Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently

A. Algorithm 1 Proofs
A.1. The Good Event
We begin with an explicit statement of the probabilistic events that comprise £4. Recall that

-1
A= argmin Y |lxo1 — By — Ax || + A A[ 7.
A

s=1

and denote Ay, = A, —A,, V= A+ Zt:l x,.xI". Now, define the following events

Er, = {Tr(A/f VIA4) < do?dlog <3T3det<v’x)> +2Ad¥?, forall t > 1} )
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Then we have the following lemma.

Lemma 17. Let £, = £y, N Ex, N Ex,, and suppose that T > 600d log 36T. Then we have that P(E4) > 1-T72.

Proof. First, we describe the parameter estimation error in terms of Lemma 6. To that end, let z; = x;, yr1 = X1 — Byity,
VE= A+ Z;ll xx!', and Ay, = A, — A, Indeed, we have y.y1 = Ax; +wy, w, ~ N(0, 0%I), and ||A*H12F < d||A, | < d¥* and
so taking Lemma 6 with § = %T’z, recalling that T > d, and simplifying, we get that P(c‘ZAm) >1- %T’z.

Next, for €4, we apply Lemma 36 to the sequence x; with the filtration F; = o(xy, uy, . . ., X, u;). Notice that given x,_y, u;
we have x, ~ N (A, x| + B,u;1, 021 and hence we also get

E[xx | Fiet] = (Awxior + Batti))Asxes + Buu)' +0°1 = o°lL

Finally, our choice of 7y ensures the minimal sum size assumption. We thus apply Lemma 36 ny + 1 times with § = %T’3
and apply a union bound. Since ny + 1 < T we conclude that P(,,) > 1- 1T

Finally, for £, we apply Lemma 34 with § = 172 to get P(€,,) > 1~ 172 The final result is obtained by taking a union
bound over the three events. |
A.2. Proof of Lemma 7

We first need the following two lemmas.

Lemma 18 (Bounded warm-up). On £, we have that ||x,|| < 05(3)\/6Od log3T < \/xp, forall 1 <t < 7.

Proof. First, by Lemma 41, J(Ko) < v, implies that K is (0, 0)-strongly stable with 75! = 2x3. So, applying Lemma 38
with x; = 0 we getthatforall 1 <7 <7y
[lxell < 25 max [lw],
1<i<T

and applying the noise bound in Eq. (11) we obtain the desired result. |

Lemma 19 (Conditional parameter estimation). On &, fix some i such that 0 < i < nr and suppose that Hx,Hz < xp, for all
1 <t < 7. Then we have that || Ay_ || < €027

Proof. First, on &4 by Eq. (10) we have that

(L T (1;— 1)o? 102
VE = A+ ;x,x, - (/\+ 4())1 - Ty
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and so we conclude that

52 02
Tr(A/{T! V:,-AAT,) > Tr(AgT/_AAT[)TA‘(T) > ||AAT[H2TZ) .

Rearranging and applying Eq. (9) we obtain

det( VX 2
A4, |7 < <160d1 <3T3 de( r,-)> +80>\d129 )

T et(V{) o

Now, since we assumed ||x,||* < x, = A, we can apply Lemma 37 to conclude that

ogde( ) <dlogT,
det(Vy) ~

and plugging this into the above we get that
2
_ 180Ad(1+9 ) -~ &

T o? o

< g4,

2
[ (640012 log(3T)+80>\d19 )

where all transitions are due to our choice of parameters. |

Proof of Lemma 7. First recall that by Lemma 42, if ||A,,|| < € then K; is (k,y)—strongly stable. We now show by
induction on # that for all 0 < i < n, K, is (k, y)-strongly stable. Note that 0 < n < ny.

For the base case, n = 0, Lemma 18 shows that ||x,||2 < xp forall 1 <t < 79, which in turn satisfies Lemma 19, i.e.,
[[A4., || < €0 and so the required strong stability of K-, is obtained.

Now, suppose the induction holds up to n — 1 and we show for n. By the strong stability of the controllers up to time 7, — 1,
and since Ty > l(’%, we can apply Lemma 39 to conclude that

bl < 3emaxd Fol 5 e gL forain <1< m
2 ’71<I<T

recalling that ™' = 2x2, bounding the noise with Eq. (11), and bounding ||x,, || by Lemma 18 we get that

60d log 3T
x| < 3k max{ w 2k°0/15d log 3T}, < orxmax{rj, 2> }/135d1og 3T = \/xp,
and as for the base case, we can now invoke Lemmas 19 and 42 to conclude the strong stability of K, and finish the

induction. Notice that this together with the above equation also show the algorithm does not abort.

The induction proves the first part of the lemma, i.e., all controller are strongly-stable. Now, we can apply Lemma 39 once
more to conclude that Hx,||2 < x for all 79 < ¢t < T and together with Lemma 18 this concludes the second claim of the
lemma.

Finally, the third claim is now an immediate corollary of the Lemma 19. ]

A.3. Proof of Lemma 8
Recall that E; = {HAAﬂ_ I < 502‘i}, and further denote S; = {||xﬂ H2 < x,,}. Trivially, we have that 4 C E; N S;.
Now, define X, = x, and for ; <t < 134y — 1
% = (Ax + BuKy,) Xy + Wi
Since on &4 the algorithm does not abort, we have that

Tir1—1 Tir1=1

WHEW; =1{&} Y & (Q+KIRK, )% < I{E;NS;} Y & (Q+KLRK,,)%

I=Ti =7
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Noticing that E;, S;, and K, are completely determined by x,,, A, we use total expectation to get that

Tiv—1

> X (Q+KIRK,)%

1=T;

E[]l{gA }J,] S E ]l{El N Sl}]E meAT;

Now, by Lemma 42, E; implies that K. is (k, y)-strongly stable and so we can use Lemma 40 to get that

200 k*

E[1{& W] < (i —E[L{EN (K;)] + =2 B[ 1{Si} |-, ]
< (it - E[H{EY (K7,) ] + 40 k0%,

where the second transition also used that v~' = 22 and the third used our choice of x;, > o2x*.

A 4. Proof of Lemma 9 (R, upper bound)

We first need the following lemma.

