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A. Algorithm 1 Proofs
A.1. The Good Event

We begin with an explicit statement of the probabilistic events that comprise EA . Recall that

At = arg min
A

t–1∑
s=1

‖xs+1 – B?us – Axs‖2 + λ‖A‖2
F,

and denote ∆At = At – A?, Vx
t = λI +

∑t–1
s=1 xtxT

t . Now, define the following events

EAols =

{
Tr
(
∆T

At
Vx

t ∆At

)
≤ 4σ2d log

(
3T3 det

(
Vx

t

)
det
(
Vx

1

)) + 2λdϑ2, for all t ≥ 1

}
, (9)

EAx =

{
τi–1∑
t=1

xtxT
t �

(τi – 1)σ2

40
I, for all 0 ≤ i ≤ nT

}
, (10)

EAw =
{

max
1≤t≤T

‖wt‖ ≤ σ
√

15d log 3T
}

, (11)

Then we have the following lemma.

Lemma 17. Let EA = EAols ∩ EAx ∩ EAw , and suppose that T ≥ 600d log 36T. Then we have that P
(
EA
)
≥ 1 – T–2.

Proof. First, we describe the parameter estimation error in terms of Lemma 6. To that end, let zt = xt, yt+1 = xt+1 – B?ut,
Vx

t = λI +
∑t–1

s=1 xtxT
t , and ∆At = At – A? Indeed, we have yt+1 = A?xt + wt, wt ∼ N (0,σ2I), and ‖A?‖2

F ≤ d‖A?‖2 ≤ dϑ2 and
so taking Lemma 6 with δ = 1

3 T–2, recalling that T ≥ d, and simplifying, we get that P
(
EAols

)
≥ 1 – 1

3 T–2.

Next, for EAx , we apply Lemma 36 to the sequence xt with the filtration Ft = σ(x1, u1, . . . , xt, ut). Notice that given xt–1, ut–1
we have xt ∼ N (A?xt–1 + B?ut–1,σ2I) and hence we also get

E
[
xtxT

t | Ft–1
]
� (A?xt–1 + B?ut–1)(A?xt–1 + B?ut–1)T + σ2I � σ2I.

Finally, our choice of τ0 ensures the minimal sum size assumption. We thus apply Lemma 36 nT + 1 times with δ = 1
3 T–3

and apply a union bound. Since nT + 1 ≤ T we conclude that P
(
EAx

)
≥ 1 – 1

3 T–2.

Finally, for EAw we apply Lemma 34 with δ = 1
3 T–2 to get P

(
EAw

)
≥ 1 – 1

3 T–2. The final result is obtained by taking a union
bound over the three events. �

A.2. Proof of Lemma 7

We first need the following two lemmas.

Lemma 18 (Bounded warm-up). On EA we have that ‖xt‖ ≤ σκ3
0
√

60d log 3T ≤ √xb, for all 1 ≤ t ≤ τ0.

Proof. First, by Lemma 41, J(K0) ≤ ν0 implies that K0 is (κ0, γ0)–strongly stable with γ–1
0 = 2κ2

0. So, applying Lemma 38
with x1 = 0 we get that for all 1 ≤ t ≤ τ0

‖xt‖ ≤ 2κ3
0 max

1≤t≤T
‖wt‖,

and applying the noise bound in Eq. (11) we obtain the desired result. �

Lemma 19 (Conditional parameter estimation). On EA fix some i such that 0 ≤ i ≤ nT and suppose that ‖xt‖2 ≤ xb for all
1 ≤ t ≤ τi. Then we have that ‖∆Aτi

‖ ≤ ε02–i.

Proof. First, on EA by Eq. (10) we have that

Vx
τi

= λI +
τi–1∑
t=1

xtxT
t �

(
λ +

(τi – 1)σ2

40

)
I � τiσ

2

40
I,
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and so we conclude that

Tr
(

∆T
Aτi

Vx
τi

∆Aτi

)
≥ Tr

(
∆T

Aτi
∆Aτi

)τiσ
2

40
≥ ‖∆Aτi

‖2 τiσ
2

40
.

Rearranging and applying Eq. (9) we obtain

‖∆Aτi
‖2 ≤ 1

τi

(
160d log

(
3T3 det

(
Vx
τi

)
det
(
Vx

1

) ) + 80
λdϑ2

σ2

)
.

Now, since we assumed ‖xt‖2 ≤ xb = λ, we can apply Lemma 37 to conclude that

log
det
(
Vx
τi

)
det
(
Vx

1

) ≤ d log T ,

and plugging this into the above we get that

‖∆Aτi
‖2 ≤ 1

τi

(
640d2 log(3T) + 80

λdϑ2

σ2

)
≤ 1
τi

80λd
(
1 + ϑ2

)
σ2 ≤ ε2

0τ0

τi
≤ ε2

04–i,

where all transitions are due to our choice of parameters. �

Proof of Lemma 7. First recall that by Lemma 42, if ‖∆At‖ ≤ ε0 then Kt is (κ, γ)–strongly stable. We now show by
induction on n that for all 0 ≤ i ≤ n, Kτi is (κ, γ)–strongly stable. Note that 0 ≤ n ≤ nT .

For the base case, n = 0, Lemma 18 shows that ‖xt‖2 ≤ xb for all 1 ≤ t ≤ τ0, which in turn satisfies Lemma 19, i.e.,
‖∆Aτ0

‖ ≤ ε0 and so the required strong stability of Kτ0 is obtained.

Now, suppose the induction holds up to n – 1 and we show for n. By the strong stability of the controllers up to time τn – 1,
and since τ0 ≥ logκ

γ , we can apply Lemma 39 to conclude that

‖xt‖ ≤ 3κmax
{
‖xτ0‖

2
,
κ

γ
max

1≤t≤T
‖wt‖

}
, for all τ0 ≤ t ≤ τi.

recalling that γ–1 = 2κ2, bounding the noise with Eq. (11), and bounding ‖xτ0‖ by Lemma 18 we get that

‖xt‖ ≤ 3κmax
{
σκ3

0
√

60d log 3T
2

, 2κ3σ
√

15d log 3T
}

,≤ σκmax
{
κ3

0, 2κ3}√135d log 3T =
√

xb,

and as for the base case, we can now invoke Lemmas 19 and 42 to conclude the strong stability of Kτn and finish the
induction. Notice that this together with the above equation also show the algorithm does not abort.

The induction proves the first part of the lemma, i.e., all controller are strongly-stable. Now, we can apply Lemma 39 once
more to conclude that ‖xt‖2 ≤ xb for all τ0 ≤ t ≤ T and together with Lemma 18 this concludes the second claim of the
lemma.

Finally, the third claim is now an immediate corollary of the Lemma 19. �

A.3. Proof of Lemma 8

Recall that Ei =
{
‖∆Aτi

‖ ≤ ε02–i
}

, and further denote Si =
{
‖xτi‖

2 ≤ xb

}
. Trivially, we have that EA ⊆ Ei ∩ Si.

Now, define x̃τi = xτi and for τi < t ≤ τi+1 – 1

x̃t =
(
A? + B?Kτi

)
x̃t–1 + wt.

Since on EA the algorithm does not abort, we have that

1{EA}Ji = 1{EA}
τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t ≤ 1{Ei ∩ Si}

τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t.
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Noticing that Ei, Si, and Kτi are completely determined by xτi , Aτi we use total expectation to get that

E
[
1{EA}Ji

]
≤ E

[
1{Ei ∩ Si}E

[
τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t

∣∣∣∣ xτi , Aτi

]]
.

Now, by Lemma 42, Ei implies that Kτi is (κ, γ)–strongly stable and so we can use Lemma 40 to get that

E
[
1{EA}Ji

]
≤ (τi+1 – τi)E

[
1{Ei}J

(
Kτi

)]
+

2α1κ
4

γ
E
[
1{Si}‖xτi‖

2
]

≤ (τi+1 – τi)E
[
1{Ei}J

(
Kτi

)]
+ 4α1κ

6xb,

where the second transition also used that γ–1 = 2κ2 and the third used our choice of xb ≥ σ2κ4.

A.4. Proof of Lemma 9 (R2 upper bound)

We first need the following lemma.

