
Supplementary Material for Poisson Learning: Graph Based
Semi-Supervised Learning At Very Low Label Rates

A. Proofs
We provide the proofs by section.

A.1. Proofs for Section 2.1

We recall Xx
0 , X

x
1 , X

x
2 , . . . is a random walk on X starting at Xx

0 = x with transition probabilities

P(Xx
k = xj |Xx

k−1 = xi) =
wij
di
.

Before giving the proof of Theorem 2.1, we recall some properties of random walks and Markov chains. The random walk
described above induces a Markov chain with state space X . Since the graph is connected and X is finite, the Markov
chain is positive recurrent. We also assume the Markov chain is aperiodic. This implies the distribution of the random
walker converges to the invariant distribution of the Markov chain as k →∞. In particular, choose any initial distribution
p0 ∈ `2(X) such that

∑n
i=1 p0(xi) = 1 and p0 ≥ 0, and define

pk+1(xi) =

n∑
j=1

wij
dj
pk(xj). (A.1)

Then pk is the distribution of the random walker after k steps. Since the Markov chain is positive recurrent and aperiodic we
have that

lim
k→∞

pk(xi) = π(xi)

for all i, where

π(xi) =
di∑n
i=1 di

is the invariant distribution of the Markov chain. It is simple to check that if p0 ∈ `2(X) is any function (i.e., not necesarily
a probability distribution), and we define pk by the iteration (A.1), then

lim
k→∞

pk(xi) = π(xi)

n∑
j=1

p0(xj). (A.2)

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Define the normalized Green’s function

GT (xi, xj) =
1

di
E

[
T∑
k=0

1{X
xj
k =xi}

]
=

1

di

T∑
k=0

P(X
xj

k = xi).
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Then we have

diGT (xi, xj) = δij +

T∑
k=1

n∑
`=1

w`i
d`

P(X
xj

k−1 = x`)

= δij +

n∑
`=1

w`i
d`

T∑
k=1

P(X
xj

k−1 = x`)

= δij +

n∑
`=1

w`i
d`

T−1∑
k=0

P(X
xj

k = x`)

= δij +

n∑
`=1

w`iGT−1(x`, xj).

Therefore we have
di(GT (xi, xj)−GT−1(xi, xj)) + LGT−1(xi, xj) = δij ,

where the Laplacian L is applied to the first variable of GT−1 while the second variable is fixed (i.e. LGT−1(xi, xj) =
[LGT−1(·, xj)]xi ). Since

uT (xi) =

m∑
j=1

(yj − yu)GT (xi, xj)

we have

di(uT (xi)− uT−1(xi)) + LuT−1(xi) =

m∑
j=1

(yj − yu)δij .

Summing both sides over i = 1, . . . , n we find that

(uT )d,X =

n∑
i=1

diuT (xi) =

n∑
i=1

diuT−1(xi) = (uT−1)d,X ,

where d = (d1, d2, . . . , dn) is the vector of degrees. Therefore (uT )d,X = (uT−1)d,X = · · · = (u0)d,X . Noting that

diu0(xi) =

m∑
j=1

(yj − yu)δij ,

we have (u0)d,X = 0, and so (uT )d,X = 0 for all T ≥ 0. Let u ∈ `2(X) be the solution of

Lu(xi) =

m∑
j=1

(yj − yu)δij

satisfying (u)d,X = 0. Define vT (xi) = di(uT (xi)− u(xi)). We then check that vT satisfies

vT (xi) =

n∑
j=1

wij
dj
vT−1(xj),

and (vT )X = 0. Since the random walk is aperiodic and the graph is connected, we have by (A.2) that limT→∞ vT (xi) =
π(xi)(v0)X = 0, which completes the proof.

A.2. Proofs for Section 2.2

We first review some additional calculus on graphs. The graph divergence of a vector field V is defined as

divV (xi) =

n∑
j=1

wijV (xi, xj).
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The divergence is the negative adjoint of the gradient; that is, for every vector field V ∈ `2(X2) and function u ∈ `2(X)

(∇u, V )`2(X2) = −(u, divV )`2(X). (A.3)

We also define ‖u‖p`p(X) =
∑n
i=1 |u(xi)|p and

‖V ‖p`p(X2) =
1

2

n∑
i,j=1

wij |V (xi, xj)|p,

where | · | is the Euclidean norm on Rk.