Lemma 20 (Expected abort state). Suppose that P(Tupore < T) < T-2. Then we have that
]E[me,,.f||211{7abg,, < T}} < (1+82) (k2 + K3)x, T2

Proof. First, by the lemmas assumption, we can apply Lemma 35 to get that

B[ L < 7} s ] < 50077 log 37

Now, notice that |A, + B,K|| < 2¢||K|| and split into two cases. First, if Typox > 70 then by definition of T,px We have that

Pera | = 1A+ BB VSt + Wt | < 200/ + mmax ]

and taking expectation we get that

E|[1{70 < Tavort < T}||Xrpon

7| <8R0 T 2 + 50T 2 log3T < (1+80%) k20, T 2.
On the other hand if 7o = 79 then

4
| = A+ B Kby + ey < 200+ ma o] < 49+ D ma .

where the last transition used Lemma 38 and ;' = 2/1(2,. Taking expectation we get that

B [1{masort = 70} || 2} < 20(1 +892) k8do> T2 1og 3T < (1 +80%) k2, T2,

and combining both cases yields the final bound. |

Proof of Lemma 9. First, recall the decomposition of R,.

Tabort—1 T
Ry <E|1{&} > « +IE[Z c,].
=Ty 1=Tabort

For 79 <t < Taporr We have that Hx,H2 < xp and ||K;|| < & and so we get that

¢ =/ (Q+KRK)x. < ill* (01 + IRIIK.|?) < 2015%.

By Lemma 7 we have that ]P’(é'g) < T2 and so we get that

Tabort—1
E ln {&1 >«

=719

< E[1{& }201rxT| = 201 67x,TP(E5) < 20 5°x, T, (12)
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bounding the first term of R,. Next, for t > Tt We have that K, = Ky and so we can apply Lemma 40 to relate the expected
cost of this period to that of the steady state cost of K. we get that

=E|E

5

I=Tabort

T
Z xtT (Q + KgRKo)x1 Tabol’t7x7'uhorl‘| ‘|

I=Tabort

200 KS
<E {MTabm < T} (TJ(KO) + 710 0 xmmHZ)]

= TIKOP(Tabore < T)+ 401 KGE | |71 {Tabore < T,

where the last transition used 75! = 2;—@%. Now, by Lemma 7 we know that on £, the algorithm does not abort. We conclude
that {Taporr < T} C £5 which in turn implies P(mypore < T) < P(Eg) < T-2. We get that

T
> czl < JEKDT + 401 AGE |1 |71 {7 < T,

1=Tabort

E

Finally, we use Lemma 20 and simplify to get that

Ry <200k + J(K))T™ + 4o k5 (1 +897) (k2 + k), T
= (J(Ko) + 2a1/<;2x;,)T_1 + 4a1/<;(6)(1 + 8192) (/<;2 + H%)be_z,

as desired. [ |

A.5. Proof of Lemma 10

Notice that for r < 7y we have that K; = K. Moreover, we have that x; = 0. Applying Lemma 40 we get that

7'071

Ry=E|> x/ (Q+KjRKy)x| < m0J(Ko).
=1

B. Algorithm 2 Proofs
B.1. The Good Event

We begin by stating the probabilistic events that guarantee the “good” operation of the algorithm. To that end, it will
be convenient to specify how the randomized actions during the warm-up stage are generated. For r = 1,...,T let
n; ~ N(0,0%) be i.i.d. samples generated before the algorithm starts. Define it, = Kox; + 7, and if at time ¢ the algorithm
chooses at random, i.e., during warm-up, then choose u, = #,. These virtual actions are a convenient technical tool as they
do not directly depend on the action chosen by the algorithm.

Now, recall that
-1

B, = arg minZH(xm —Axy) —BMsH2 + A||B]
B

s=1

2
F

and denote Ag, = B, - B,, V" = M\ + 2;11 uu! . Further recalling that 7; = 704" for 0 < i < ny and 7,41 = T+ 1 < 7od"*1,
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we define the following events

det (V'
= Tr(AL Vi Ap,) < 4o0’dlog <4T3e(’)> +2\k9?, forall t > 1}, (13)

& det (V)

ols

40

Ep, =

11222(THW’H < a\/15dlog4T} (15)
<i<

Es,

40

T[—] T 2
€3, = { xod = CT0T poran 1 < < nr}, {14

i—1)o?
= il = Gizbo, forauogignT}, (16)
Ep, = {112a<xT77, < a\/15d10g4T}. (17)
<i<
Then we have the following lemma.
Lemma 21. Let &g = €, N Ep, N Ep, N Ep, NEp,, and suppose that T > 600d log 48T. Then we have that P(Eg) > 1-T72.

Proof. First, we describe the parameter estimation error in terms of Lemma 6. To that end, let z; = u;, Y11 = X1 — AsXy,
Vi =\ + Z;ll uu!, and Ap = B, - B, Indeed, we have y;, = B,x; + w;, w, ~ N(0, 0%, and ||B*||§ < k||B,|* < k¥ and
so taking Lemma 6 with § = %T’z, recalling that T > d, and simplifying, we get that IP(&BO,J) >1- %T’z.

Next, for £, we apply Lemma 36 to the sequence x, with the filtration F; = o(xy, uy, . . ., x;, us). Notice that given x,_1, u,_;
we have x, ~ N(A, x| + B,u;1, 021 and hence we also get

E[xax) | Fra] = (Awxiot + Bat-)Axicr + Bow-))' + 0% = o1

Notice that our choice of 7y ensures the minimal sum size assumption. We thus apply Lemma 36 for each 1 < i < ny with
& = 1773 and apply a union bound to get that P(€p,) > 1 — 1nyT>. Repeating the same process for i, we also have that
P(Ep,) > 1—gnrT72.

Finally, for &, EBW we apply Lemma 34 with 6 = %T’z to get that P(ggw) >1- iT’z and P(53n> >1- %T’z.

The final result is obtained by taking a union bound over the events and noticing that 2ny < T. ]

B.2. Proof of Lemma 11
The proof is implied by the last part of the following lemma.