Lemma 20 (Expected abort state). Suppose that P(τabort ≤ T) ≤ T–2. Then we have that

E
[
‖xτabort‖

2
1{τabort < T}

]
≤
(
1 + 8ϑ2)(κ2 + κ2

0

)
xbT–2.

Proof. First, by the lemmas assumption, we can apply Lemma 35 to get that

E
[
1{τabort ≤ T} max

1≤t≤T
‖wt‖2

]
≤ 5dσ2T–2 log 3T .

Now, notice that ‖A? + B?K‖ ≤ 2ϑ‖K‖ and split into two cases. First, if τabort > τ0 then by definition of τabort we have that

‖xτabort‖ = ‖
(
A? + B?Kτabort–1

)
xτabort–1 + wτabort–1‖ ≤ 2ϑκ

√
xb + max

1≤s≤T
‖wt‖,

and taking expectation we get that

E
[
1{τ0 < τabort ≤ T}‖xτabort‖

2
]
≤ 8ϑ2κ2xbT–2 + 5dσ2T–2 log 3T ≤

(
1 + 8ϑ2)κ2xbT–2.

On the other hand if τabort = τ0 then

‖xτabort‖ = ‖(A? + B?K0)xτ0–1 + wτ0–1‖ ≤ 2ϑκ0‖xτ0–1‖ + max
1≤t≤T

‖wt‖ ≤ (4ϑ + 1)κ4
0 max

1≤t≤T
‖wt‖,

where the last transition used Lemma 38 and γ–1
0 = 2κ2

0. Taking expectation we get that

E
[
1{τabort = τ0}‖xτabort‖

2
]
≤ 20

(
1 + 8ϑ2)κ8

0dσ2T–2 log 3T ≤
(
1 + 8ϑ2)κ2

0xbT–2,

and combining both cases yields the final bound. �

Proof of Lemma 9. First, recall the decomposition of R2.

R2 ≤ E

[
1
{
Ec

A

} τabort–1∑
t=τ0

ct

]
+ E

[
T∑

t=τabort

ct

]
.

For τ0 ≤ t < τabort we have that ‖xt‖2 ≤ xb and ‖Kt‖ ≤ κ and so we get that

ct = xT
t

(
Q + KT

t RKt
)
xt ≤ ‖xt‖2

(
‖Q‖ + ‖R‖‖Kt‖2

)
≤ 2α1κ

2xb.

By Lemma 7 we have that P
(
Ec

A

)
≤ T–2 and so we get that

E

[
1
{
Ec

A

} τabort–1∑
t=τ0

ct

]
≤ E

[
1
{
Ec

A

}
2α1κ

2xbT
]

= 2α1κ
2xbTP

(
Ec

A

)
≤ 2α1κ

2xbT–1, (12)
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bounding the first term of R2. Next, for t ≥ τabort we have that Kt = K0 and so we can apply Lemma 40 to relate the expected
cost of this period to that of the steady state cost of K0. we get that

E

[
T∑

t=τabort

ct

]
= E

[
E

[
T∑

t=τabort

xT
t

(
Q + KT

0 RK0
)
xt

∣∣∣ τabort, xτabort

]]

≤ E
[
1{τabort ≤ T}

(
TJ(K0) +

2α1κ
4
0

γ0
‖xτabort‖

2
)]

= TJ(K0)P(τabort ≤ T) + 4α1κ
6
0E
[
‖xτabort‖

2
1{τabort ≤ T}

]
,

where the last transition used γ–1
0 = 2κ2

0. Now, by Lemma 7 we know that on EA the algorithm does not abort. We conclude
that {τabort ≤ T} ⊆ Ec

A which in turn implies P(τabort ≤ T) ≤ P
(
Ec

A

)
≤ T–2. We get that

E

[
T∑

t=τabort

ct

]
≤ J(K0)T–1 + 4α1κ

6
0E
[
‖xτabort‖

2
1{τabort ≤ T}

]
,

Finally, we use Lemma 20 and simplify to get that

R2 ≤ 2α1κ
2xbT–1 + J(K0)T–1 + 4α1κ

6
0

(
1 + 8ϑ2)(κ2 + κ2

0

)
xbT–2

=
(
J(K0) + 2α1κ

2xb
)
T–1 + 4α1κ

6
0

(
1 + 8ϑ2)(κ2 + κ2

0

)
xbT–2,

as desired. �

A.5. Proof of Lemma 10

Notice that for t < τ0 we have that Kt = K0. Moreover, we have that x1 = 0. Applying Lemma 40 we get that

R3 = E

[
τ0–1∑
t=1

xT
t

(
Q + KT

0 RK0
)
xt

]
≤ τ0J(K0).

B. Algorithm 2 Proofs
B.1. The Good Event

We begin by stating the probabilistic events that guarantee the “good” operation of the algorithm. To that end, it will
be convenient to specify how the randomized actions during the warm-up stage are generated. For t = 1, . . . , T let
ηt ∼ N (0,σ2I) be i.i.d. samples generated before the algorithm starts. Define ũt = K0xt + ηt and if at time t the algorithm
chooses at random, i.e., during warm-up, then choose ut = ũt. These virtual actions are a convenient technical tool as they
do not directly depend on the action chosen by the algorithm.

Now, recall that

Bt = arg min
B

t–1∑
s=1

‖(xs+1 – A?xs) – Bus‖2 + λ‖B‖2
F,

and denote ∆Bt = Bt – B?, Vu
t = λI +

∑t–1
s=1 utuT

t . Further recalling that τi = τ04i for 0 ≤ i ≤ nT and τnT +1 = T + 1 ≤ τ04nT +1,
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we define the following events

EBols =

{
Tr
(
∆T

Bt
Vu

t ∆Bt

)
≤ 4σ2d log

(
4T3 det

(
Vu

t

)
det
(
Vu

1

)) + 2λkϑ2, for all t ≥ 1

}
, (13)

EBx =

{
τi–1∑

t=τi–1

xtxT
t �

(τi – τi–1)σ2

40
I, for all 1 ≤ i ≤ nT

}
, (14)

EBw =
{

max
1≤t≤T

‖wt‖ ≤ σ
√

15d log 4T
}

(15)

EBu =

{
τi–1∑
t=1

ũtũT
t �

(τi – 1)σ2

40
I, for all 0 ≤ i ≤ nT

}
, (16)

EBη =
{

max
1≤t≤T

‖ηt‖ ≤ σ
√

15d log 4T
}

. (17)

Then we have the following lemma.

Lemma 21. Let EB = EBols ∩EBx ∩EBw ∩EBu ∩EBη , and suppose that T ≥ 600d log 48T. Then we have that P
(
EB
)
≥ 1 – T–2.

Proof. First, we describe the parameter estimation error in terms of Lemma 6. To that end, let zt = ut, yt+1 = xt+1 – A?xt,
Vu

t = λI +
∑t–1

s=1 utuT
t , and ∆Bt = Bt – B? Indeed, we have yt+1 = B?xt + wt, wt ∼ N (0,σ2I), and ‖B?‖2

F ≤ k‖B?‖2 ≤ kϑ2 and
so taking Lemma 6 with δ = 1

4 T–2, recalling that T ≥ d, and simplifying, we get that P
(
EBols

)
≥ 1 – 1

4 T–2.

Next, for EBx , we apply Lemma 36 to the sequence xt with the filtration Ft = σ(x1, u1, . . . , xt, ut). Notice that given xt–1, ut–1
we have xt ∼ N (A?xt–1 + B?ut–1,σ2I) and hence we also get

E
[
xtxT

t | Ft–1
]
� (A?xt–1 + B?ut–1)(A?xt–1 + B?ut–1)T + σ2I � σ2I.

Notice that our choice of τ0 ensures the minimal sum size assumption. We thus apply Lemma 36 for each 1 ≤ i ≤ nT with
δ = 1

4 T–3 and apply a union bound to get that P
(
EBx

)
≥ 1 – 1

4 nTT–3. Repeating the same process for ũt we also have that
P
(
EBu

)
≥ 1 – 1

4 nTT–3.

Finally, for EBw , EBη we apply Lemma 34 with δ = 1
4 T–2 to get that P

(
EBw

)
≥ 1 – 1

4 T–2 and P
(
EBη

)
≥ 1 – 1

4 T–2.

The final result is obtained by taking a union bound over the events and noticing that 2nT ≤ T . �

B.2. Proof of Lemma 11

The proof is implied by the last part of the following lemma.