The graph Laplacian Lu of a function u ∈ `2(X) is defined as negative of the composition of gradient and divergence

Lu(xi) = −div (∇u)(xi) =

n∑
j=1

wij(u(xi)− u(xj)).

The operator L is the unnormalized graph Laplacian. Using (A.3) we have

(Lu, v)`2(X) = (−div∇u, v)`2(X) = (∇u,∇v)`2(X2).

In particular (Lu, v)`2(X) = (u,Lv)`2(X), and so the graph Laplacian L is self-adjoint as an operator L : `2(X)→ `2(X).
We also note that

(Lu, u)`2(X) = (∇u,∇u)`2(X2) = ‖∇u‖2`2(X2),

that is, L is positive semi-definite.

The variational interpretation of Poisson learning can be directly extended to `p versions, so we proceed in generality here.
For a function u : X → Rk and a positive vector a ∈ Rn (meaning ai > 0 for all i = 1, . . . , n) we define the weighted
mean value

(u)a,X :=
1∑n
i=1 ai

n∑
i=1

aiu(xi).

We define the space of weighted mean-zero functions

`pa,0(X) = {u ∈ `p(X) : (u)a,X = 0}.

For p ≥ 1 and µ > 0 we consider the variational problem

min
u∈`pa,0(X)

{
1

p
‖∇u‖p`p(X2)−µ

m∑
j=1

(yj − yu)·u(xj)

}
(A.4)

where yu = 1
m

∑m
j=1 yj . This generalizes the variational problem (2.8) for Poisson learning, and the theorem below

generalizes Theorem 2.3.

Theorem A.1. Assume G is connected. For any p > 1, positive a ∈ Rn, and µ ≥ 0, there exists a unique solution
u ∈ `pa,0(X) of (A.4). Furthermore, the minimizer u satisfies the graph p-Laplace equation

−div (|∇u|p−2∇u)(xi) = µ

m∑
j=1

(yj − yu)δij . (A.5)

We give the proof of Theorem A.1 below, after some remarks and other results.

Remark A.2. When p = 1, solutions of (A.4) may not exist for all µ ≥ 0, since the variational problem (A.4) may not be
bounded from below. We can show that there exists C > 0 such that if µ < C, the variational problem is bounded from
below and our argument for existence in Theorem A.1 goes through.

It turns out that µ > 0 is a redundant parameter when p > 1.
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Lemma A.3. Let p > 1 and for µ > 0 let uµ be the solution of (A.4). Then, uµ = µ1/(p−1)u1.

It follows from Lemma A.3 that when p > 1, the fidelity parameter µ > 0 is completely irrelevant for classification
problems, since the identity uµ = µ1/(p−1)u1 implies that the label decision (2.2) gives the same labeling for any value of
µ > 0. Hence, in Poisson learning with p > 1 we always take µ = 1. This remark is false for p = 1.

Before proving Theorem A.1 we first record a Poincaré inequality. The proof is standard but we include it for completeness.
We can prove the Poincaré inequality for non-negative vectors a ∈ Rn, meaning that ai ≥ 0 for every i = 1, . . . , n as long
as
∑n
i=1 ai > 0.

Proposition A.4. Assume G is connected, a ∈ Rd is non-negative with
∑n
i=1 ai > 0, and p ≥ 1. There exists λp > 0 such

that

λp‖u− (u)a,X‖`p(X) ≤ ‖∇u‖`p(X2), (A.6)

for all u ∈ `p(X).

Proof. Define

λp = min
u∈`p(X)
u6≡(u)a,X

‖∇u‖`p(X2)

‖u− (u)a,X‖`p(X)
.