Lemma 22 (Algorithm 2 good warm-up). On Eg we have that

L |x|| < oxd(1 +9)/60d10g 4T, forall 1 <t < 7, ;
2. |l < A\ foralll <t < 7,;

2
3. V= Tj{g I forall 0 <i < ny,

N

. HABT,» | <027, forall 0 < i < n,.
Proof. Recall the definition of 7, from Appendix B.1 and define w, = w; + Br;. then for t < 7, we have that
X = A + Butlp + wip = Auxey + ByKoXeey + Wit + By,
\—N,—/
Wr1

i.e., we can consider x; as a sequence generated from running the controller Ky on a linear system with noise sequence w;.
We can then apply Lemma 38 to get that

oll < 22 max ]| forall 1 <1<,
Yo lss< ‘
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Now, on £ we have the noise bounds in Eq. (17) and Eq. (15) and so we have that

max ||w| < rgax [lws|| + ||Bx || [max HmH < o(1+19)y/15d1og4T.

1<s<T
Combining the above and recalling that 7;' = 2x3 we conclude that

x| < ord(1+0)\/60dlogdT  , foralll <t <r,,
0 g 5

proving the first claim of the lemma. Next, for 1 < ¢ < 7, we have that u, = i, = Kox, + 1, and so

lluts]| < rolloe|| + ||| < okg(2 +19)1/60d log 4T < VX,

proving the second claim. Next, notice that for 0 < i < n; we have that V“ A+ ZT’ 11 ~;~ Since &g holds, we can use
the warm-up actions lower bound in Eq. (16) to get that

i_l 2 . 2
Ve - (A+W)I§ 74‘(’) I, forall0<i<n,

proving the third claim. For the final claim, we first use the lower bound on V. to get that

4
O e (aF vias,).

18, 1P < Tr(Af, A, ) <

TiO

Next, we apply Eq. (13) to get that
det(V* A2
1As, 2 < L ( 160d10g [ 477 et(Va)\ , 80 |
Ti det(V) o2

det( Vi
Now, using the second claim of the lemma, we can use Lemma 37 to get that log M < klog T, and applying it to the

()

above and simplifying we get that

1
||ABTin < — <I60dk log(4T*) +

Ti

80Ak9?
o2

I /\

2
(640dk log(4T) + SOAM >

- 1 80Ak(1+97) _ &

.y o? —

= 5(2)4’i,
thus concluding the proof. |

B.3. Proof of Lemma 12

The proof is broken into the following lemmas. The first two claims are concluded by putting together Lemmas 22 and 25
and the third is given by Lemma 26.

Before proceeding, we need the two following lemmas.
Lemma 23 (Algorithm 2 warm-up length). On Eg we have that max{O, log, %} <n, <2+ max{O, log, % }

Proof. First recall that by Lemma 22, we have that [|Ap, || < €92 for all 0 < i < n,. Now, our choice of 1o implies that
€0 = 4”5’20 and further recalling that u; = 11927, we apply Lemma 42 to get that

KK = KK - %1 , forall 0 < i < n, (18)
KK = K.KT -1 forallo <i<n, (19)

TithT; 2
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Now, suppose in contradiction that n; > 0 and p1, < £*. This means that 1, ; < - and so we can apply Eq. (18) to get
that

-1 1 3
Kr\ K7, 4 = (u*— M"z‘ )1 = (2um-1 - M"z )1 = 5 Hn-1l,

which contradicts the fact that n; is the first time the warm-up break condition is satisfied. We conclude that either ny = 0 or
pn, > L. Plugging p, = po2™ the latter condition implies n, < 2 +log, % thus giving the lemma’s upper bound.

Now for the lower bound, suppose in contradiction that y,, > . then by Eq. (19) we get that

3 n
K.KT >~ (2“’“ - “2‘)1 "

which contradicts the fact that i, is the tight lower bound on the eigenvalues of K, K. We conclude that y,,, < ji, which in
turn implies the desired lower bound. |

Lemma 24 (Algorithm 2 conditional control). Suppose g holds and fix some i such that ny < i < ny. If ||u||* < X for all
1 <t < 71—1, then K, is (K, y)-strongly stable and K. KT > “7*1.

Tit T

Proof. If |Ap_|| < min{so, 4’;—*00} then Lemma 42 immediately implies the desired result. We prove this estimation error

bound thus concluding the proof.

To that end, notice that for ¢ > s we have V' = V¥. Using the lower bound on vy in Lemma 22 we get that

2
2 7-11‘v g

40 °

Tr(Af VaAs,) > Tr(AF Ve Ap ) > (1A, |

and by changing sides and applying the parameter estimation bound in Eq. (13) we get that

1 det(V" 2
|Ag, | < — [ 160dlog | 4T° e!(Vz) + Swfg (20)
i T, det(V¥) o

Now, using the assumption on u,, we can apply Lemma 37 to get that log % < klog T. Plugging this back into Eq. (20)
1

and simplifying we get that
188, [| < €027,

and plugging in the lower bound on n, from Lemma 23 gives the desired bound on the estimation error thus concluding the
proof. ]

Lemma 25 (Algorithm 2 bounded operation). On Eg we have that

L |l < xp, forall 7, <t < T;
2. K, is (K, y)—strongly stable, for all ny < i < ny;
3. KnKL = Ly, forall ng < i < nr.

Ti T

Proof. First, recall the bounds on x;, u; from Lemma 22, i.e.,

o, || < or3(1+9)y/60d10g 4T < /x5,

lu])> < A, forall 1 <t < 7,

We prove by induction on n where n; < n < ny that the claims of the lemma hold up to time 7, and phase n respectively.

For the base case, n = n, the bounds above satisfy Lemma 24 and so we conclude that K, is strongly stable and that
K, Kl >~ % w1 thus satisfying the induction base.

T 10 —
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Next, assume the induction hypothesis holds for n — 1 and we show for n. By the induction hypothesis, the algorithm does
not abort up to (including) time 7,,_; — 1. Moreover, it means that for all n; < i < n—1 the controllers K, are (x, y)-strongly
stable and so we can use Lemma 39 to get that

x
|l ]] < 3k max L ® max lwel| 7 forall 7,, <t <,
2 Ty I<s<T :

and plugging in that v~' = 2«2, the bound for ||x-, || and the bound for the noise in Eq. (15) we get that

]| < ko max{k3(1 +3),2k> }\/135d10g 4T < \/x,,  forall 7, <1< 7,

as desired for x,. Notice that this ensures that the algorithm does not abort up to time 7, — 1. So, for7,,, <t < 7, -1
we have that ||u,|| = ||K.x/|| < ||Ki||[|x:]| < k+/Xp = V'), and thus Lemma 24 establishes the desired strong-stability and
non-degeneracy of K, , finishing the induction.