Lemma 22 (Algorithm 2 good warm-up). On EB we have that

1. ‖xt‖ ≤ σκ3
0(1 + ϑ)

√
60d log 4T, for all 1 ≤ t ≤ τns ;

2. ‖ut‖2 ≤ λ, for all 1 ≤ t < τns ;

3. Vu
τi
� τiσ

2

40 I, for all 0 ≤ i ≤ ns;

4. ‖∆Bτi
‖ ≤ ε02–i, for all 0 ≤ i ≤ ns.

Proof. Recall the definition of ηt from Appendix B.1 and define w̃t = wt + Bηt. then for t ≤ τns we have that

xt = A?xt–1 + B?ũt–1 + wt–1 = A?xt–1 + B?K0xt–1 + wt–1 + B?ηt–1︸ ︷︷ ︸
w̃t–1

,

i.e., we can consider xt as a sequence generated from running the controller K0 on a linear system with noise sequence w̃t.
We can then apply Lemma 38 to get that

‖xt‖ ≤
κ0

γ0
max

1≤s≤T
‖w̃s‖ , for all 1 ≤ t ≤ τns .
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Now, on EB we have the noise bounds in Eq. (17) and Eq. (15) and so we have that

max
1≤s≤T

‖w̃s‖ ≤ max
1≤s≤T

‖ws‖ + ‖B?‖ max
1≤s≤T

‖ηs‖ ≤ σ(1 + ϑ)
√

15d log 4T .

Combining the above and recalling that γ–1
0 = 2κ2

0 we conclude that

‖xt‖ ≤ σκ3
0(1 + ϑ)

√
60d log 4T , for all 1 ≤ t ≤ τns ,

proving the first claim of the lemma. Next, for 1 ≤ t < τns we have that ut = ũt = K0xt + ηt and so

‖ut‖ ≤ κ0‖xt‖ + ‖ηt‖ ≤ σκ4
0(2 + ϑ)

√
60d log 4T ≤

√
λ,

proving the second claim. Next, notice that for 0 ≤ i ≤ ns we have that Vu
τi

= λI +
∑τi–1

s=1 ũsũT
s . Since EB holds, we can use

the warm-up actions lower bound in Eq. (16) to get that

Vu
τi
�
(
λ +

(τi – 1)σ2

40

)
I � τiσ

2

40
I , for all 0 ≤ i ≤ ns,

proving the third claim. For the final claim, we first use the lower bound on Vu
τi

to get that

‖∆Bτi
‖2 ≤ Tr

(
∆T

Bτi
∆Bτi

)
≤ 40
τiσ2 Tr

(
∆T

Bτi
Vu
τi

∆Bτi

)
.

Next, we apply Eq. (13) to get that

‖∆Bτi
‖2 ≤ 1

τi

(
160d log

(
4T3 det

(
Vu
τi

)
det
(
Vu

1

)) +
80λkϑ2

σ2

)
.

Now, using the second claim of the lemma, we can use Lemma 37 to get that log
det

(
Vu
τi

)
det(Vu

1 ) ≤ k log T , and applying it to the
above and simplifying we get that

‖∆Bτi
‖2 ≤ 1

τi

(
160dk log

(
4T4) +

80λkϑ2

σ2

)
≤ 1
τi

(
640dk log(4T) +

80λkϑ2

σ2

)
≤ 1
τi

80λk
(
1 + ϑ2

)
σ2 ≤ ε2

0τ0

τi
= ε2

04–i,

thus concluding the proof. �

B.3. Proof of Lemma 12

The proof is broken into the following lemmas. The first two claims are concluded by putting together Lemmas 22 and 25
and the third is given by Lemma 26.

Before proceeding, we need the two following lemmas.

Lemma 23 (Algorithm 2 warm-up length). On EB we have that max
{

0, log2
µ0
µ?

}
≤ ns ≤ 2 + max

{
0, log2

µ0
µ?

}
.

Proof. First recall that by Lemma 22, we have that ‖∆Bτi
‖ ≤ ε02–i for all 0 ≤ i ≤ ns. Now, our choice of µ0 implies that

ε0 = µ0
4κC0

and further recalling that µi = µ02–i, we apply Lemma 42 to get that

Kτi K
T
τi
� K?KT

? –
µi

2
I , for all 0 ≤ i ≤ ns (18)

K?KT
? � Kτi K

T
τi

–
µi

2
I , for all 0 ≤ i ≤ ns. (19)
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Now, suppose in contradiction that ns > 0 and µns <
µ?
4 . This means that µns–1 <

µ?
2 and so we can apply Eq. (18) to get

that

Kτns –1KT
τns –1 �

(
µ? –

µns–1

2

)
I �

(
2µns–1 –

µns–1

2

)
I =

3
2
µns–1I,

which contradicts the fact that ns is the first time the warm-up break condition is satisfied. We conclude that either ns = 0 or
µns ≥

µ?
4 . Plugging µns = µ02–ns the latter condition implies ns ≤ 2 + log2

µ0
µ?

thus giving the lemma’s upper bound.

Now for the lower bound, suppose in contradiction that µns > µ? then by Eq. (19) we get that

K?KT
? �

(
3
2
µns –

µns

2

)
I � µ?I,

which contradicts the fact that µ? is the tight lower bound on the eigenvalues of K?KT
? . We conclude that µns ≤ µ? which in

turn implies the desired lower bound. �

Lemma 24 (Algorithm 2 conditional control). Suppose EB holds and fix some i such that ns ≤ i ≤ nT . If ‖ut‖2 ≤ λ for all
1 ≤ t ≤ τi – 1, then Kτi is (κ, γ)–strongly stable and Kτi K

T
τi
� µ?

2 I.

Proof. If ‖∆Bτi
‖ ≤ min

{
ε0, µ?

4κC0

}
then Lemma 42 immediately implies the desired result. We prove this estimation error

bound thus concluding the proof.

To that end, notice that for t ≥ s we have Vu
t � Vu

s . Using the lower bound on Vu
τns

in Lemma 22 we get that

Tr
(

∆T
Bτi

Vu
τi

∆Bτi

)
≥ Tr

(
∆T

Bτi
Vu
τns

∆Bτi

)
≥ ‖∆Bτi

‖2 τnsσ
2

40
,

and by changing sides and applying the parameter estimation bound in Eq. (13) we get that

‖∆Bτi
‖2 ≤ 1

τns

(
160d log

(
4T3 det

(
Vu
τi

)
det
(
Vu

1

)) +
80λkϑ2

σ2

)
(20)

Now, using the assumption on ut, we can apply Lemma 37 to get that log
det Vu

τi
det Vu

1
≤ k log T . Plugging this back into Eq. (20)

and simplifying we get that
‖∆Bτi

‖ ≤ ε02–ns ,

and plugging in the lower bound on ns from Lemma 23 gives the desired bound on the estimation error thus concluding the
proof. �

Lemma 25 (Algorithm 2 bounded operation). On EB we have that

1. ‖xt‖2 ≤ xb, for all τns ≤ t ≤ T;

2. Kτi is (κ, γ)–strongly stable, for all ns ≤ i ≤ nT ;

3. Kτi K
T
τi
� 1

2µ?I, for all ns ≤ i ≤ nT .

Proof. First, recall the bounds on xt, ut from Lemma 22, i.e.,

‖xτns
‖ ≤ σκ3

0(1 + ϑ)
√

60d log 4T ≤
√

xb,

‖ut‖2 ≤ λ, for all 1 ≤ t < τns .

We prove by induction on n where ns ≤ n ≤ nT that the claims of the lemma hold up to time τn and phase n respectively.