Then clearly (A.6) holds for this choice of λp, and λp ≥ 0. If λp = 0, then there exists a sequence uk ∈ `p(X) with
uk 6≡ (uk)a,X such that

‖∇uk‖`p(X2)

‖uk − (u)a,X‖`p(X)
≤ 1

k
.

We may assume that (uk)a,X = 0 and ‖uk‖`p(X) = 1, and so

‖∇uk‖`p(X2) ≤
1

k
. (A.7)

Since |uk(x)| ≤ ‖uk‖`p(X) = 1, the sequence uk is uniformly bounded and by the Bolzano-Weierstrauss Theorem there
exists a subsequence ukj such that ukj (xi) is a convergent sequence in Rk for every i. We denote u(xi) = limj→∞ ukj (xi).
Since ‖ukj‖`p(X) = 1 we have ‖u‖`p(X) = 1, and thus u 6≡ 0. Similarly, since (uk)a,X = 0 we have (u)a,X = 0 as well.
On the other hand it follows from (A.7) that ‖∇u‖`p(X2) = 0, and so

wij(u(xi)− u(xj)) = 0 for all i, j.

It follows that u(xi) = u(xj) whenever wij > 0. Since the graph is connected, it follows that u is constant. Since
(u)a,X = 0 we must have u ≡ 0, which is a contradiction, since ‖u‖`p(X) = 1. Therefore λp > 0, which completes the
proof.

We can now prove Theorem A.1.

Proof of Theorem A.1. Let us write

Ip(u) =
1

p
‖∇u‖p`p(X2) − µ

m∑
j=1

(yj − yu) · u(xj). (A.8)

By Proposition A.4 we have

Ip(u) ≥ 1

p
λpp‖u‖

p
`p(X) − µ

m∑
j=1

(yj − yu) · u(xj)
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for u ∈ `pa,0(X). By Hölder’s inequality we have

m∑
j=1

(yj − yu) · u(xj) ≤
m∑
j=1

|yj − yu||u(xj)|

≤

 m∑
j=1

|yj − yu|q
1/q m∑

j=1

|u(xj)|p
1/p

≤

 m∑
j=1

|yj − yu|q
1/q

‖u‖`p(X),

where q = p/(p− 1). Letting C =
(∑m

j=1 |yj − yu|q
)1/q

we have

Ip(u) ≥ 1

p
λpp‖u‖

p
`p(X) − Cµ‖u‖`p(X). (A.9)

Since p > 1, we see that Ip is bounded below.

Let uk ∈ `pa,0(X) be a minimizing sequence, that is, we take uk so that

−∞ < inf
u∈`pa,0(X)

Ip(u) = lim
k→∞

Ip(uk).

By (A.9) we have that
1

p
λpp‖uk‖

p
`p(X) − Cµ‖uk‖`p(X) ≤ inf

u∈`pa,0(X)
Ip(u) + 1,

for k sufficiently large. Since p > 1, it follows that there exists M > 0 such that ‖uk‖`p(X) ≤ M for all k ≥ 1. Since
|uk(xi)| ≤ ‖uk‖`p(X) ≤M for all i = 1, . . . , n, we can apply the Bolzano-Weierstrauss Theorem to extract a subsequence
ukj such that ukj (xi) is a convergent sequence in Rk for all i = 1, . . . , n. We denote by u∗(xi) the limit of ukj (xi) for all i.
By continuity of Ip we have

inf
u∈`pa,0(X)

Ip(u) = lim
j→∞

Ip(ukj ) = Ip(u
∗),

and (u∗)a,X = 0. This shows that there exists a solution of (A.4).