Finally, using the strong stability of all controllers we apply Lemma 39 a final time to obtain the bound on x, for all
T, <t <T. |

Lemma 26 (Algorithm 2 parameter estimation). On Eg we have that || Ap, || < o min{27™, 27227}, Vn, < i < nr.

Proof. Recall that by Lemma 25, the algorithm does not abort on &g and so for 7; < ¢ < 7,1 — 1 we have that K; = K. This
means we can decompose V7 as

i1 -1 Tip1—1
| +E uu’ E E uu’ =V +E K E xxT KT.
'rn t T %1 7j t
I=Thy j=ns t=T; J=ng 1=7;

Next, we lower bound V7 using Lemma 22 and the states using Eq. (14) and get that

2
Tn Tj+1
v §< S

=Ny

and recalling that KT,KZ, > %I (see Lemma 25) we get that, assuming i > n,

2 2 2
" o o
VT, ~ E Tm M Z(Tﬁ_l _TI I = E(TnA + %(Ti_’rns))l t %maX{Tns, %7’,}1

Now, apply this together with the parameter estimation bound in Eq. (13) to get that
s, | < Tr(AF, A, )

40

0% max{7,, %7
Vi 2
; 160d log 473 det( Ti) + 80Nk .
max{an %T’} det(Vf‘) o2

Finally, from Lemma 22 we have that ||u,||* < A for 1 < ¢ < 7, and from Lemma 25 we have that |x;||* < x, for7, <t<T

T (Agn v ABT‘,)

IN

and so |Ju,||° = ||Kix;||> < x2x; = A. Combining both claims, we apply Lemma 37 to get that log i:t“/,; < klogT and

plugging this into the above equation we get

1
~ max{7,, &7}

where the second transition follows from our choice of 7. |

2
1Ag, ||

802 2 4
(640dklog(4T)+ > > < 7050 =& mm{4 n, 4_1}’
o max{T,, &7} e
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B.4. Proof of Theorem 2

As in Algorithm 1, denote J; = ZIT:T‘I__I x! (Q + KTT RKT,,)x,. Recalling that warm-up lasts until phase n,, we have the following
decomposition of the regret:

E[R7]=R1+R,+R;-TJ,,
where

Tng—1

nr T
R|=El21{5g}Ji‘|, R2=E ]I{EE}ZCI N R3 =E ZC; N

i=ny 1=Tpg =1

are the costs due to success, failure, and warm-up respectively. The following lemmas bound each of R;, R, R3 thus
concluding the proof. The proofs for R}, R, remain nearly the same but are provided for completeness. The proof of R
contains a few technical challenges, introduced by the randomness of the warm-up period duration.

Lemma 27. R, - TJ, < ny(6Coed max{1,4.;' } 7o + 8cv k%x;).

Lemma 28. R, < (J(Ko) +2a15%x,) T + 4o 6§ (1 + 89%) (K2 + K§) xp T2
Lemma 29. R < (1 + 192 (65](1(0) max{ 1, % }7’0 +80a;do k1 log? 3T) .

B.4.1. PROOF OF LEMMA 27

Proof. We begin by bounding E []l {E}Ji | nx] for ny < i < ny. This follows exactly as in Lemma 8 but with some changes

to the events E;, and thus is repeated here. For n; < i < ny define the events S; = {IIxT,. H2 < xb} and

E, = {||ABT” I < 502’”‘}, E; = {||A3,i I <eo min{Z’"f,Zu;lT"}}, Vn, <i<nr.
By Lemma 12, we have that &g C E; N S;. Now, define X, = x,, and for 7; < t < 7, — 1 define
% = (Ax + BLK7) Xy + wr.

Since on &p the algorithm does not abort, we have that

Tiv1—1 Ti1—1
W&} =1{Ep} Y X/ (Q+KIRK,)X% < I{E;NS;} Y X/ (Q+K]RK,)X,.
t=T1; =T

Noticing that E;, S;, and K, are completely determined by x,,, B, we use total expectation to get that

Xrs BT,»] ns] ,

where in the inner expectation we removed the conditioning on n; since the X, are conditionally independent of n; given x,.
Now, by Lemma 42, E; implies that K, is (k, y)-strongly stable and so we can use Lemma 40 to get that

Tiv1—1

> X (Q+KIRK,)%

t=T;

E[1{&}J; | n]] <E|1{E;NS}E

4
E[]l{gg}]i} < (Tixl _Ti)E[]l{Ei}‘I(KTi) | ns} + 2

2
E[1{S}xx ] | ns)
< (tip1 — DE[L{E N (K7, | ng] + 4155, (21)
where the second transition also used that 4! = 2x2.

Now, by Lemma 4, on E,, we have that J (K, ) < J, + Coe34™ and on E; where ny; < i < nr, we have that J(K,) <
Jy + Coc} min{4‘”*‘, dpta } Combining both cases we conclude that

{E Y (K;) < Ji+ Coggmax{1,4p;' }47 W, <i<np,
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and plugging this back into Eq. (21) and recalling that 7;,; — 7; < 37; = 3704’ we have that
E[]l{gg}.], | ns] < (Tig1 —Ti) s + 3C0€(2) max{ 1, 4/1,;1 }T() + 4 I*iﬁxb.
Finally, we sum over i to conclude that

nr
Z(Tm — Ty + 3C0€(2) max{ 1, 4u;l }’7’0 + 4o k%%,

i=ng

Ry = E[iE[]l{é’B}],- \ nx]l <E

i=ng

< E[(Tups1 = 7 ) + (n7 + 1 = 1) (3Coeg max{ 1,4y, }ro + 4 5%, |
< TJ, +n7(6Coch max { 1,443 b0+ 8ay mﬁxb),

thus concluding the proof. |

B.4.2. PROOF OF LEMMA 28

The proof is identical to that of Lemma 9 where the initial warm-up duration 7y is replaced with 7,,, and the uses of
Lemmas 17 and 20 are replaced with Lemmas 21 and 30 respectively. We thus conclude by proving Lemma 30. To that end,
recall that T,por 1s the time when the algorithm decides to abort, formally,

| > xp or [[Ki|| > x},

Tabort = min{t Z Thy
where we treat min () = 7 + 1.