For the base case, n = ns the bounds above satisfy Lemma 24 and so we conclude that Kτ0 is strongly stable and that
Kτ0 KT

τ0
� 1

2µ?I thus satisfying the induction base.
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Next, assume the induction hypothesis holds for n – 1 and we show for n. By the induction hypothesis, the algorithm does
not abort up to (including) time τn–1 – 1. Moreover, it means that for all ns ≤ i ≤ n – 1 the controllers Kτi are (κ, γ)–strongly
stable and so we can use Lemma 39 to get that

‖xt‖ ≤ 3κmax
{‖xτns

‖
2

,
κ

γ
max

1≤s≤T
‖wt‖

}
, for all τns ≤ t ≤ τn,

and plugging in that γ–1 = 2κ2, the bound for ‖xτns
‖ and the bound for the noise in Eq. (15) we get that

‖xt‖ ≤ κσmax
{
κ3

0(1 + ϑ), 2κ3}√135d log 4T ≤
√

xb, for all τns ≤ t ≤ τn,

as desired for xt. Notice that this ensures that the algorithm does not abort up to time τn – 1. So, for τns ≤ t ≤ τn – 1
we have that ‖ut‖ = ‖Ktxt‖ ≤ ‖Kt‖‖xt‖ ≤ κ

√
xb =

√
λ, and thus Lemma 24 establishes the desired strong-stability and

non-degeneracy of Kτn , finishing the induction.

Finally, using the strong stability of all controllers we apply Lemma 39 a final time to obtain the bound on xt for all
τns ≤ t ≤ T . �

Lemma 26 (Algorithm 2 parameter estimation). On EB we have that ‖∆Bτi
‖ ≤ ε0 min

{
2–ns , 2µ–1/2

? 2–i
}

, ∀ ns < i ≤ nT .

Proof. Recall that by Lemma 25, the algorithm does not abort on EB and so for τi ≤ t ≤ τi+1 – 1 we have that Kt = Kτi . This
means we can decompose Vu

τi
as

Vu
τi

= Vu
τns

+
τi–1∑
t=τns

utuT
t = Vu

τns
+

i–1∑
j=ns

τj+1–1∑
t=τj

utuT
t = Vu

τns
+

i–1∑
j=ns

Kτj

τj+1–1∑
t=τj

xtxT
t

KT
τj

.

Next, we lower bound Vu
τns

using Lemma 22 and the states using Eq. (14) and get that

Vu
τi
� τnsσ

2

40
I +

i–1∑
j=ns

((
τj+1 – τj

)
σ2

40

)
Kτns 2j–1 KT

τns 2j–1 ,

and recalling that Kτj K
T
τj
� µ?

2 I (see Lemma 25) we get that, assuming i > ns,

Vu
τi
� σ2

40

τns +
µ?
2

i–1∑
j=ns

(τj+1 – τj)

I =
σ2

40

(
τns +

µ?
2
(
τi – τns

))
I � σ2

40
max

{
τns ,

µ?
4
τi

}
I.

Now, apply this together with the parameter estimation bound in Eq. (13) to get that

‖∆Bτi
‖2 ≤ Tr

(
∆T

Bτi
∆Bτi

)
≤ 40
σ2 max

{
τns ,

µ?
4 τi
}Tr

(
∆T

Bτi
Vu
τi

∆Bτi

)
≤ 1

max
{
τns ,

µ?
4 τi
}(160d log

(
4T3 det

(
Vu
τi

)
det
(
Vu

1

)) +
80λkϑ2

σ2

)
.

Finally, from Lemma 22 we have that ‖ut‖2 ≤ λ for 1 ≤ t < τns and from Lemma 25 we have that ‖xt‖2 ≤ xb for τns ≤ t ≤ T

and so ‖ut‖2 = ‖Ktxt‖2 ≤ κ2xb = λ. Combining both claims, we apply Lemma 37 to get that log
det Vu

τi
det Vu

1
≤ k log T and

plugging this into the above equation we get

‖∆Bτi
‖2 ≤ 1

max
{
τns ,

µ?
4 τi
}(640dk log(4T) +

80λϑ2

σ2

)
≤ τ0ε

2
0

max
{
τns ,

µ?
4 τi
} = ε2

0 min
{

4–ns ,
4
µ?

4–i
}

,

where the second transition follows from our choice of τ0. �
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B.4. Proof of Theorem 2

As in Algorithm 1, denote Ji =
∑τi+1–1

t=τi
xT

t

(
Q + KT

τi
RKτi

)
xt. Recalling that warm-up lasts until phase ns, we have the following

decomposition of the regret:

E[RT ] = R1 + R2 + R3 – TJ?,

where

R1 = E

[
nT∑

i=ns

1{EB}Ji

]
, R2 = E

1{Ec
B

} T∑
t=τns

ct

, R3 = E

τns –1∑
t=1

ct

,

are the costs due to success, failure, and warm-up respectively. The following lemmas bound each of R1, R2, R3 thus
concluding the proof. The proofs for R1, R2 remain nearly the same but are provided for completeness. The proof of R3
contains a few technical challenges, introduced by the randomness of the warm-up period duration.

Lemma 27. R1 – TJ? ≤ nT
(
6C0ε

2
0 max

{
1, 4µ–1

?

}
τ0 + 8α1κ

6xb
)
.

Lemma 28. R2 ≤
(
J(K0) + 2α1κ

2xb
)
T–1 + 4α1κ

6
0

(
1 + 8ϑ2

)(
κ2 + κ2

0

)
xbT–2.

Lemma 29. R3 ≤ (1 + ϑ2)
(

65J(K0) max
{

1, µ
2
0

µ2
?

}
τ0 + 80α1dσ2κ14

0 log2 3T
)

.

B.4.1. PROOF OF LEMMA 27

Proof. We begin by bounding E
[
1{EB}Ji | ns

]
for ns ≤ i ≤ nT . This follows exactly as in Lemma 8 but with some changes

to the events Ei, and thus is repeated here. For ns ≤ i ≤ nT define the events Si =
{
‖xτi‖

2 ≤ xb

}
and

Ens =
{
‖∆Bτns

‖ ≤ ε02–ns

}
, Ei =

{
‖∆Bτi

‖ ≤ ε0 min
{

2–ns , 2µ–1
? 2–i}}, ∀ ns < i ≤ nT .

By Lemma 12, we have that EB ⊆ Ei ∩ Si. Now, define x̃τi = xτi and for τi < t ≤ τi+1 – 1 define

x̃t =
(
A? + B?Kτi

)
x̃t–1 + wt.

Since on EB the algorithm does not abort, we have that

1{EB}Ji = 1{EB}
τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t ≤ 1{Ei ∩ Si}

τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t.

Noticing that Ei, Si, and Kτi are completely determined by xτi , Bτi we use total expectation to get that

E
[
1{EB}Ji | ns

]
≤ E

[
1{Ei ∩ Si}E

[
τi+1–1∑
t=τi

x̃T
t

(
Q + KT

τi
RKτi

)
x̃t

∣∣∣∣ xτi , Bτi

] ∣∣∣∣ ns

]
,

where in the inner expectation we removed the conditioning on ns since the x̃t are conditionally independent of ns given xτi .
Now, by Lemma 42, Ei implies that Kτi is (κ, γ)–strongly stable and so we can use Lemma 40 to get that

E
[
1{EB}Ji

]
≤ (τi+1 – τi)E

[
1{Ei}J

(
Kτi

)
| ns
]

+
2α1κ

4

γ
E
[
1{Si}‖xτi‖

2 | ns

]
≤ (τi+1 – τi)E

[
1{Ei}J

(
Kτi

)
| ns
]

+ 4α1κ
6xb, (21)

where the second transition also used that γ–1 = 2κ2.

Now, by Lemma 4, on Ens we have that J
(
Kτns

)
≤ J? + C0ε

2
04–ns and on Ei where ns < i ≤ nT , we have that J

(
Kτi

)
≤

J? + C0ε
2
0 min

{
4–ns , 4µ–1

? 4–i
}

. Combining both cases we conclude that

1{Ei}J
(
Kτi

)
≤ J? + C0ε

2
0 max

{
1, 4µ–1

?

}
4–i ,∀ ns ≤ i ≤ nT ,
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and plugging this back into Eq. (21) and recalling that τi+1 – τi ≤ 3τi = 3τ04i we have that

E
[
1{EB}Ji | ns

]
≤ (τi+1 – τi)J? + 3C0ε

2
0 max

{
1, 4µ–1

?

}
τ0 + 4α1κ

6xb.

Finally, we sum over i to conclude that

R1 = E

[
nT∑

i=ns

E
[
1{EB}Ji | ns

]]
≤ E

[
nT∑

i=ns

(τi+1 – τi)J? + 3C0ε
2
0 max

{
1, 4µ–1

?