We now show that any solution of (A.4) satisfies −div
(
|∇u|p−2∇u

)
= µf . The proof follows from taking a variation. Let

v ∈ `pa,0(X) and consider g(t) := Ip(u + tv), where Ip is defined in (A.8). Then g has a minimum at t = 0 and hence
g′(0) = 0. We now compute

g′(0) =
d

dt

∣∣∣
t=0

1

p
‖∇u+ t∇v‖p`p(X2) − µ

m∑
j=1

(yj − yu) · (u(xj) + tv(xj))


=

1

2p

n∑
i,j=1

wij
d

dt

∣∣∣
t=0
|∇u(xi, xj) + t∇v(xi, xj)|p − µ

m∑
j=1

(yj − yu) · v(xj)

=
1

2

n∑
i,j=1

wij |∇u(xi, xj)|p−2∇u(xi, xj) · ∇v(xi, xj)− µ
m∑
j=1

(yj − yu) · v(xj)

= (|∇u|p−2∇u,∇v)`2(X2) − µ
m∑
j=1

(yj − yu) · v(xj)

= (−div (|∇u|p−2∇u), v)`2(X) − µ
m∑
j=1

(yj − yu) · v(xj)

= (−div (|∇u|p−2∇u)− µf, v)`2(X),
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where

f(xi) =

m∑
j=1

(yj − yu)δij .

We choose

v(xi) =
1

ai

(
−div

(
|∇u|p−2∇u

)
(xi)− µf(xi)

)
then

(v)a,X =

n∑
i=1

(
−div

(
|∇u|p−2∇u

)
(xi)− µf(xi)

)
= 0

so v ∈ `pa,0(X). Moreover, for this choice of v,

0 = g′(0) =

n∑
i=1

1

ai

∣∣div
(
|∇u|p−2∇u

)
(xi) + µf(xi)

∣∣2 ≥ 1

max ai

∥∥div
(
|∇u|p−2∇u

)
(xi) + µf(xi)

∥∥2

`2(X)
.

So, −div
(
|∇u|p−2∇u

)
= µf as required.

To prove uniqueness, let u, v ∈ `pa,0(X) be minimizers of (A.4). Then u and v satisfy (A.5) which we write as

−div (|∇u|p−2∇u) = µf.

Applying Lemma A.5 (below) we find that ‖u− v‖`p(X) = 0 and so u = v.

In the above proof we used a quantitive error estimate which is of interest in its own right. The estimate was on equations of
the form

−div (|∇u|p−2∇u) = f

when f ∈ `p0(X), where we use the notation: if a ∈ Rn is a constant vector (without loss of generality the vector of ones)
then we write (u)X = (u)a,X = 1

n

∑n
i=1 u(xi) and `p0(X) = {u ∈ `p(X) : (u)X = 0}.

Lemma A.5. Let p > 1, a ∈ Rn be non-negative, and assume u, v ∈ `pa,0(X) satisfy

−div (|∇u|p−2∇u)(xi) = f(xi)

and
−div (|∇v|p−2∇v)(xi) = g(xi)

for all i = 1, . . . , n, where f, g ∈ `p0(X). Then,

‖u− v‖`p(X) ≤

{
Cλ−qp ‖f − g‖

1/(p−1)
`q(X) if p ≥ 2

Cλ−2
p

(
‖∇u‖`p(X) + ‖∇v‖`p(X)

)2−p ‖f − g‖`2(X) if 1 < p < 2

where C is a constant depending only on p and q = p
p−1 .

Remark A.6. If −div (|∇u|p−2∇u) = f then we can write
(
|∇u|p−2∇u,∇ϕ

)
`2(X2)

= (f, ϕ)`2(X) for any ϕ ∈ `2(X).
Choosing ϕ = u implies ‖∇u‖p`p(X2) = (f, u)`2(X) ≤ ‖f‖`q(X)‖u‖`p(X) so we could write the bound for p ∈ (1, 2) in the
above lemma without ‖∇u‖`p(X) and ‖∇v‖`p(X) on the right hand side.