Lemma 30 (Expected abort state). Suppose that P(Tupo,; < T) < T-2. Then we have that

E [,

ZIL{Tab,,r, < T}} < (1+ 8192) (ﬁz + /@(z))be’z,

Proof. First, by the lemmas assumption, we can apply Lemma 35 to get that

E[n{rabm < T} max ||w,||2] < 5do*T % log 3T, (22)
1<i<T
E {1{%0“ <T} 1r221<XTHB*77, + w,||2] < 5do*(1+9*)T > log3T. (23)
hYAS

Now, notice that ||A, + B.K|| < 2¢||K|| and split into two cases. First, if Typorr > 75, then by definition of Tporx We have that

il = 1A+ B 1) it + W | < 2003/ + max [
and taking expectation and applying Eq. (22) we get that

E ]I{Tnx < Tabort < T}”xnmm

7| <8R0 T 2 + 50T 2 log3T < (1+80%) k20, T2
On the other hand if Tuport = 7, then s, 1 = Koxr, -1 + 77, 1 and so we have that

| = (A + BoKo)xr, -1 + (Butpr,, 1+ wr, 1) |
< 20kl x7, -1 || + max [|B,n; +w|
1<i<T

< (49 + Dk max ||Bun, +we,
1<i<T
where the last transition used Lemma 38 and ;! = 23. Taking expectation and applying Eq. (23) we get that
E | 1{Tabort = T, H¥ree || < 80(1 +9)2(1 + 9?)k3do> T2 1og 3T < (1 +9%)kdxy T2,

and combining both cases yields the final bound. ]
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B.4.3. PROOF OF LEMMA 29

Proof. We begin by decomposing R3. Notice that ny < ny + 1 and so we have that

! ng—1 7iy1-1 To—1 n Ti+1—1
R;=E Oth +E ZZC, =Eli6’]+iElﬂ{nS>i}z‘:Q]'
t=1 i=0 r=7; =1 i=0 =T7;

Now, define J(K, W) to be the infinite horizon cost of playing controller K on the LQ system (A,, B,) whose system
noise has covariance W € R?*?. In terms of our notation so far, this means that J(K) = J (K Lol ) It is well known that
J(K, W) = Tr(PW) where P is a positive definite solution to

P=0+K'RK + (A, + B,K)' P(A, + B,K),

and thus does not depend on W.

Now, for 1 <t < 7,, we have that x;11 = (A« + B.Ko)x; + (B.7; + w;), i.e., this is equivalent to an LQ system (A, B,) with
noise covariance o2 (I + B,BT) < (1+9?)5?I and controller K, and so we have that

J(Ko,o*(I1+B,BL)) =Tr(o? (I + B.BL)P) < (1+9%)Tr(c?P) = (1+9%)J (Ko, 0?) = (1 +9%)J(Ko).

With the above in mind, we bound the first term in the decomposition of R3 using Lemma 40. We get that

o 200 K8 »
E c| < 1oJ(Ko,o® (I+B,B)) + —2|x;
3 e] < ko1t 2258 N
< (1+9%)J(Ko)To.
Next, recall that 7’1 = 2&6, denote the filtration of the history, F; = o(xy, uy, wy, . . ., X;, Uy, wy) and similarly apply Lemma 40
to get that
Tiv1—1
E|Y « f“] < (1+ 9 (Ko) (i — 73) + Aoy 5 x|
1=T;
Now, using Lemmas 35 and 38 we get that
2
]E[]l{ns > i}\\xﬂnz} <E {’ig max ||w, +B*17,||2] < 20d(1 +9%)0%k8 log 3T.
Yo 1<I<T
Combining the last two inequalities and noticing that 1{n; > i} is F,,_; measurable we further have that
Tis1—1 Tis1—1
El]l{ns >i} Y | =E|[1{n,>}E| ) ¢ me
1=T; 1=T;
< E[1{n, > i} ((1+ P Ko — 1) + den sl | ) | (25)

< 1+ (P(ng > i)J(Ko)(Tia1 —77) + 80c1do’ k' log 3T).

Now, from Lemma 23 we know that P (ns > 2+ max{O, log, I‘f—i’ }) < IP’(Sg) < T2, and recalling that 7; = 7o4’ we get that

nr L2+max{0,log2 Z—S}J ny
) 2
To + E (Tir1 — T)P(ne > 1) < 10 + E (Tiy1 — 7)) + g (Tis1 = )T
i=0 i=0 i=0

= 74 [3+max{0log, 70 }| (an+1 _ 7_0) T2 (26)

12
< 6471y max{ 1, (2)} +4T7",
[t
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Finally, combining Eqgs. (24) to (26) we get that

nr

Ry < (1+9%) (J(Ko) (m + Z(Tiﬂ - )P(n, > i)> +80a1do’ ki (ny + 1) log 3T>

i=0
2
< (1+9%) <64J(K0) max{ 1, “—g }TO +4J(K))T™" + 80ado’ ki log? 3T>
My
2

< (1+9%) <65J(K0) max{ 1,5 }TO +80a1do? kM log? 3T> ,
1

*

where the second transition also used ny + 1 < log 37T |

C. Lower Bound Proofs

The next lemma requires the following well known results in LQRs (see, e.g., Bertsekas, 1995). Consider the Q-function of
the system with respect to k., that in the one-dimensional case takes the form F(x, u) = X2 +u? + (ax + bu)*p,. Using the
form of k, given in Eq. (1), and by simple algebra we obtain

FCx ) — Fx, ko) = (1+ D2 po) (g — kyxp ). (27)

Further, we have F(x;, k,x;) = x’p, as both sides are equal to the value of the optimal policy k, starting from state x;. Finally,
also recall that J(k,) = o’p,. The following explains Eq. (27):

F(x ;) = X + ((; — kyx,) + ko x0)? + (@ + b )x; + b(u, — k,x,))°ps
= F(xp, koxp) + (= ko) + 20, — kyxko xp + b2p(y — ko xp)* + 2bp, (1 — ko xp)(a + bk,)x,
= F(x;, kyxy) + (1 + 0p )y — kox)? + 2x,(u, — kyx,)(ky + b, (a + bk,))
= F(xp koxy) + (1 + D2p )y — kox)* + 2x,(uy — kX)) (ko (1 + b%p,) + bpya)
= F(x;, kyxy) + (1 + 0%p )y — koxp)?,

where the last transition used k, (1 + b%p,) = —bp,a (see Eq. (1)).