}
τ0 + 4α1κ

6xb

]
≤ E

[(
τnT +1 – τns

)
J? + (nT + 1 – ns)

(
3C0ε

2
0 max

{
1, 4µ–1

?

}
τ0 + 4α1κ

6xb
)]

≤ TJ? + nT
(
6C0ε

2
0 max

{
1, 4µ–1

?

}
τ0 + 8α1κ

6xb
)
,

thus concluding the proof. �

B.4.2. PROOF OF LEMMA 28

The proof is identical to that of Lemma 9 where the initial warm-up duration τ0 is replaced with τns and the uses of
Lemmas 17 and 20 are replaced with Lemmas 21 and 30 respectively. We thus conclude by proving Lemma 30. To that end,
recall that τabort is the time when the algorithm decides to abort, formally,

τabort = min{t ≥ τns | ‖xt‖2
> xb or ‖Kt‖ > κ},

where we treat min ∅ = T + 1.

Lemma 30 (Expected abort state). Suppose that P(τabort ≤ T) ≤ T–2. Then we have that

E
[
‖xτabort‖

2
1{τabort < T}

]
≤
(
1 + 8ϑ2)(κ2 + κ2

0

)
xbT–2.

Proof. First, by the lemmas assumption, we can apply Lemma 35 to get that

E
[
1{τabort ≤ T} max

1≤t≤T
‖wt‖2

]
≤ 5dσ2T–2 log 3T , (22)

E
[
1{τabort ≤ T} max

1≤t≤T
‖B?ηt + wt‖2

]
≤ 5dσ2(1 + ϑ2)T–2 log 3T . (23)

Now, notice that ‖A? + B?K‖ ≤ 2ϑ‖K‖ and split into two cases. First, if τabort > τns then by definition of τabort we have that

‖xτabort‖ = ‖
(
A? + B?Kτabort–1

)
xτabort–1 + wτabort–1‖ ≤ 2ϑκ

√
xb + max

1≤s≤T
‖wt‖,

and taking expectation and applying Eq. (22) we get that

E
[
1{τns < τabort ≤ T}‖xτabort‖

2
]
≤ 8ϑ2κ2xbT–2 + 5dσ2T–2 log 3T ≤

(
1 + 8ϑ2)κ2xbT–2.

On the other hand if τabort = τns then uτabort–1 = K0xτns –1 + ητns –1 and so we have that

‖xτabort‖ = ‖(A? + B?K0)xτns –1 +
(
B?ητns –1 + wτns –1

)
‖

≤ 2ϑκ0‖xτns –1‖ + max
1≤t≤T

‖B?ηt + wt‖

≤ (4ϑ + 1)κ4
0 max

1≤t≤T
‖B?ηt + wt‖,

where the last transition used Lemma 38 and γ–1
0 = 2κ2

0. Taking expectation and applying Eq. (23) we get that

E
[
1{τabort = τns}‖xτabort‖

2
]
≤ 80(1 + ϑ)2(1 + ϑ2)κ8

0dσ2T–2 log 3T ≤
(
1 + ϑ2)κ2

0xbT–2,

and combining both cases yields the final bound. �
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B.4.3. PROOF OF LEMMA 29

Proof. We begin by decomposing R3. Notice that ns ≤ nT + 1 and so we have that

R3 = E

[
τ0–1∑
t=1

ct

]
+ E

[
ns–1∑
i=0

τi+1–1∑
t=τi

ct

]
= E

[
τ0–1∑
t=1

ct

]
+

nT∑
i=0

E

[
1{ns > i}

τi+1–1∑
t=τi

ct

]
.

Now, define J(K, W) to be the infinite horizon cost of playing controller K on the LQ system (A?, B?) whose system
noise has covariance W ∈ Rd×d. In terms of our notation so far, this means that J(K) = J

(
K,σ2I

)
. It is well known that

J(K, W) = Tr(PW) where P is a positive definite solution to

P = Q + KTRK + (A? + B?K)TP(A? + B?K),

and thus does not depend on W.

Now, for 1 ≤ t < τns we have that xt+1 = (A? + B?K0)xt + (B?ηt + wt), i.e., this is equivalent to an LQ system (A?, B?) with
noise covariance σ2

(
I + B?BT

?

)
�
(
1 + ϑ2

)
σ2I and controller K0 and so we have that

J
(
K0,σ2(I + B?BT

?

))
= Tr

(
σ2(I + B?BT

?

)
P
)
≤
(
1 + ϑ2)Tr

(
σ2P

)
=
(
1 + ϑ2)J(K0,σ2) =

(
1 + ϑ2)J(K0).

With the above in mind, we bound the first term in the decomposition of R3 using Lemma 40. We get that

E

[
τ0–1∑
t=1

ct

]
≤ τ0J

(
K0,σ2(I + B?BT

?

))
+

2α1κ
4
0

γ0
‖x1‖2

≤
(
1 + ϑ2)J(K0)τ0.

(24)

Next, recall that γ–1
0 = 2κ2

0, denote the filtration of the history, Ft = σ(x1, u1, w1, . . . , xt, ut, wt) and similarly apply Lemma 40
to get that

E

[
τi+1–1∑
t=τi

ct

∣∣∣∣ Fτi–1

]
≤ (1 + ϑ2)J(K0)(τi+1 – τi) + 4α1κ

6
0‖xτi‖

2.

Now, using Lemmas 35 and 38 we get that

E
[
1{ns > i}‖xτi‖

2
]
≤ E

[
κ2

0

γ2
0

max
1≤t≤T

‖wt + B?ηt‖2
]
≤ 20d(1 + ϑ2)σ2κ8

0 log 3T .

Combining the last two inequalities and noticing that 1{ns > i} is Fτi–1 measurable we further have that

E

[
1{ns > i}

τi+1–1∑
t=τi

ct

]
= E

[
1{ns > i}E

[
τi+1–1∑
t=τi

ct | Fτi–1

]]
≤ E

[
1{ns > i}

(
(1 + ϑ2)J(K0)(τi+1 – τi) + 4α1κ

6
0‖xτi‖

2
)]

(25)

≤ (1 + ϑ2)
(
P(ns > i)J(K0)(τi+1 – τi) + 80α1dσ2κ14

0 log 3T
)
.

Now, from Lemma 23 we know that P
(

ns > 2 + max
{

0, log2
µ0
µ?

})
≤ P

(
Ec

B

)
≤ T–2, and recalling that τi = τ04i we get that

τ0 +
nT∑
i=0

(τi+1 – τi)P(ns > i) ≤ τ0 +
b2+max{0,log2

µ0
µ?
}c∑

i=0

(τi+1 – τi) +
nT∑
i=0

(τi+1 – τi)T–2

= τ04b3+max{0,log2
µ0
µ?
}c +

(
τnT +1 – τ0

)
T–2

≤ 64τ0 max
{

1,
µ2

0

µ2
?

}
+ 4T–1.

(26)
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Finally, combining Eqs. (24) to (26) we get that

R3 ≤ (1 + ϑ2)

(
J(K0)

(
τ0 +

nT∑
i=0

(τi+1 – τi)P(ns > i)

)
+ 80α1dσ2κ14

0 (nT + 1) log 3T

)

≤ (1 + ϑ2)
(

64J(K0) max
{

1,
µ2

0

µ2
?

}
τ0 + 4J(K0)T–1 + 80α1dσ2κ14

0 log2 3T
)

≤ (1 + ϑ2)
(

65J(K0) max
{

1,
µ2

0

µ2
?

}
τ0 + 80α1dσ2κ14

0 log2 3T
)

,

where the second transition also used nT + 1 ≤ log 3T . �

C. Lower Bound Proofs
The next lemma requires the following well known results in LQRs (see, e.g., Bertsekas, 1995). Consider the Q-function of
the system with respect to k?, that in the one-dimensional case takes the form F(x, u) = x2 + u2 + (ax + bu)2p?. Using the
form of k? given in Eq. (1), and by simple algebra we obtain

F(xt, ut) – F(xt, k?xt) = (1 + b2p?)(ut – k?xt)2. (27)

Further, we have F(xt, k?xt) = x2
t p? as both sides are equal to the value of the optimal policy k? starting from state xt. Finally,

also recall that J(k?) = σ2p?. The following explains Eq. (27):

F(xt, ut) = x2
t + ((ut – k?xt) + k?xt)2 + ((a + bk?)xt + b(ut – k?xt))2p?