Proof. For p ≥ 2 we use the identity

|a− b|p ≤ C(|a|p−2a− |b|p−2b) · (a− b)
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for vectors a, b ∈ Rk for some constant C depending only on p (which can be found in Lemma 4.4 Chapter I (DiBenedetto,
1993)) to obtain

‖∇u−∇v‖p`p(X2) =
1

2

n∑
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|p

≤ C
n∑

i,j=1

wij
(
|∇u(xi, xj)|p−2∇u(xi, xj)− |∇v(xi, xj)|p−2∇v(xi, xj)

)
·(∇u(xi, xj)−∇v(xi, xj))

= C(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v))`2(X2)

= C(−div (|∇u|p−2∇u) + div (|∇v|p−2∇v), u− v)`2(X)

= C(f − g, u− v)`2(X)

≤ C‖f − g‖`q(X)‖u− v‖`p(X),

where in the last line we used Hölder’s inequality, 1
p + 1

q = 1, and the value of C may change from line-to-line. By
Proposition A.4 we have

λpp‖u− v‖
p
`p(X) ≤ ‖∇u−∇v‖

p
`p(X2) ≤ C‖f − g‖`q(X)‖u− v‖`p(X).

Therefore we deduce

‖u− v‖`p(X) ≤ Cλ−qp ‖f − g‖
1/(p−1)
`q(X) .

Now for 1 < p < 2 we follow the proof of Lemma 4.4 in Chapter I (DiBenedetto, 1993) to infer

(
|a|p−2a− |b|p−2b

)
· (a− b) =

∫ 1

0

|sa+ (1− s)b|p−2 |a− b|2 ds

+ (p− 2)

∫ 1

0

|sa+ (1− s)b|p−4 |(sa+ (1− s)b) · (a− b)|2 ds

for any a, b ∈ Rk. Hence, by the Cauchy Schwarz inequality,

(
|a|p−2a− |b|p−2b

)
· (a− b) ≥ (p− 1)

∫ 1

0

|sa+ (1− s)b|p−2 |a− b|2 ds

≥ (p− 1)|a− b|2
∫ 1

0

1

(s|a|+ (1− s)|b|)2−p ds

≥ (p− 1)|a− b|2

(|a|+ |b|)2−p .

In the sequel we make use of the inequality

(
|a|p−2a− |b|p−2b

)
· (a− b) ≥ C|a− b|2

(|a|+ |b|)2−p .
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By Hölder’s inequality and the above inequality we have (where again the constant C may change from line-to-line)

‖∇u−∇v‖p`p(X2) =
1

2

n∑
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|p

≤

1

2

n∑
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|2

(|∇u(xi, xj)|+ |∇v(xi, xj)|)2−p


p
2
1

2

n∑
i,j=1

wij (|∇u(xi, xj)|+ |∇v(xi, xj)|)p


2−p
2

≤ C

 n∑
i,j=1

wij
(
|∇u(xi, xj)|p−2∇u(xi, xj)−|∇v(xi, xj)|p−2∇v(xi, xj)

)
·(∇u(xi, xj)−∇v(xi, xj))


p
2

×
(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2

= C
(
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)

) p
2

`2(X2)

(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2

= C
(
−div (|∇u|p−2∇u) + div (|∇v|p−2∇v), u− v

) p
2

`2(X)

(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2

= C (f − g, u− v)
p
2

`2(X)

(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2

≤ C ‖f − g‖
p
2

`2(X) ‖u− v‖
p
2

`2(X)

(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2 .

Combining the above with Proposition A.4 we have

λpp‖u− v‖
p
2

`p(X) ≤ C ‖f − g‖
p
2

`2(X)

(
‖∇u‖`p(X2) + ‖∇v‖`p(X2)

) (2−p)p
2

which implies the result.

The final proof from Section 2.2 is Lemma A.3.

Proof of Lemma A.3. Let us write

Ip,µ(u) =
1

p
‖∇u‖p`p(X2) − µ

m∑
j=1

(yj − yu) · u(xj).

We note that
Ip,µ(µ1/(p−1)u) = µp/(p−1)Ip,1(u).

Therefore
Ip,µ(uµ) = µp/(p−1)Ip,1(uµµ

−1/(p−1)) ≥ µp/(p−1)Ip,1(u1).

On the other hand
µp/(p−1)Ip,1(u1) = Ip,µ(µ1/(p−1)u1) ≥ Ip,µ(uµ)

Therefore
Ip,µ(µ1/(p−1)u1) = Ip,µ(uµ).

