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A. Theoretical analysis of existing methods
This section provides insight for why existing methods do
not encourage the discovery state-covering skills from a
theoretical lens. This is achieved by analyzing the reward
function of these methods, and studying its asymptotic be-
havior for known and novel states. Our main result shows
that the agent receives larger rewards for visiting known
states than discovering new ones. The following subsections
contain the derivation of this result, and Figure 6 provides a
numerical example on a gridworld environment.

A.1. Reverse form of the mutual information

The objective for these methods is

I(S;Z) = Es,z∼p(s,z)[log p(z|s)]− Ez∼p(z)[log p(z)]
(10)

≈ Es,z∼p(s,z)[log ρπ(z|s)]− Ez∼p(z)[log p(z)]
(11)

where the unknown posterior p(z|s) is approximated by the
distribution induced by the policy, ρπ(z|s). This distribution
is estimated with a model qθ(z|s) trained via maximum like-
lihood on (s, z)-tuples collected by deploying the policy in
the environment. For this analysis, however, we will assume
access to a perfect estimate of ρπ(z|s). When considering
the discovery of N discrete skills under a uniform prior, the
reward in Equation 5 becomes

r(s, z′) = log ρπ(z′|s)− log p(z′) (12)
= log ρπ(z′|s) + logN (13)

where z′ ∼ p(z). We will assume that
∑N
i=1 ρπ(zi|s) = 1

in our analysis.

Maximum reward for known states. The reward func-
tion encourages policies to discover skills that visit disjoint
regions of the state space where ρπ(z′|s)→ 1:

rmax = log 1 + logN = logN (14)

Reward for previously unseen states. Note that ρπ(z|s)
is not defined for unseen states, and we will assume a uni-
form prior over skills in this undefined scenario, ρπ(z|s) =
1/N,∀z:

rnew = log
1

N
+ logN = 0 (15)

Alternatively, one could add a background class to the model
in order to assign null probability to unseen states (Capdev-
ila et al., 2018). This differs from the setup in previous
works, reason why it was considered in the analysis. How-
ever, note that the agent gets a larger penalization for visiting

new states in this scenario:

r
′

new = lim
ρπ(z′|s)→0

log ρπ(z′|s) + logN = −∞ (16)

These observations explain why the learned skills provide a
poor coverage of the state space.

A.2. Forward form of the mutual information

The objective for these methods is

I(S;Z) = Es,z∼p(s,z)[log p(s|z)]− Es∼p(s)[log p(s)]
(17)

= Es,z∼p(s,z)[log ρπ(s|z)]− Es∼ρπ(s)[log ρπ(s)]
(18)

where the unknown distributions p(s|z) and p(s) are ap-
proximated using the stationary state-distribution, p(s|z) ≈
ρπ(s|z) and p(s) ≈ ρπ(s) = Ez [ρπ(s|z)]. The stationary
state-distribution is estimated with a model qθ(s|z) trained
via maximum likelihood on (s, z)-tuples collected by de-
ploying the policy in the environment. For this analysis,
however, we will assume access to a perfect estimate of
ρπ(s|z). When considering the discovery of N discrete
skills, the reward in Equation 8 can be expanded as follows:

r(s, z′) = log ρπ(s|z′)− log
1

N

∑
∀zi

ρπ(s|zi) (19)

= log
ρπ(s|z′)∑
∀zi ρπ(s|zi)

+ logN (20)

= lim
ε→0

log
1

1 +
∑
∀zi 6=z′

ρπ(s|zi)+ε
ρπ(s|z′)+ε

+ logN (21)

where z′, zi ∼ p(z) and we added ε→ 0 in the last step to
prevent division by 0.