= F(xt, k?xt) + (ut – k?xt)2 + 2(ut – k?xt)k?xt + b2p?(ut – k?xt)2 + 2bp?(ut – k?xt)(a + bk?)xt

= F(xt, k?xt) + (1 + b2p?)(ut – k?xt)2 + 2xt(ut – k?xt)(k? + bp?(a + bk?))

= F(xt, k?xt) + (1 + b2p?)(ut – k?xt)2 + 2xt(ut – k?xt)(k?(1 + b2p?) + bp?a)

= F(xt, k?xt) + (1 + b2p?)(ut – k?xt)2,

where the last transition used k?(1 + b2p?) = –bp?a (see Eq. (1)).

Lemma 31. The expected regret can be written as

E[RT ] = E

[
T∑

t=1

(1 + b2p?)(ut – k?xt)2

]
– E
[
x2

T+1p?
]
.

Proof. Using the expressions for the Q-function of the system with respect to k?, we have that

RT =
T∑

t=1

E
[
x2

t + u2
t – J(k?)

]
=

T∑
t=1

E
[
F(xt, ut) –

(
(axt + but)2 + w2

t

)
p?
]

(since J(k?) = E[w2
t p?])

=
T∑

t=1

E
[
F(xt, ut) – x2

t+1p?
]

=
T∑

t=1

E[F(xt, ut) – F(xt, k?xt)] +
T∑

t=1

E
[
x2

t p? – x2
t+1p?

]
(since F(xt, k?xt) = x2

t p?)

= E

[
T∑

t=1

(1 + b2p?)(ut – k?xt)2

]
+ E
[
x2

1p?
]

– E
[
x2

T+1p?
]
. (using Eq. (27))

The lemma now follows from our assumption that x1 = 0. �
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Lemma 32. We have E[x2
T+1] ≤ 5

2

(
b2∑T

t=1 E[(ut – k?xt)2] + σ2
)

.

Proof. Denote m = a + bk? and vt = ut – k?xt for all t ≥ 1. Then, xt+1 = axt + b(ut – k?xt + k?xt) + wt = mxt + bvt + wt, and by
unfolding the recursion and using x1 = 0 we obtain

xT+1 =
T∑

t=1

mT–tbvt +
T∑

t=1

mT–twt,

hence

E[x2
T+1] ≤ 2b2E

(
T∑

t=1

mT–tvt

)2

+ 2E

(
T∑

t=1

mT–twt

)2

,

Now, observe that

|m| = |a + bk?| =
∣∣∣a – b · abp?

1 + b2p?

∣∣∣ =
∣∣∣ a
1 + b2p?

∣∣∣ ≤ |a| ≤ 1√
5

.

Using this bound and the Cauchy-Schwartz inequality, we have

E

(
T∑

t=1

mT–tvt

)2

≤
T∑

t=1

m2(T–t) · E

[
T∑

t=1

v2
t

]
≤ 1

1 – m2 E

[
T∑

t=1

v2
t

]
≤ 5

4
E

[
T∑

t=1

v2
t

]
.

Further, as the noise terms w1, . . . , wT are i.i.d. and have variance σ2,

E

(
T∑

t=1

mT–twt

)2

=
T∑

t=1

m2(T–t)E[w2
t ] ≤ 1

1 – m2σ
2 ≤ 5

4
σ2.

Combining inequalities, the lemma follows. �

Proof of Lemma 14. Since 1 + b2p? ≥ 1 and p? ≤ 5/4 (see Eq. (7)), Lemma 31 lower bounds the regret as

E[RT ] ≥ E
[ T∑

t=1

(ut – k?xt)2
]

–
5
4
E[x2

T+1].

Plugging in the bound of Lemma 32 and the assumption that b2 = ε ≤ 1/400, we obtain

E[RT ] ≥ 99
100

E
[ T∑

t=1

(ut – k?xt)2
]

– 4σ2. (28)

On the other hand, note that u2
t ≤ 2(ut – k?xt)2 + 2k2

?x2
t , and so

E
[ T∑

t=1

u2
t

]
≤ 2E

[ T∑
t=1

(ut – k?xt)2
]

+ 2k2
?E
[ T∑

t=1

x2
t

]
.

Further, since J(k?) = σ2p? ≤ 5
4σ

2 we have

E
[ T∑

t=1

x2
t

]
≤ E

[ T∑
t=1

(x2
t + u2

t )
]

= E[RT ] + TE[J(k?)] ≤ E[RT ] +
5
4
σ2T .

Therefore,

E
[ T∑

t=1

u2
t

]
≤ 2E

[ T∑
t=1

(ut – k?xt)2
]

+ 2k2
?E[RT ] +

5
2
σ2k2

?T . (29)

Combining Eqs. (28) and (29) and recalling that 2k2
? ≤ ε ≤ 1 (see Eq. (7)), results with

E
[ T∑

t=1

u2
t

]
≤ 2
(100

99
E[RT ] + 5σ2) + 2k2

?E[RT ] +
5
2
σ2k2

?T ≤ 3E[RT ] +
5
2
σ2k2

?T + 12σ2,

and changing sides yields the second part of the lemma, thus concluding the proof. �
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Proof of Lemma 16. Let Z be a standard Gaussian random variable. Then, using a standard Gaussian tail lower bound,

P
[
|wt–1| ≥

2σ
5

]
= P
[
|Z| ≥ 2

5

]
≥ 17

25
.

Now, recall that xt = axt–1 + but–1 + wt–1 and notice that, as the learning algorithm is deterministic, both xt–1 and ut–1 are
determined conditioned on x1, . . . , xt–1. We next aim to lower bound P[|xt| > 2σ/5 | x1, . . . , xt–1] which we claim that, as
wt–1 is a zero-mean Gaussian random variable, is minimized when axt–1 + but–1 = 0. Therefore,

P
[
|xt| >

2σ
5

∣∣∣ x1, . . . , xt–1

]
≥ P

[
|wt–1| >

2σ
5

]
≥ 17

25
.

Denote by It = 1{|xt| > 2σ/5}. Then, by Azuma’s concentration inequality we have that with probability at least 7/8,

T∑
t=1

It ≥
T∑

t=1

E
[
It | x1, . . . , xt–1

]
–

√
T
2

log 8 ≥ 17
25

T –
√

2T ≥ 2
3

T ,

where for the last inequality we used the assumption that T ≥ 12000. �

Proof of Lemma 15. First, using Pinsker’s inequality yields

TV(P+[x(T)],P–[x(T)]) ≤
√

1
2

KL(P+[x(T)] ‖ P–[x(T)]) , (30)

and by the chain rule of the KL divergence

KL(P+[x(T)] ‖ P–[x(T)]) =
T∑

t=1

E
[
KL(P+[xt | x(t–1)] ‖ P–[xt | x(t–1)])

]
. (31)

Next, let E+ and E– denote the expectations conditioned on whether χ = 1 or χ = –1 respectively. Observe that as the
learning algorithm is deterministic, the sequence of actions u1, . . . , ut–1 is determined given x(t–1). As such, given x(t–1), the
random variable xt is Gaussian with variance σ2 and expectation axt–1 +

√
εχut–1. Therefore, by a standard formula for the

KL divergence between Gaussian random variables, we have

KL(P+[xt | x(t–1)] ‖ P–[xt | x(t–1)]) =
1

2σ2 E+
(
(axt–1 +

√
εut–1) – (axt–1 –

√
εut–1)

)2

=
1

2σ2 E+
(
2
√
εut–1

)2

=
2ε
σ2 E+[u2

t–1],

unless t = 1 in which case KL(P+[x1] ‖ P–[x1]) = 0 since x1 is fixed. Using this bound in Eq. (31) and substituting into
Eq. (30) yields

TV(P+[x(T)],P–[x(T)]) ≤

√√√√ ε

σ2 E+

[ T∑
t=1

u2
t

]
.

Similarly, switching the roles of P+ and P–, we get the bound

TV(P+[x(T)],P–[x(T)]) ≤

√√√√ ε

σ2 E–

[ T∑
t=1

u2
t

]
.