By uniqueness in Theorem A.1 we have uµ = µ1/(p−1)u1, which completes the proof.

A.3. Proofs for Section 2.4

We now turn our attention to the Ginzburg–Landau approximation of the graph cut problem (2.11).

Proof of Theorem 2.4. Let us redefine GLτ in a more general form,

GLτ (u) =
1

2
‖∇u‖2`2(X2) +

1

τ

n∑
i=1

V (u(xi))
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where V : Rk → [0,+∞) is continuous and V (t) = 0 if and only if t ∈ Sk. Of course, the choice of V (t) =
∏k
j=1 |t−ej |2

satisfies these assumptions. We let

Eτ (u) =

{
GLτ (u)− µ

∑m
j=1(yj − yu) · u(xj) if (u)X = b

+∞ else,

E0(u) =

{ 1
2‖∇u‖

2
`2(X2) − µ

∑m
j=1(yj − yu) · u(xj) if (u)X = b and u : X → Sk

+∞ else.

The theorem can be restated as showing that minimisers uτ of Eτ contain convergent subsequences, and any convergent
subsequence converges to a minimiser of E0. We divide the proof into two steps, in the first step we show that the sequence
of minimisers {uτ}τ>0 is precompact, in the second step we show that any convergent subsequence is converging to a
minimiser of E0.

1. Compactness. We first show that any sequence {u′τ}τ>0 and M ∈ R satisfying supτ>0 Eτ (u′τ ) ≤M is precompact.
By Proposition A.4 and the Cauchy–Schwarz inequality

M ≥ λ2
2

2
‖u′τ − b‖2`2(X) +

1

τ

n∑
i=1

V (u′τ (xi))︸ ︷︷ ︸
≥0

−µ

√√√√ m∑
j=1

(yj − yu)2

︸ ︷︷ ︸
=:C

‖u′τ‖`2(X)

≥ λ2
2

2
‖u′τ − b‖2`2(X) − Cµ‖u

′
τ − b‖`2(X) − Cµ‖b‖`2(X).

Hence,

‖u′τ − b‖`2(X) ≤
Cµ

λ2
2

1 +

√
1 +

2λ2
2(M + Cµ‖b‖`2(X))

C2µ2

 =: C̃

so {µ′τ}τ>0 is bounded in `2(X) and therefore, by the Bolzano–Weierstrass Theorem, precompact.

To show that minimisers {uτ}τ>0 are precompact it is enough to show that there exists M ∈ R such that supτ>0 Eτ (uτ ) ≤
M . This follows easily as we take u ∈ `2(X) satisfying

∑n
i=1 u(xi) = b and u(xi) ∈ Sk for all i = 1, 2, . . . , n as a

candidate. We have

Eτ (uτ ) ≤ Eτ (u) =
1

2
‖∇u‖2`2(X2) − µ

m∑
j=1

(yj − yu) · u(xj) =: M.

Now we have shown that there exists convergent subsequences we show that any limit must be a minimiser of E0.

2. Converging Subsequences. Let u0 be a cluster point of {uτ}τ>0, i.e. there exists a subsequence such that uτm → u0

as m→∞. Pick any v ∈ `2(X) with E0(v) < +∞. We will show

(a) Eτ (v) = E0(v),

(b) lim infτ→0 Eτ (uτ ) ≥ E0(u0).

Assuming (a) and (b) hold then, by (a),
E0(v) = Eτm(v) ≥ Eτm(uτm).

Taking the limit as m→∞, and applying (b) we have

E0(v) ≥ lim inf
m→∞

Eτm(uτm) ≥ E0(u0).

It follows that for all v ∈ `2(X) we have E0(u0) ≤ E0(v), hence u0 is a minimiser of E0.

To show (a), we easily notice that

Eτ (v) =
1

2
‖∇v‖2`2(X2) +

1

τ

n∑
i=1

V (v(xi))︸ ︷︷ ︸
=0

−µ
m∑
j=1

(yj − yu) · v(xj) = E0(v).
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For (b) we without loss of generality assume that uτ → u0 and

lim inf
τ→0

Eτ (uτ ) = lim
τ→0
Eτ (uτ ) < +∞.