Maximum reward for known states. As observed by
Sharma et al. (2019), this reward function encourages
skills to be predictable (i.e. ρπ(s|z′) → 1) and diverse
(i.e. ρπ(s|zi)→ 0,∀zi 6= z′):

rmax = log 1 + logN = logN (22)

Reward for previously unseen states. In novel states,
ρπ(s|zi)→ 0,∀zi:

rmax = lim
ε→0

log
1

1 +
∑
∀zi 6=z′

ε
ε

+ logN (23)

= log
1

1 + (N − 1)
+ logN (24)

= log
1

N
+ logN (25)

= 0 (26)
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This result shows that visiting known states instead of ex-
ploring unseen ones provides larger rewards to the agent,
producing options that provide a poor coverage of the state
space.
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Figure 6. Analysis of the reward landscape on a toy gridworld
with two skills, assuming perfect density estimation. Under this
assumption, both forms of the mutual information generate the
same reward landscape. Each column depicts a different skill, and
all rollouts always start from the central tile which is highlighted
in red. Skills are rewarded for visiting known states where they
are maximally distinguishable, but receive no reward for visiting
novel states.

B. Choice of mutual information’s form
The main novelty of EDL is an alternative for modelling the
unknown distributions, which in principle could work with
either form of the mutual information. For the sake of com-
parison with previous works, all experiments consider dis-
crete skills. This was achieved through a categorical poste-
rior p(z|s) that was approximated with a VQ-VAE (van den
Oord et al., 2017). The encoder of the VQ-VAE takes an
input x, produces output ze(x), and maps it to the closest
element in the codebook, e ∈ RK×D. The posterior categor-
ical distribution q(z|x) probabilities are defined as one-hot
as follows:

q(z = k|x) =

{
1 for k = argminj ||ze(x)− ej ||2
0 otherwise

(27)

One could consider the reverse form of the mutual informa-
tion and train the policy with a reward function as follows:

r(s, z) = q(z|s) (28)

where we assumed a uniform prior over z and removed the
constant log p(z) term from the reward.

We can foresee two issues with this reward function. It
is sparse, i.e. many states provide no reward at all, which
might hinder training unless proper exploration strategies
are used (Ecoffet et al., 2019; Trott et al., 2019). A similar
behavior was observed in existing methods using the reverse
form of the mutual information (c.f. Figure 9). Moreover,
the fact that many states produce a maximum reward of
1 might lead to unpredictable skills when paired with an
entropy bonus. Such unpredictability might not be desirable
when training a metra-controller to solve a downstream task
by combining the learned skills (Sharma et al., 2019).

C. Implementation Details
Environments. The maze environments are adapted from
the open-source implementation3 by Trott et al. (2019). The
agent does not observe the walls, whose location needs to
be inferred from experience and makes exploration difficult.
The initial state for each episode is sampled from a 1 × 1
tile. See Table 2 for details about the environments and the
topology of each maze.

Parameter Value

State space S ∈ R2

Action space A ∈ [−0.95, 0.95]2

Episode length 50

Size: Bottleneck maze (Figure 1) 10× 10
Size: Square maze (Figure 2) 5× 5
Size: Corridor maze (Figure 3) 1× 12
Size: Tree maze (Figure 4) 7× 7

Table 2. Environment details.

RL Agents. Policy networks emit the parameters of a Beta
distribution (Chou et al., 2017), which are then shifted and
scaled to match the task action range. Entropy regularization
is employed to prevent convergence to deterministic behav-
iors early in training. We use a categorical distribution with
uniform probabilities for the skill prior p(z). Agents are
trained with PPO (Schulman et al., 2017) and the Adam op-
timizer (Kingma & Ba, 2014). Hyperparameters are tuned
for each method independently using a grid search. See
Table 3 for details.