Lemma 31. The expected regret can be written as

T
E[Rr]=E Z(l +2p )y — kyxy)? —E[x%ﬂp*].

t=1

Proof. Using the expressions for the Q-function of the system with respect to k,, we have that

T
o= 3Bl k)]
=1
T
_ E [F(Xt, u;) — ((ax, + but)z + wf)P*] (since J(k,) = E[Wtzp*])
t=1
T
= Z E [F(xz, ut) - x12+1p*]

=1

T T
= EIF(. u) ~ Fnkx)] + Y E[xp, —xps] (since F(x,, kox,) = x2p.)
=1 =1
T
=E Z(l + 02 p ) - kx)? | +E [x%p*] -E [x%ﬂp*} . (using Eq. (27))

t=1

The lemma now follows from our assumption that x; = 0. ]
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Lemma 32. We have E[x%ﬂ] <2 (b2 Zt_ [, — kox,)?] + 02).

Proof. Denote m = a + bk, and v, = u, — k,.x, for all t > 1. Then, x;4; = ax; + b(u, — k.. x; + kix;) + w, = mx, + bv, + wy, and by
unfolding the recursion and using x; = 0 we obtain

T T
X741 = E mI by, + E mw,,
t=1 t=1

hence

T 2 T 2
E[x2,,] < 2b°E (Z m“v,> +2FE (Z m“w,> ,

=1 =1

Now, observe that
abp,

1+b2p*)=’1+b2 N
Using this bound and the Cauchy-Schwartz inequality, we have

T 2 T T
1
o) < S sf3i] < e
t=1 =1 =1

|m| = |a+bky|=|a-b-

Further, as the noise terms wy, . .., wr are i.i.d. and have variance o2,
! P 1 5
T—t _ 2(T—t) 2 22 2
E Zm Wy —Zm E[w,]gl_m2o §4a.
=1 =1
Combining inequalities, the lemma follows. ]

Proof of Lemma 14. Since 1 + b%>p, > 1 and p, < 5/4 (see Eq. (7)), Lemma 31 lower bounds the regret as

5
- 7E[x%+l]'

T
EmﬂzEE;wwmﬂ 1

Plugging in the bound of Lemma 32 and the assumption that b*> = ¢ < 1/400, we obtain

MM_M[ZM*M} . (28)
On the other hand, note that u? < 2(u; — k,x;)> + 2k2x?, and so
T T T
E {Z uf} <2E {Z(M, - k*x,)z] +2K*E {Z x,z} )
=1 =1 t=1
Further, since J(k,) = o p* < a we have

T

E[fo} <E

t=1

Z(x, +14p) } =E[Rr] + TE[J(k,)] < E[Rr] + %UZT

L =1

Therefore,

T q T
5
E [ u’| <2E {Z(u, - k*x,)z] +2K*E[R7] + 5azkiT. (29)
<
Combining Egs. (28) and (29) and recalling that 2k> < e < 1 (see Eq. (7)), results with
! 100 5 5
E {Z uf} < 2( g ElRr] + 50%) + 2k2E[Ry] + EazkiT < 3E[Rr] + EozkiT+ 1207,

=1

and changing sides yields the second part of the lemma, thus concluding the proof. |
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Proof of Lemma 16. Let Z be a standard Gaussian random variable. Then, using a standard Gaussian tail lower bound,

20 2 17
Pllwey| > — | =P||Z]| > - | > —.

Now, recall that x, = ax,_; + bu,_; + w,_; and notice that, as the learning algorithm is deterministic, both x,_; and u, ;| are
determined conditioned on xy, . .., x, ;. We next aim to lower bound P[|x;| > 20/5 | x1,. .., x,;] which we claim that, as
ws is a zero-mean Gaussian random variable, is minimized when ax,_; + bu,_; = 0. Therefore,

20 20 17
]P’[xt| > 5 ’xl,...,x,_l] > P[w,_l > 5} > %

Denote by I, = 1{|x;| > 20/5}. Then, by Azuma’s concentration inequality we have that with probability at least 7/8,

u 4 T 17 2
ZI,EZE[I,MI,...,)C,_I]— ElogSZgT—\/2T2§T,
=1 =1

where for the last inequality we used the assumption that 7 > 12000. |

Proof of Lemma 15. First, using Pinsker’s inequality yields

TV, [x"], P_[x"]) < \/ %KL(RW] | P_[xD]), (30)

and by the chain rule of the KL divergence

T
KL, [xP] | P 1) = Y B [KLP, [x, | £V || Pfx, [ D). 31

t=1
Next, let E, and E_ denote the expectations conditioned on whether xy = 1 or y = —1 respectively. Observe that as the
learning algorithm is deterministic, the sequence of actions uy, . .., u,_; is determined given x*V. As such, given x~1, the

random variable x, is Gaussian with variance o and expectation ax,_; + Vexu,_1. Therefore, by a standard formula for the
KL divergence between Gaussian random variables, we have

. . 1 2
KL(P, [x, | X7 || P_[x, | x“]) = @I&((ax,_l +V/eu 1) — (axy — e )
1 2
= TCZI&' (Zﬁuz—l)
2e

= Bl
unless ¢ = 1 in which case KL(P,[x;] || P_[x;]) = O since x; is fixed. Using this bound in Eq. (31) and substituting into
Eq. (30) yields
. T
TV, PLP D) < | S, {Z u%] :

Similarly, switching the roles of P, and P_, we get the bound

T
TV, [x D], P_[xD]) < EE_|:ZM,2:| .

Averaging the two inequalities, using the concavity of the square root, and since E[-] = %]EJ,[-] + %E,H, we obtain our
claim. |
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D. Technical Lemmas
D.1. Noise Bounds

The following theorem is a variant of the Hanson-Wright inequality (Hanson and Wright, 1971; Wright, 1973) which can be
found in Hsu et al. (2012).