Averaging the two inequalities, using the concavity of the square root, and since E[·] = 1
2E+[·] + 1

2E–[·], we obtain our
claim. �
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D. Technical Lemmas
D.1. Noise Bounds

The following theorem is a variant of the Hanson-Wright inequality (Hanson and Wright, 1971; Wright, 1973) which can be
found in Hsu et al. (2012).

Theorem 33. Let x ∼ N (0, I) be a Gaussian random vector,, let A ∈ Rm×n and define Σ = ATA. Then we have that

P
(
‖Ax‖2

> Tr(Σ) + 2
√

Tr
(
Σ2
)
z + 2‖Σ‖z

)
≤ exp(–z), for all z ≥ 0.

The following lemma is a direct corollary of Theorem 33.

Lemma 34. Let wt ∈ Rd for t = 1, . . . , T be i.i.d. random variables with distribution N (0,σ2I). Suppose that T > 2, then
with probability at least 1 – δ we have that

max
1≤t≤T

‖wt‖ ≤ σ
√

5d log
T
δ

.

Proof. Consider Theorem 33 with A = σI and thus Σ = σ2I. We then have that Tr(Σ) = dσ2, ‖Σ‖ ≤ σ2 and Tr
(
Σ2
)
≤

‖Σ‖Tr(Σ) ≤ dσ4. We conclude that for z ≥ 1 we have that

Tr(Σ) + 2
√

Tr
(
Σ2
)
z + 2‖Σ‖z ≤ σ2d + 2σ2

√
dz + 2σ2z ≤ 5σ2dz.

Now, for x ∼ N (0, I) we have that wt
d= Ax (equals in distribution). We thus have that for z ≥ 1

P
(
‖wt‖ > σ

√
5dz
)
≤ P

(
‖Ax‖ >

√
Tr(Σ) + 2

√
Tr
(
Σ2
)
z + 2‖Σ‖z

)
≤ exp(–z).

Denoting z = log T
δ , the assumption T > 2 ensures that z ≥ 1 and thus P

(
‖wt‖ > σ

√
5d log T

δ

)
≤ δ

T . Performing a union
bound over 1 ≤ t ≤ T we conclude that

P

(
max

1≤t≤T
‖wt‖ > σ

√
5d log

T
δ

)
≤ δ,

and taking the complement we obtain the desired. �

Lemma 35 (Expected maximum noise). Let E be an event such that P(E) ≤ δ for some δ ∈ [0, 1] and let wt ∈ Rd for
t = 1, . . . , T be i.i.d. random variables with distribution N (0,σ2I). Suppose T > 2, then we have that

1. E
[
max1≤t≤T‖wt‖2

]
≤ 5σ2d log 3T;

2. E
[
1{E}max1≤t≤T‖wt‖2

]
≤ 5σ2dδ log 3T

δ .

Proof. Recall that from Lemma 34 we have that for all x ≥ 5σ2d log T

P
(

max
1≤t≤T

‖wt‖2
> x
)
≤ T exp

(
–

x
5σ2d

)
.

Applying the tail sum formula we get that

E
[

max
1≤t≤T

‖wt‖2
]

=
∫ ∞

0
P
(

max
1≤t≤T

‖wt‖2
> x
)

dx

≤ 5σ2d log T +
∫ ∞

5σ2d log T
T exp

(
–

x
5σ2d

)
dx

≤ 5σ2d log 3T ,
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proving the first part of the lemma. For the second part notice that P
(
1{E}max1≤t≤T‖wt‖2

> x
)
≤

min
{
P(E),P

(
max1≤t≤T‖wt‖2

> x
)}

. So, applying the tail sum formula we get that

E
[
1{E} max

1≤t≤T
‖wt‖2

]
=
∫ ∞

0
P
(
1{E} max

1≤t≤T
‖wt‖2

> x
)

dx

≤
∫ 5σ2d log T

δ

0
P(E)dx +

∫ ∞
5σ2d log T

δ

P
(

max
1≤t≤T

‖wt‖2
> x
)

dx

≤ 5σ2dδ log
T
δ

+
∫ ∞

5σ2d log T
δ

T exp
(

–
x

5σ2d

)
dx

= 5σ2dδ
(

1 + log
T
δ

)
≤ 5σ2dδ log

3T
δ

,

proving the second part and concluding the proof. �

D.2. Estimation auxiliary lemmas

The following is due to Cohen et al. (2019). Here we state the result for a general sequence of conditionally Gaussian vectors
but the proof follows without change.

Lemma 36 (Theorem 20 of Cohen et al., 2019). Let zt for t = 1, 2, . . . be a sequence random variables that is adapted to a
filtration {Ft}∞t=1. Suppose that zt are conditionally Gaussian on Ft–1 and that E

[
ztzT

t |Ft–1
]
� σ2

z I for some fixed σ2
z > 0.

Then for t ≥ 200d log 12
δ we have that with probability at least 1 – δ

t∑
s=1

zszT
s �

tσ2
z

40
I.

Lemma 37. Let zs ∈ Rm for s = 1, . . . , t – 1 be such that ‖zs‖2 ≤ λ. Define Vt = λI +
∑t–1

s=1 zszT
s then we have that

log
det(Vt)
det(V1)

≤ m log t.

Proof. First we have that

‖Vt‖ ≤ λ +
t–1∑
s=1

‖zszT
s ‖ = λ +

t–1∑
s=1

‖zs‖2 ≤ λt.

Now, recall that det(Vt) ≤ det
(
‖Vt‖m) and so we have that

log
det(Vt)
det(V1)

≤ log
det
(
‖Vt‖m)
λm ≤ log

λmtm

λm = m log t,

as desired. �

D.3. Strong Stability Lemmas

The following lemma bounds the norm of the state when playing a strongly stable controller. Its proof adapts techniques
from (Cohen et al., 2019).

Lemma 38. Suppose K is a (κ, γ)–strongly stable controller and s0, s1 are integers such that 1 ≤ s0 < s1 ≤ T. Let xs for
s = s0, . . . s1 be the sequence of states generated under the control K starting from xs0 , i.e., xs+1 = (A? + B?K)xs + ws for all
s0 ≤ s < s1. Then we have that

‖xt‖ ≤ κ(1 – γ)t–s0‖xs0‖ +
κ

γ
max

1≤t≤T
‖wt‖, for all s0 ≤ t ≤ s1.
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Proof. Denote M = A? + B?K then for s0 < t ≤ s1 we have that xt = Mxt–1 + wt–1 and by expanding this equation we have

xt = Mt–s0 xs0 +
t–1∑
s=s0

Mt–(s+1)ws.

Recall that by strong stability we have that

‖Ms‖ = ‖HLsH–1‖ ≤ κ(1 – γ)s.

To ease notation denote W = max1≤t≤T‖wt‖. Then for s0 < t ≤ s1 we have that

‖xt‖ ≤ ‖Mt–s0‖‖xs0‖ +
t–1∑
s=s0

‖Mt–(s+1)‖‖ws‖

≤ κ(1 – γ)t–s0‖xs0‖ +
t–1∑
s=s0

κ(1 – γ)t–(s+1)W

≤ κ(1 – γ)t–s0‖xs0‖ +
κ

γ
W. �

The following lemma bounds the norm of the state when playing a sequence of strongly stable controllers.

Lemma 39. Suppose K1, . . . , Kl are (κ, γ)-strongly stable controllers and {ti}l+1
i=1 are integers such that 1 ≤ t1 < . . . <

tl+1 ≤ T. Let xt for t = t1, . . . tl+1 be the sequence of states generated by starting from xt1 and playing controller Ki at times
ti ≤ t < ti+1, i.e., xt+1 = (A? + B?Ki)xt + wt for all ti ≤ t < ti+1. Denote τ = mini{ti+1 – ti} and suppose that τ ≥ γ–1 log(2κ),
then we have that

‖xt‖ ≤ 3κmax
{

1
2
‖xt1‖,

κ

γ
max

1≤t≤T
‖wt‖

}
, ∀ t1 ≤ t ≤ tl+1.