Exploration. When relying on State Marginal Matching
(SMM) (Lee et al., 2019) for exploration, we implement
the version that considers a mixture of policies with a uni-
form target distribution p∗(s). The density model q(s) is
approximated with a VAE. We use states in the replay buffer

3https://github.com/salesforce/
sibling-rivalry

https://github.com/salesforce/sibling-rivalry
https://github.com/salesforce/sibling-rivalry
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Hyperparameter Value

Discount factor 0.99
λGAE 0.98
λentropy {0.001, 0.005, 0.01, 0.025}
εSiblingRivalry {2.5, 5.0, 7.5}
Optimizer Adam
Learning rate {0.0003, 0.001}
Learning rate schedule Constant

Advantage normalization Yes
Input normalization {Yes, No}
Hidden layers 2
Units per layer 128
Non-linearity ReLU

Horizon 2500
Batch size 250
Number of epochs 4

Table 3. Hyperparameters used in the experiments. Values between
brackets were used in the grid search, and tuned independently for
each method.

as a non-parametric approach to sampling from the desired
p(s) (Warde-Farley et al., 2019). Sampling states from
the replay buffer is similar to a uniform Historical Aver-
aging strategy. This worked well in our experiments, but
exponential sampling strategies might be needed in other
environments to avoid oversampling states collected by the
initially random policies (Hazan et al., 2019). Our imple-
mentation follows the open-source code released by the
authors4, which relies on SAC for policy optimization. Hy-
perparameters are tuned for each environment independently
using a grid search. See Table 4 for details.

Skill discovery. The skill discovery stage in the proposed
method is done with a VQ-VAE (van den Oord et al., 2017),
which allows learning discrete latents. We implement the
version that relies on a commitment loss to learn the dic-
tionary. The size of the codebook is set to the number of
desired skills. Hyperparameters are tuned for each environ-
ment and exploration method independently using a grid
search. See Table 5 for details.

D. Figure details
All experiments in the paper consider agents that learn 10
skills. This value was selected to provide a good balance
between learning a variety of behaviors and ease of visual-
ization. Given the stochastic nature of the learned policies,
we report 20 rollouts per skill. When visualizing states

4https://github.com/RLAgent/
state-marginal-matching

Hyperparameter Value

Discount factor 0.99
Target smoothing coefficient 0.005
Target update interval 1
αentropy {0.1, 1, 10}
βVAE {0.01, 0.1, 1}
Optimizer Adam
Policy: Learning rate 0.001
SMM discriminator: Learning rate 0.001
VAE: Learning rate 0.01
Learning rate schedule Constant

Policies in the mixture 4
Input normalization No

Policy: Hidden layers 2
SMM discriminator: Hidden layers 2
VAE encoder: Hidden layers 2
VAE decoder: Hidden layers 2
Units per layer 128
Non-linearity ReLU

Gradient steps 1
Batch size 128
Replay buffer size 50k

Table 4. Hyperparameters used for exploration using SMM. Values
between brackets were used in the grid search, and tuned inde-
pendently for each environment. Training ends once the buffer is
full.

visited by a random policy, we collect 100 rollouts with
each (untrained) skill. Trajectories from these skills highly
overlap with each other, so we use a single color for all of
them to reduce clutter.

E. Additional visualizations
We include visualizations that provide further insight about
the results presented in the paper, and that could not be
included there due to space constraints. These include the
goal states discovered by methods using the forward for
of the mutual information (Figure 7), visualization of the
reward landscape of each method (Figures 8, 9 and 10), and
additional skill interpolations (Figure 11).

https://github.com/RLAgent/state-marginal-matching
https://github.com/RLAgent/state-marginal-matching
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Hyperparameter Value

Code size 16
βcommitment {0.25, 0.5, 0.75, 1.0, 1.25}
Optimizer Adam
Learning rate 0.0002
Learning rate schedule Constant
Batch size 256

Number of samples 4096
Input normalization Yes

Encoder: Hidden layers 2
Decoder: Hidden layers 2
Units per layer 128
Non-linearity ReLU

Table 5. Hyperparameters used for training the VQ-VAE in the
skill discovery stage. Values between brackets were used in the
grid search, and tuned independently for each environment and
exploration method.

