely hard for the model
to learn to jointly identify the target aspect and the senti-
ment. The incorporation of description gives the model the
ability to directly attend to the relevant text, which leads to
significant performance boost.

6. Ablation Studies and Analysis
In this section, we perform comprehensive ablation studies
for better understand the model’s behaviors. More examples
of human-crafted descriptions and descriptions learned from
RL are shown in the supplementary material.

6.1. Impact of Human Generated Templates
How to construct queries has a significant influence on the
final results. In this subsection, we use the Yahoo! Answer
dataset for illustration. We use different ways to construct
template descriptions and test their influences.

• Label Index: the description is the index of a class, i.e.
“one”, “two”, “three”.
• Keyword: the description is the keyword extension of

each category.
• Keyword Expansion: we use Wordnet to retrieve the

synonyms of keywords and the description is their
concatenation.

• Wikipedia: definitions drawn from Wikipedia.

Table 5. Results on 20news using different templates as descrip-
tions.

Model Error Rate

BERT 16.9
Template Description (Label Index) 16.8 (-0.1)
Template Description (Keyword) 16.4 (-0.5)
Template Description (Key Expansion) 16.2 (-0.7)
Template Description (Wiki) 15.8 (-1.1)

Results are shown in Table 5. As can be seen, the per-
formance is sensitive to the way that descriptions are con-
structed. The performance for label index is very close to
that of the BERT baseline. This is because label indexes do
not carry any semantic knowledge about classes. One can
think of the representations for label indexes similar to the
vectors for different classes in the softmax layer, making
the two models theoretically the same. Wikipedia outper-
forms Keyword since descriptions from Wikipedia carry
more comprehensive semantic information for each class.

6.2. Impact on Examples with Different Lengths
It is interesting to see how differently the description-based
models affect examples with different lengths. We use the
IMDB dataset for illustrations since the IMDB dataset con-
tains texts with more varying lengths. Since the model
trained on the full set already has super low error rate
(around 4-5%), we worry about the noise in comparison.
We thus train different models on 20% of the training set,
and test them on the test sets split into different buckets by
text length.

Results are shown in Figure 2a. As can be seen, the superi-
ority of description-based models over vanilla ones is more
obvious on long texts. This is in line with our expectation:
we can treat the descriptions as a hard version of attentions,
forcing the model to look at the most relevant parts. For
longer texts, where grain is mixed with larger amount of
chaff, this mechanism will immediately introduce perfor-
mance boosts. But for short texts, which is relatively easy
for classification, both models can easily detect the relevant
part and correctly classify it, making the gap smaller.

6.3. Convergence Speed
Figure 2c shows the convergence speed of different models
on the Yahoo Answer dataset. For the description-based
methods, the template model converges faster than the
BERT baseline. This is because templates encode prior
knowledge about categories. Instead of having the model
learn to attend to the relevant texts, template-based methods
force the model to pay attention to the relevant part. Both
the abstractive strategy and the extractive strategy converge
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Figure 2. (a) Test error rate vs text length (b) Test error rate vs proportion of training data (c) Test error rate vs the number of epochs.

Table 6. Error rates for different RL initialization strategies.
Yahoo Answer AAPD

Template 22.4 25.9
Ext (dummy Init) 22.2 26.0

Ext (ROUGE-L Init) 25.3 27.2
Ext (random Init) 28.0 30.1

Abs (template Init) 22.0 25.7
Abs (random Init) 87.9 78.4

slower than the template-based method and the BERT base-
line. This is because it has to learn to generate the relevant
description using reinforcement learning. Since the REIN-
FORCE method is known for large variance, the model is
slow to converge. The extractive strategy converges faster
than the abstractive strategy due to the smaller search space.

6.4. Impact of the Size of Training Data
Since the description encodes prior semantic knowledge
about categories, we expect that description-based methods
work better with less training data. We trained different mod-
els on different proportions of the Yahoo Answer dataset,
and test them on the original test set. From Figure 2b, we
can see that the gap between the BERT baseline and the
description-based models is significantly larger with 20% of
training data and the gap is gradually narrowed down with
increasing amount of training data.

6.5. Impact of RL Initialization Strategies
We explore the effect of different initialization strategies
for RL on the Yahoo! Answer and AAPD datasets. For the
extractive strategy, we explore random initialization and the
ROUGE-L strategy. For the ROUGE-L strategy, the descrip-
tion for the correct label is the span that achieves the highest
ROUGE-L score with respect to the template. The ROUGE-
L strategy is widely used for sudo-golden answer/summary
extraction in training extractive models, when golden an-
swers are not substrings of the text in question answering

(Nguyen et al., 2016) or golden summaries are not sub-
strings of the input document (Kočiskỳ et al., 2018) for the
task of summarization. The descriptions for incorrect labels
are dummy tokens for the ROUGE-L strategy.

Results are shown in Table 6. As can be seen, generally, ini-
tialization matters. The extractive model is more immune to
initialization strategies, even random initialization achieves
acceptable performances. This is because of the smaller
search space for extractive models relative to abstractive
models. For the random initialization of the abstractive
model, we are not able to make it converge within a reason-
able amount of time.

7. Conclusion
We present a description-based text classification method
that generates class-specific descriptions to give the model
an explicit guidance of what to classify, which mitigates the
issue of “meaningless labels”. We develop three strategies
to construct descriptions, i.e., the template-based strategy,
the extractive strategy and the abstractive strategy. The
proposed framework achieves significant performance boost
on a wide range of classification benchmarks.
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