Theorem 33. Let x ~ N(0,1) be a Gaussian random vector, let A € R™ " and define ¥ = ATA. Then we have that
IP’(||A)¢|2 > Tr(X) + 24/ Tr(32)z + 2||E||z> < exp(-2), forallz > 0.

The following lemma is a direct corollary of Theorem 33.

Lemma 34. Let w, € R¢ fort=1,...,T be i.i.d. random variables with distribution N (0, o). Suppose that T > 2, then

with probability at least 1 — § we have that
[lwell < o4/5d1 T
max og —.
1<1<T Wil =@ g 1)

Proof. Consider Theorem 33 with A = ¢/ and thus ¥ = oI. We then have that Tr(Y) = do?, ||Z]| < 0% and Tr(X?) <
|Z]|Tr(E) < do*. We conclude that for z > 1 we have that

Tr(S) + 24/ Tr(32)z + 2||S|z < 0°d + 207 Vdz + 2077 < 50°dz.

Now, for x ~ N(0, ) we have that w, 4 Ax (equals in distribution). We thus have that for z > 1

IE”(Ilwtll > a\/Sdz> < IP’<||Ax| > \/Tr(E) +24/Tr(22)z + 2||2|z) < exp(-2).

Denoting z = log %, the assumption 7 > 2 ensures that z > 1 and thus IP’(||W,|| > 04/5dlog %) < 2. Performing a union

bound over 1 < ¢t < T we conclude that
P| max [|w] > oy/5d 1o T <4
1§z§XT Wi 7 J §) 7

and taking the complement we obtain the desired. ]

Lemma 35 (Expected maximum noise). Let E be an event such that P(E) < § for some & € [0, 1] and let w, € R for
t=1,...,T beiid random variables with distribution N (0, o>I). Suppose T > 2, then we have that

1. E [maxlS,STHthz} < 50%dlog3T;
2. ]E[IL{E} max1§,§T||w,||2} < 502dslog 3L.
Proof. Recall that from Lemma 34 we have that for all x > 502d logT

2 X
P(Ef‘i%'w’” ~ x) S TeXp(_502d)'

Applying the tail sum formula we get that

oo
E[max ||wt||2} =/ ]P’< max || > x)dx
1<t<T 0 1<i<T

o0

X
< 502dlogT+/ Texp(——)dx
502dlog T S0%d

< 50%dlog 3T,
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proving the first part of the lemma. For the second part notice that ]P’(IL{E} max; <,<7|wi’ >x> <

min{IP’(E), P(maxlg,ngw,Hz > x) } So, applying the tail sum formula we get that
2| _ [T 2
| 108} max | = [P (108} max o > ) s

50%dlog £ oo
< / ]P’(E)dx+/ ]P’( max [lw|* > x)dx
0 5 1<i<T

o2dlog &
) T o X
< 50°ddlog — + Texp(——z>dx
502dlog L 50%d
T

=50%ds (1 +log 5)

T
< 50%ds log %,

proving the second part and concluding the proof. |

D.2. Estimation auxiliary lemmas

The following is due to Cohen et al. (2019). Here we state the result for a general sequence of conditionally Gaussian vectors
but the proof follows without change.

Lemma 36 (Theorem 20 of Cohen et al., 2019). Let z, for t = 1,2, . .. be a sequence random variables that is adapted to a
filtration {]—',}fzol. Suppose that z, are conditionally Gaussian on F,_y and that E [z,th |.7-',,1} > 031 for some fixed af > 0.
Then for t > 200d log % we have that with probability at least 1 —§

! 2
to
2 : T Z
1 i = EI'
S=

Lemma 37. Let z; € R™ fors=1,...,t— 1 be such that ||st2 < X Define V, = M\ + Zt:] 752! then we have that

eV _
& det(vy) =

mlogt.

Proof. First we have that

-1 -1
Vil <X+ Nzl = A+ D llall” < Ar.
s=1 s=1
Now, recall that det(V;) < det(||V;]|"") and so we have that

det(V,) det (|| Vi[|") A
<log TN ) 4o 21—y
L ey = 08T S 0BT Tmiosh

as desired. [ |

D.3. Strong Stability Lemmas

The following lemma bounds the norm of the state when playing a strongly stable controller. Its proof adapts techniques
from (Cohen et al., 2019).

Lemma 38. Suppose K is a (k,y)—strongly stable controller and s, s| are integers such that 1 < sy < s; < T. Let x; for
s =80, ...51 be the sequence of states generated under the control K starting from xy, i.e., X511 = (A + B, K)x; + w; for all
so < s < 51. Then we have that

- K
ol < A=)l + = ma fwll forallso <1 < s
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Proof. Denote M = A, + B, K then for 59 < t < s; we have that x, = Mx,_ | + w,_; and by expanding this equation we have

t-1
X =M"x, + E My

s=50
Recall that by strong stability we have that

IM*|| = [|[HL'H™'|| < k(1 —=7)".
To ease notation denote W = max <,<r||w,||. Then for so < t < s; we have that

-1
el < 18 [l [+ 1227w |

S=50

< R =) g | + Y K=y W

S=50

< K1 =)y, || + — W n
v

The following lemma bounds the norm of the state when playing a sequence of strongly stable controllers.

Lemma 39. Suppose K1, ..., K; are (k,y)-strongly stable controllers and {t,}f: are integers such that 1 <t < ... <
ty) < T. Letx; fort =1, ...t be the sequence of states generated by starting from x;, and playing controller K; at times
t; <1<ty Le, X1 = (Ay + BLK))x, +w, for all t; < t < tiy1. Denote T = min;{t;y; —1;} and suppose that T > v~ log(2k),
then we have that

1
|lx:|| < 3K max fo,]H, — max |[wel| ¢, V& <t <ty
2 v 1I<i<T

Proof. For 0 < v < 1 itis a well known fact that v < —log 1 — . Plugging this into the lower bound on 7 and rearranging
we get that k(1 — )7 < % Now, applying Lemma 38 with sy = ¢; and 5| = #;11, and taking ¢ = t;;; we have that