Figure 7. Goal states discovered by methods using the forward
form of the mutual information in Figure 1. We define a goal
state as the most likely state under qφ(s|z) for each skill, i.e. gi =
argmaxsqφ(s|zi). The baseline method relies on the stationary
state-distribution induced by the policy to discover goals. This
policy seldom leaves the initial room, limiting the goals that can
be discovered. In contrast, the uniform distribution over states in
EDL enables the discovery of goals across the whole maze.
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Figure 8. Reward landscape per skill at convergence for the agent in Figure 1 (left). Trajectories from each skill starting from the black
dot are plotted in gray. The yellow star indicates the point of maximum reward for each skill. For some skills, this point belongs to an
unexplored region of the state space, contrary to the intuition in Section A. Note that this is due to the Gaussian assumption over p(s|z) in
the density model.

Figure 9. Approximate posterior qφ(z|s) at convergence for the agent in Figure 1 (middle). Recall that the reward function for this agent
is r(s, z) = log qφ(z|s)− log p(z), and log p(z) is constant in our experiments due to the choice of prior over latent variables. The state
space is partitioned in disjoint regions, so that skills only need to enter their corresponding region in order to maximize reward. Note how
qφ(z|s) extrapolates this partition to states that have never been visited by the policy. When combined with an entropy bonus, this reward
landscape results in skills that produce highly entropic trajectories within each region.
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Figure 10. Reward landscape per skill at convergence for the agent in Figure 1 (right). The reward functions follow a bell shape centered
at each of the centroids in Figure 7 (right). These are dense signals that ease optimization, but training is prone to falling in local optima
due to their deceptive nature.

Figure 11. Interpolating skills learned by EDL. Interpolation is performed at the latent variable level by blending the z vector of two skills.
The first row and column show the original skills being interpolated, which were selected randomly from the set of learned options. When
plotting interpolated skills, we blend the colors used for the original skills.
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wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Sax-
ton, D., and Munos, R. Unifying count-based exploration
and intrinsic motivation. In NIPS, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 2013.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos,
R., van Hasselt, H., Silver, D., and Schaul, T. Universal
successor features approximators. In ICLR, 2019.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Capdevila, J., Cerquides, J., and Torres, J. Mining urban
events from the tweet stream through a probabilistic mix-
ture model. Data mining and knowledge discovery, 2018.

Chou, P.-W., Maturana, D., and Scherer, S. Improving
stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribution.
In ICML, 2017.

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stan-
ley, K. O., and Clune, J. Improving exploration in evo-
lution strategies for deep reinforcement learning via a
population of novelty-seeking agents. arXiv preprint
arXiv:1712.06560, 2017.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. Robots
that can adapt like animals. Nature, 2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL, 2019.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
et al. IMPALA: Scalable distributed deep-RL with im-
portance weighted actor-learner architectures. In ICML,
2018.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In ICLR, 2019.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural net-
works for hierarchical reinforcement learning. In ICLR,
2017.

Florensa, C., Degrave, J., Heess, N., Springenberg, J. T.,
and Riedmiller, M. Self-supervised learning of im-
age embedding for continuous control. arXiv preprint
arXiv:1901.00943, 2019.

Fox, R., Krishnan, S., Stoica, I., and Goldberg, K.
Multi-level discovery of deep options. arXiv preprint
arXiv:1703.08294, 2017.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J.
Meta learning shared hierarchies. In ICLR, 2018.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Guss, W. H., Codel, C., Hofmann, K., Houghton, B., Kuno,
N., Milani, S., Mohanty, S., Liebana, D. P., Salakhutdinov,
R., Topin, N., et al. The minerl competition on sample ef-
ficient reinforcement learning using human priors. arXiv
preprint arXiv:1904.10079, 2019.



Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
ICML, 2017.

Hansen, S., Dabney, W., Barreto, A., Van de Wiele, T.,
Warde-Farley, D., and Mnih, V. Fast task inference with
variational intrinsic successor features. In ICLR, 2020.

Hazan, E., Kakade, S. M., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In ICML,
2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. arXiv preprint arXiv:1911.05722, 2019.
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