As
∑n
i=1 uτ (xi) = b for all τ > 0 and uτ (xi) → u0(xi) for every i ∈ {1, . . . , n} then (u0)X =

∑n
i=1 u0(xi) = b. And

since V (uτ (xi)) ≤ τEτ (uτ )→ 0 then we have V (u0(xi)) = 0, hence u0(xi) ∈ Sk. Now,

Eτ (uτ ) =
1

2
‖∇uτ‖2`2(X2)︸ ︷︷ ︸
→ 1

2‖∇u0‖2
`2(X2)

+
1

τ

n∑
i=1

V (uτ (xi))︸ ︷︷ ︸
≥0

−µ
m∑
j=1

(yj − yu) · uτ (xj)︸ ︷︷ ︸
→

∑m
j=1(yj−yu)·u0(xj)

.

So lim infτ→0 Eτ (uτ ) ≥ E0(u0) as required.

Remark A.7. If (a) and (b) in the proof of Theorem 2.4 are strengthened to

(a′) for all v ∈ `2(X) there exists vτ → v such that limτ→0 Eτ (vτ ) = E0(v),

(b′) for all v ∈ `2(X) and for all vτ → v then lim infτ→0 Eτ (vτ ) ≥ E0(v)

then one says that Eτ Γ-converges to E0 (and one can show that (a′) and (b′) hold in our case with a small modification of
the above proof). The notion of Γ-convergence is fundamental in the calculus of variations and is considered the variational
form of convergence as it implies (when combined with a compactness result) the convergence of minimisers.

B. Continuum limits
We briefly discuss continuum limits for the Poisson learing problem (2.3). We take p = 2 for simplicity, but the arguments
extend similarly to other values of p ≥ 1. In order to analyze continuum limits of graph-based learning algorithms, we make
the manifold assumption, and assume G is a random geometric graph sampled from an underlying manifold. To be precise,
we assume the vertices of the graph corresponding to unlabeled points x1, . . . , xn are a sequence of i.i.d. random variables
drawn from a d-dimensional compact, closed, and connected manifoldM embedded in RD, where d� D. We assume
the probability distribution of the random variables has the form dµ = ρdVolM, where VolM is the volume form on the
manifold, and ρ is a smooth density. For the labeled vertices in the graph, we take a fixed finite set of points Γ ⊂M. The
vertices of the random geometric graph are

Xn := {x1, . . . , xn} ∪ Γ.

We define the edge weights in the graph by
wxy = ηε (|x− y|) ,

where ε > 0 is the length scale on which we connect neighbors, |x−y| is Euclidean distance in RD, and η : [0,∞)→ [0,∞)
is smooth with compact support, and ηε(t) = 1

εd
η
(
t
ε

)
. We denote the solution of the Poisson learning problem (2.3) for this

random geometric graph by un,ε(x).

The normalized graph Laplacian is given by

Ln,εu(x) =
2

σηnε2

∑
y∈Xn

ηε(|x− y|)(u(x)− u(y)),

where ση =
∫
Rd |z1|2η(|z|) dz. It is well-known (see, e.g., (Hein et al., 2007)), that Ln,ε is consistent with the (negative of)

the weighted Laplace-Beltrami operator
∆ρ := −ρ−1divM(ρ2∇Mu),

where divM is the manifold divergence and∇M is the manifold gradient. We write div = divM and∇ = ∇M now for
convenience. In particular, for any u ∈ C3(M) we have

|Ln,εu(x)−∆ρu(x)| ≤ C(‖u‖C3(M) + 1)(λ+ ε)

holds for all x ∈ Xn with probability at least 1− Cn exp
(
−cnεd+2λ2

)
for any 0 < λ ≤ 1, where C, c > 0 are constants.
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Using the normalised graph Laplacian in the Poisson learning problem (2.3) we write

Ln,εun,ε(x) = n

m∑
y∈Γ

(g(y)− yu)δx=y for x ∈ Xn, (B.1)

where g(y) ∈ R denotes the label associated to y ∈ Γ and yu = 1
|Γ|
∑
x∈Γ g(x). We restrict to the scalar case (binary

classification) for now. Note that the normalisation plays no role in the classification problem (2.2). To see what should
happen in the continuum, as n→∞ and ε→ 0, we multiply both sides of (B.1) by a smooth test function ϕ ∈ C∞(M),
sum over x ∈ X , and divide by n to obtain

1

n
(Ln,εun,ε, ϕ)`2(X) =

∑
y∈Γ

(g(y)− yu)ϕ(y). (B.2)

Since Ln,ε is self-adjoint (symmetric), we have

(Ln,εun,ε, ϕ)`2(X) = (un,ε,Ln,εϕ)`2(X) = (un,ε,∆ρϕ)`2(X) +O
(
(λ+ ε)‖un,ε‖`1(X)

)
.

We also note that ∑
y∈Γ

(g(y)− yu)ϕ(y) =

∫
M

∑
y∈Γ

(g(y)− yu)δy(x)ϕ(x) dVolM(x),

where δy is Dirac-Delta distribution centered at y ∈M, which has the property that∫
M
δy(x)ϕ(x) dVolM(x) = ϕ(y)

for every smooth ϕ ∈ C∞(M). Combining these observations with (B.2) we see that

1

n
(un,ε,∆ρϕ)`2(X) +O

(
(λ+ ε)

n
‖un,ε‖`1(X)

)
=

∫
M

∑
y∈Γ

(g(y)− yu)δy(x)ϕ(x) dVolM(x).

If we can extend un,ε to a function onM in a suitable way, then the law of large numbers would yield

1

n
(un,ε,∆ρϕ)`2(X) ≈

∫
M
un,ε(x)ρ(x)∆ρϕ(x) dVolM(x).

Hence, if un,ε → u as n→∞ and ε→ 0 in a sufficiently strong sense, then the function u :M→ R would satisfy

−
∫
M
u div (ρ2∇ϕ) dVolM =

∫
M

∑
y∈Γ

(g(y)− yu)δy(x)ϕ(x) dVolM(x)

for every smooth ϕ ∈ C∞(M). If u ∈ C2(M), then we can integrate by parts on the left hand side to find that

−
∫
M
ϕ div (ρ2∇u) dVolM =

∫
M

∑
y∈Γ

(g(y)− yu)δy(x)ϕ(x) dVolM(x)

Since ϕ is arbitrary, this would show that u is the solution of the Poisson problem

−div
(
ρ2∇u

)
=
∑
y∈Γ

(g(y)− yu)δy onM. (B.3)

We conjecture that the solutions un,ε converge to the solution of (B.3) as n→∞ and ε→ 0 with probability one.
Conjecture B.1. Assume ρ is smooth. Assume that n→∞ and ε = εn → 0 so that

lim
n→∞

nεd+2

log n
=∞.

Let u ∈ C∞(M\ Γ) be the solution of the Poisson equation (B.3) and un,ε solve the graph Poisson problem (B.1). Then
with probability one

lim
n→∞

max
x∈Xn

dist(x,Γ)>δ

|un,ε(x)− u(x)| = 0

for all δ > 0.
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The conjecture states that un,ε converges to u uniformly as long as one stays a positive distance away from the source
points Γ, where the solution u is singular. We expect the conjecture to be true, since similar results are known to hold when
the source term on the right hand side is a smooth function f . The fact that the right hand side in (B.3) is highly singular,
involving delta-mass concentration, raises difficult technical problems that will require new insights that are far beyond the
scope of this paper.

Remark B.2. If Conjecture B.1 is true, it shows that Poisson learning is consistent with a well-posed continuum PDE for
arbitrarily low label rates. This is in stark contrast to Laplace learning, which does not have a well-posed continuum limit
unless the number of labels grows to∞ as n → ∞ sufficiently fast. This partially explains the superior performance of
Poisson learning for low label rate problems.
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