) K
foi+1 ” S ’%(1 _,y)lm—h ||xfi|| + ;W

K
< s =)l + ZW

1 K
< =lx |+ =W,
< 5l 5

and solving this difference equation we get that

2 . 2
]l < 22w+ (x H_fw 21 < max{ |lx, |, Zw b
i ,7/ 1 1 ,7

Plugging this result back into Lemma 38 we have that for ; < ¢ < #;4

Ill < (1= ) max{ e, 25 }+ e
Y Y

< mmax{”xtl I W} +Ew
Y Y

< mmax{z’H;t‘, 3KW},

v
where the last inequality used the fact that x > 1. This is true for all i and thus for all #; < ¢ < #,;. |

The next two lemmas require the following well known result in linear control theory (see, e.g., Bertsekas, 1995). We have
that J(K) = o>Tr(P) where P is a positive definite solution of

P=0+K'RK + (A, + B,K)' P(A, + B,K). (32)

The following lemma relates the expected cost of playing controller K for ¢ rounds to the infinite horizon cost of K.
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Lemma 40. Suppose K is a (k, y)—strongly stable controller and let x; for s = 1, .. .t be the sequence of states generated
under the control K starting from x1, i.e., Xs41 = (A + BLK)x; + w for all 1 < s < t. Then we have that

20qk*

2
B [l 1"

>+l (0 +K"RK)x,

s=1

xll < tI(K) +

Proof. To ease notation, assume, without loss of generality, that x; is deterministic. We thus omit the conditioning on x; in
all expectation arguments.

First, recall that x,,; = (A, + B,K)x, + ws and J(K) = o>Tr(P) where P satisfies Eq. (32). Then we have that
E[xL,1Px;e1] = E[((Ax + BiK)xs + w) P((Ax + B.K)x, + wy)]

=E[((A. + B.K)x,) P(A, + B.K)x,)| + E[w! Pw]

= E[x] (A, + B.K)" P(A, + B.K)x,] + J(K).
Now, multiplying Eq. (32) by x, from both sides and taking expectation we get that

E[x!Px;] = E[x] (0 + K"RK)x,| + E[x] (A, + B,K)" P(A, + B,K)x;]
=E[x! (Q+K"RK)x,| +E|[x], Px,1] = J(K),

and changing sides and summing over s we get that

>+l (0 +K"RK)x,

s=1

t
E [xlTP)q —x,TJrlPx,H] = Z E [xSTsz —xsTJrlPle] =K —tJ(K),
s=1

and changing sides again we conclude that

t
E|Y xl(Q+K"RK)x,

s=1

< () + E[x[Pxi] < t/(K) + ||| P].

We conclude the proof by bounding ||P||. To that end, recall that the strong stability of K implies that A, + B,K = HLH™"
where ||L|| < 1 -~ and ||H||||H'|| < x. Applying Eq. (32) recursively we then have that

oo

AT ,
1Pl = |3 (As +B.K)") (Q + K"RK)(A + B.K)’
s=0
=N (HLH")' (0 + K"RK)HL'H!
s=0
201 27-1112 2s
< [|H|*|H|*|Q+K"RK|| DL
s=0
(oo}
2 4
< 2041/@4 Z(] _,y)s = ﬂ’
s=0 v
thus concluding the proof. |

The following lemma relates the infinite horizon cost of a controller to its strong stability parameters. Its proof is an
adaptation of Lemma 18 in (Cohen et al., 2019) that fits our assumptions.

J
(Jé()()'2

04()0'2

Lemma 41. Suppose J(K) < J then K is (k,y)-strongly stable with k = and y = 5.

Proof. Recall that J(K) = o2Tr(P) where P satisfies Eq. (32). Using the bound J(K) < J we have that Tr(P) < J/o? and

thus also that P < (J/o?)I. Recalling that Q >= «ol we get that Q > O“‘T"ZP = 2~P. Recalling that R is positive definite and
plugging back into Eq. (32) we get that

P = 29P+ (A, + B,K) P(A, + B.K),



Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently

rearranging the equation we get that
P (A, + B,K)'P(A, + BLK)P™'? < (1 -29)I.

Now, denote H = P2 and L = P"?(A, + B,K)P~"? and notice that indeed HLH™' = A, + B, K. Plugging into the above we
get that

P2, +B,K)'PA, + B,K)P'? = H(HLH‘l)TH‘lH‘l (HLH")H=L"L < (1-27)I,

and thus ||L|| < v/T=27 < 1 —~. Now recall that P < (J/o?)I and thus |H™!| = ||P'?|| < V/J/o2. Going back to Eq. (32)

we also have that P = Q = apl and thus ||H|| = ||P"Y2|| < /T/ay. All together, we get that ||H|||H!|| < \/Jlago? = k.
Finally, recall that R = oo/ and thus going back to Eq. (32) we have that P = KTRK = apKTK and thus ||K|| < +/||P[[/cg <

v/ Jlago? = k, as desired. [ ]

The following lemma relates system parameter estimation bounds to properties of the resulting greedy controller.

Lemma 42. Let A € R, B € R™* and take K = K(A, B, Q,R). Denote A = max{||A-A,||,||B-Bil|}, k = \/”;chfﬁ,
and vy = ﬁ Then we have that
1. If A < &g then K is (k,y)—strongly stable;

2. 1A < miney, gl | then KK = K.KT — 41 and K.KT = KK = 41;
3 IfA < min{so, 4%0} then KK »= 1.

Proof. First, if A < £y we can invoke Lemma 4 to get that J(K) < J, + Coe(z) <v+ C()E% and so by Lemma 41, K is
(k, 7y)-strongly stable, proving the first part of the lemma.

Second, if A < min{so, ﬁ} then we can invoke Lemma 4 to get that ||[K — K, || < f-. Moreover, by the first claim of the

lemma, K, K, are (k, y)-strongly stable and thus upper bounded by . Combining the above we get that

1
KK = K, KT - 3 (K + K)K, —K)" + (K. ~ K)(K, + K)T)
= KK - (K + KD 1K - K11

2
M-k kT -H

= KK - 2
- ¥ 4k 2

and reversing the roles of K and K, in the above yields K, K! = KKT — 51, thus proving the second part of the lemma.

Finally, if A < min{so, ﬁ*cu } then recalling that K, K, > pu.I and continuing from the second part we get that

KKT = KK - Fxpe g Brp= g
e T e T

thus concluding the third and final part of the lemma. |