Proof. For 0 < γ ≤ 1 it is a well known fact that γ ≤ – log 1 – γ. Plugging this into the lower bound on τ and rearranging
we get that κ(1 – γ)τ ≤ 1

2 . Now, applying Lemma 38 with s0 = ti and s1 = ti+1, and taking t = ti+1 we have that

‖xti+1‖ ≤ κ(1 – γ)ti+1–ti‖xti‖ +
κ

γ
W

≤ κ(1 – γ)τ‖xti‖ +
κ

γ
W

≤ 1
2
‖xti‖ +

κ

γ
W,

and solving this difference equation we get that

‖xti‖ ≤
2κ
γ

W +
(
‖xt1‖ –

2κ
γ

W
)

21–i ≤ max
{
‖xt1‖,

2κ
γ

W
}

.

Plugging this result back into Lemma 38 we have that for ti < t ≤ ti+1

‖xt‖ ≤ κ(1 – γ)t–ti max
{
‖xt1‖,

2κ
γ

W
}

+
κ

γ
W

≤ κmax
{
‖xt1‖,

2κ
γ

W
}

+
κ

γ
W

≤ κmax
{

3‖xt1‖
2

,
3κ
γ

W
}

,

where the last inequality used the fact that κ ≥ 1. This is true for all i and thus for all t1 ≤ t ≤ tl+1. �

The next two lemmas require the following well known result in linear control theory (see, e.g., Bertsekas, 1995). We have
that J(K) = σ2Tr(P) where P is a positive definite solution of

P = Q + KTRK + (A? + B?K)TP(A? + B?K). (32)

The following lemma relates the expected cost of playing controller K for t rounds to the infinite horizon cost of K.
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Lemma 40. Suppose K is a (κ, γ)–strongly stable controller and let xs for s = 1, . . . t be the sequence of states generated
under the control K starting from x1, i.e., xs+1 = (A? + B?K)xs + ws for all 1 ≤ s < t. Then we have that

E

[
t∑

s=1

xT
s

(
Q + KTRK

)
xs

∣∣∣∣ x1

]
≤ tJ(K) +

2α1κ
4

γ
‖x1‖2.

Proof. To ease notation, assume, without loss of generality, that x1 is deterministic. We thus omit the conditioning on x1 in
all expectation arguments.

First, recall that xs+1 = (A? + B?K)xs + ws and J(K) = σ2Tr(P) where P satisfies Eq. (32). Then we have that

E
[
xT

s+1Pxs+1
]

= E
[
((A? + B?K)xs + ws)TP((A? + B?K)xs + ws)

]
= E
[
((A? + B?K)xs)TP((A? + B?K)xs)

]
+ E
[
wT

s Pws
]

= E
[
xT

s (A? + B?K)TP(A? + B?K)xs
]

+ J(K).

Now, multiplying Eq. (32) by xs from both sides and taking expectation we get that

E
[
xT

s Pxs
]

= E
[
xT

s

(
Q + KTRK

)
xs
]

+ E
[
xT

s (A? + B?K)TP(A? + B?K)xs
]

= E
[
xT

s

(
Q + KTRK

)
xs
]

+ E
[
xT

s+1Pxs+1
]

– J(K),

and changing sides and summing over s we get that

E
[
xT

1 Px1 – xT
t+1Pxt+1

]
=

t∑
s=1

E
[
xT

s Pxs – xT
s+1Pxs+1

]
= E

[
t∑

s=1

xT
s

(
Q + KTRK

)
xs

]
– tJ(K),

and changing sides again we conclude that

E

[
t∑

s=1

xT
s

(
Q + KTRK

)
xs

]
≤ tJ(K) + E

[
xT

1 Px1
]
≤ tJ(K) + ‖x1‖2‖P‖.

We conclude the proof by bounding ‖P‖. To that end, recall that the strong stability of K implies that A? + B?K = HLH–1

where ‖L‖ ≤ 1 – γ and ‖H‖‖H–1‖ ≤ κ. Applying Eq. (32) recursively we then have that

‖P‖ =

∥∥∥∥∥
∞∑
s=0

(
(A? + B?K)s)T(

Q + KTRK
)
(A? + B?K)s

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
s=0

(
HLsH–1)T(

Q + KTRK
)
HLsH–1

∥∥∥∥∥
≤ ‖H‖2‖H–1‖2‖Q + KTRK‖

∞∑
s=0

‖L‖2s

≤ 2α1κ
4
∞∑
s=0

(1 – γ)s =
2α1κ

4

γ
,

thus concluding the proof. �

The following lemma relates the infinite horizon cost of a controller to its strong stability parameters. Its proof is an
adaptation of Lemma 18 in (Cohen et al., 2019) that fits our assumptions.

Lemma 41. Suppose J(K) < J then K is (κ, γ)–strongly stable with κ =
√

J
α0σ2 and γ = α0σ

2

2J .

Proof. Recall that J(K) = σ2Tr(P) where P satisfies Eq. (32). Using the bound J(K) ≤ J we have that Tr(P) ≤ J/σ2 and
thus also that P � (J/σ2)I. Recalling that Q � α0I we get that Q � α0σ

2

J P = 2γP. Recalling that R is positive definite and
plugging back into Eq. (32) we get that

P � 2γP + (A? + B?K)TP(A? + B?K),
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rearranging the equation we get that

P–1/2(A? + B?K)TP(A? + B?K)P–1/2 � (1 – 2γ)I.

Now, denote H = P–1/2 and L = P1/2(A? + B?K)P–1/2 and notice that indeed HLH–1 = A? + B?K. Plugging into the above we
get that

P–1/2(A? + B?K)TP(A? + B?K)P–1/2 = H
(
HLH–1)T

H–1H–1(HLH–1)H = LTL � (1 – 2γ)I,

and thus ‖L‖ ≤
√

1 – 2γ ≤ 1 – γ. Now recall that P � (J/σ2)I and thus ‖H–1‖ = ‖P1/2‖ ≤
√

J/σ2. Going back to Eq. (32)
we also have that P � Q � α0I and thus ‖H‖ = ‖P–1/2‖ ≤

√
1/α0. All together, we get that ‖H‖‖H–1‖ ≤

√
J/α0σ2 = κ.

Finally, recall that R � α0I and thus going back to Eq. (32) we have that P � KTRK � α0KTK and thus ‖K‖ ≤
√
‖P‖/α0 ≤√

J/α0σ2 = κ, as desired. �

The following lemma relates system parameter estimation bounds to properties of the resulting greedy controller.

Lemma 42. Let A ∈ Rd×d, B ∈ Rd×k and take K = K(A, B, Q, R). Denote ∆ = max{‖A – A?‖, ‖B – B?‖}, κ =
√

ν+C0ε2
0

α0σ2 ,
and γ = 1

2κ2 . Then we have that

1. If ∆ ≤ ε0 then K is (κ, γ)–strongly stable;

2. If ∆ ≤ min
{
ε0, µ

4κC0

}
then KKT � K?KT

? – µ
2 I and K?KT

? � KKT – µ
2 I;

3. If ∆ ≤ min
{
ε0, µ?

4κC0

}
then KKT � µ?

2 I.

Proof. First, if ∆ ≤ ε0 we can invoke Lemma 4 to get that J(K) ≤ J? + C0ε
2
0 ≤ ν + C0ε

2
0 and so by Lemma 41, K is

(κ, γ)–strongly stable, proving the first part of the lemma.

Second, if ∆ ≤ min
{
ε0, µ

4κC0

}
then we can invoke Lemma 4 to get that ‖K – K?‖ ≤ µ

4κ . Moreover, by the first claim of the
lemma, K, K? are (κ, γ)–strongly stable and thus upper bounded by κ. Combining the above we get that

KKT = K?KT
? –

1
2
(
(K? + K)(K? – K)T + (K? – K)(K? + K)T)

� K?KT
? –
(
‖K?‖ + ‖K‖

)
‖K? – K‖I

� K?KT
? –

2κµ
4κ

I = K?KT
? –

µ

2
I,

and reversing the roles of K and K? in the above yields K?KT
? � KKT – µ

2 I, thus proving the second part of the lemma.

Finally, if ∆ ≤ min
{
ε0, µ?

4κC0

}
, then recalling that K?K? � µ?I and continuing from the second part we get that

KKT � K?KT
? –

µ?
2

I � µ?I –
µ?
2

I =
µ?
2

I,

thus concluding the third and final part of the lemma. �


