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Abstract

While policy-based reinforcement learning (RL)
achieves tremendous successes in practice, it is
significantly less understood in theory, especially
compared with value-based RL. In particular, it
remains elusive how to design a provably efficient
policy optimization algorithm that incorporates
exploration. To bridge such a gap, this paper pro-
poses an Optimistic variant of the Proximal Policy
Optimization algorithm (OPPO), which follows
an “optimistic version” of the policy gradient di-
rection. This paper proves that, in the problem
of episodic Markov decision process with linear
function approximation, unknown transition, and
adversarial reward with full-information feedback,
OPPO achieves Õ(

√
d2H3T ) regret. Here d is

the feature dimension, H is the episode horizon,
and T is the total number of steps. To the best of
our knowledge, OPPO is the first provably effi-
cient policy optimization algorithm that explores.1

1. Introduction
Coupled with powerful function approximators such as neu-
ral networks, policy optimization plays a key role in the
tremendous empirical successes of deep reinforcement learn-
ing (Silver et al., 2016; 2017; Duan et al., 2016; OpenAI,
2019; Wang et al., 2018). In sharp contrast, the theoretical
understandings of policy optimization remain rather lim-
ited from both computational and statistical perspectives.
More specifically, from the computational perspective, it
remains unclear until recently whether policy optimization
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converges to the globally optimal policy in a finite number
of iterations, even given infinite data. Meanwhile, from the
statistical perspective, it still remains unclear how to attain
the globally optimal policy with a finite regret or sample
complexity.

A line of recent work (Fazel et al., 2018; Yang et al., 2019a;
Abbasi-Yadkori et al., 2019a;b; Bhandari & Russo, 2019;
Liu et al., 2019; Agarwal et al., 2019; Wang et al., 2019)
answers the computational question affirmatively by prov-
ing that a wide variety of policy optimization algorithms,
such as policy gradient (PG) (Williams, 1992; Baxter &
Bartlett, 2000; Sutton et al., 2000), natural policy gradi-
ent (NPG) (Kakade, 2002), trust-region policy optimization
(TRPO) (Schulman et al., 2015), proximal policy optimiza-
tion (PPO) (Schulman et al., 2017), and actor-critic (AC)
(Konda & Tsitsiklis, 2000), converge to the globally optimal
policy at sublinear rates of convergence, even when they are
coupled with neural networks (Liu et al., 2019; Wang et al.,
2019). However, such computational efficiency guarantees
rely on the regularity condition that the state space is already
well explored. Such a condition is often implied by assum-
ing either the access to a “simulator” (also known as the
generative model) (Koenig & Simmons, 1993; Azar et al.,
2011; 2012a;b; Sidford et al., 2018a;b; Wainwright, 2019)
or finite concentratability coefficients (Munos & Szepesvári,
2008; Antos et al., 2008; Farahmand et al., 2010; Tosatto
et al., 2017; Yang et al., 2019b; Chen & Jiang, 2019), both
of which are often unavailable in practice.

In a more practical setting, the agent sequentially explores
the state space, and meanwhile, exploits the information
at hand by taking the actions that lead to higher expected
total rewards. Such an exploration-exploitation tradeoff is
better captured by the aforementioned statistical question
regarding the regret or sample complexity, which remains
even more challenging to answer than the computational
question. As a result, such a lack of statistical understand-
ing hinders the development of more sample-efficient policy
optimization algorithms beyond heuristics. In fact, empiri-
cally, vanilla policy gradient is known to exhibit a possibly
worse sample complexity than random search (Mania et al.,
2018), even in basic settings such as linear-quadratic reg-
ulators. Meanwhile, theoretically, vanilla policy gradient
can be shown to suffer from exponentially large variance in
the well-known “combination lock” setting (Kakade, 2003;
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Leffler et al., 2007; Azar et al., 2012a), which only has a
finite state space.

In this paper, we aim to answer the following fundamental
question:

Can we design a policy optimization algorithm that
incorporates exploration and is provably sample-efficient?

To answer this question, we propose the first policy optimiza-
tion algorithm that incorporates exploration in a principled
manner. In detail, we develop an Optimistic variant of the
PPO algorithm, namely OPPO. Our algorithm is also closely
related to NPG and TRPO. At each update, OPPO solves
a Kullback-Leibler (KL)-regularized policy optimization
subproblem, where the linear component of the objective
function is defined using the action-value function. As is
shown subsequently, solving such a subproblem corresponds
to one iteration of infinite-dimensional mirror descent (Ne-
mirovsky & Yudin, 1983) or dual averaging (Xiao, 2010),
where the action-value function plays the role of the gradient.
To encourage exploration, we explicitly incorporate a bonus
function into the action-value function, which quantifies the
uncertainty that arises from only observing finite histori-
cal data. Through uncertainty quantification, such a bonus
function ensures the (conservative) optimism of the updated
policy. Based on NPG, TRPO, and PPO, OPPO only aug-
ments the action-value function with the bonus function in
an additive manner, which makes it easily implementable in
practice.

Theoretically, we establish the sample efficiency of OPPO
in an episodic setting of Markov decision processes (MDPs)
with full-information feedback, where the transition dy-
namics are linear in features (Yang & Wang, 2019b;a; Jin
et al., 2019; Ayoub et al., 2020; Zhou et al., 2020). In
particular, we allow the transition dynamics to be nonsta-
tionary within each episode. See also the work of (Du et al.,
2019a; Van Roy & Dong, 2019; Lattimore & Szepesvari,
2019) for a related discussion on the necessity of the lin-
ear representation. In detail, we prove that OPPO attains
a
√
d2H3T -regret up to logarithmic factors, where d is the

feature dimension, H is the episode horizon, and T is the
total number of steps taken by the agent. Note that such
a regret does not depend on the numbers of states and ac-
tions, and therefore, allows them to be even infinite. In
particular, OPPO attains such a regret without knowing the
transition dynamics or accessing a “simulator”. Moreover,
we prove that, even when the reward functions are adver-
sarially chosen across the episodes, OPPO attains the same
regret in terms of competing with the globally optimal pol-
icy in hindsight (Cesa-Bianchi & Lugosi, 2006; Bubeck &
Cesa-Bianchi, 2012). In comparison, existing algorithms
based on value iteration, e.g., optimistic least-squares value
iteration (LSVI) (Jin et al., 2019), do not allow adversarially
chosen reward functions. Such a notion of robustness par-

tially justifies the empirical advantages of KL-regularized
policy optimization (Neu et al., 2017; Geist et al., 2019).
To the best of our knowledge, OPPO is the first provably
sample-efficient policy optimization algorithm that incorpo-
rates exploration.

1.1. Related Work

Our work is based on the aforementioned line of recent
work (Fazel et al., 2018; Yang et al., 2019a; Abbasi-Yadkori
et al., 2019a;b; Bhandari & Russo, 2019; Liu et al., 2019;
Agarwal et al., 2019; Wang et al., 2019) on the computa-
tional efficiency of policy optimization, which covers PG,
NPG, TRPO, PPO, and AC. In particular, OPPO is based
on PPO (and similarly, NPG and TRPO), which is shown to
converge to the globally optimal policy at sublinear rates in
tabular and linear settings, as well as nonlinear settings in-
volving neural networks (Liu et al., 2019; Wang et al., 2019).
However, without assuming the access to a “simulator” or fi-
nite concentratability coefficients, both of which imply that
the state space is already well explored, it remains unclear
whether any of such algorithms is sample-efficient, that is,
attains a finite regret or sample complexity. In comparison,
by incorporating uncertainty quantification into the action-
value function at each update, which explicitly encourages
exploration, OPPO not only attains the same computational
efficiency as NPG, TRPO, and PPO, but is also shown to be
sample-efficient with a

√
d2H3T -regret up to logarithmic

factors.

Our work is closely related to another line of work (Even-
Dar et al., 2009; Yu et al., 2009; Neu et al., 2010a;b; Zimin
& Neu, 2013; Neu et al., 2012; Rosenberg & Mansour,
2019b;a) on online MDPs with adversarially chosen reward
functions, which mostly focuses on the tabular setting.

• Assuming the transition dynamics are known and the
full information of the reward functions is available,
the work of (Even-Dar et al., 2009) establishes a√
τ2T · log |A|-regret, where A is the action space,
|A| is its cardinality, and τ upper bounds the mixing
time of the MDP. See also the work of (Yu et al., 2009),
which establishes a T 2/3-regret in a similar setting.

• Assuming the transition dynamics are known but only
the bandit feedback of the received rewards is available,
the work of (Neu et al., 2010a;b; Zimin & Neu, 2013)
establishes an H2

√
|A|T/β-regret (Neu et al., 2010b),

a T 2/3-regret (Neu et al., 2010a), and a
√
H|S||A|T -

regret (Zimin & Neu, 2013), respectively, all up to
logarithmic factors. Here S is the state space and |S|
is its cardinality. In particular, it is assumed by (Neu
et al., 2010b) that, with probability at least β, any state
is reachable under any policy.

• Assuming the full information of the reward functions
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is available but the transition dynamics are unknown,
the work of (Neu et al., 2012; Rosenberg & Mansour,
2019b) establishes an H|S||A|

√
T -regret (Neu et al.,

2012) and an H|S|
√
|A|T -regret (Rosenberg & Man-

sour, 2019b), respectively, both up to logarithmic fac-
tors.

• Assuming the transition dynamics are unknown and
only the bandit feedback of the received rewards is
available, the recent work of (Rosenberg & Mansour,
2019a) establishes an H|S|

√
|A|T/β-regret up to log-

arithmic factors. In particular, it is assumed by (Rosen-
berg & Mansour, 2019a) that, with probability at least
β, any state is reachable under any policy. Without
such an assumption, an H3/2|S||A|1/4T 3/4-regret is
established.

In the latter two settings with unknown transition dynamics,
all the existing algorithms (Neu et al., 2012; Rosenberg
& Mansour, 2019b;a) follow the gradient direction with
respect to the visitation measure, and thus, differ from most
practical policy optimization algorithms. In comparison,
OPPO is not restricted to the tabular setting and indeed
follows the gradient direction with respect to the policy.
OPPO is simply an optimistic variant of NPG, TRPO, and
PPO, which makes it also a practical policy optimization
algorithm. In particular, when specialized to the tabular
setting, our setting corresponds to the third setting with d =
|S|2|A|, where OPPO attains an H3/2|S|2|A|

√
T -regret up

to logarithmic factors.

Broadly speaking, our work is related to a vast body of work
on value-based reinforcement learning in tabular (Jaksch
et al., 2010; Osband et al., 2014; Osband & Van Roy, 2016;
Azar et al., 2017; Dann et al., 2017; Strehl et al., 2006; Jin
et al., 2018) and linear settings (Yang & Wang, 2019b;a;
Jin et al., 2019; Ayoub et al., 2020; Zhou et al., 2020), as
well as nonlinear settings involving general function ap-
proximators (Wen & Van Roy, 2017; Jiang et al., 2017;
Du et al., 2019b; Dong et al., 2019). In particular, our set-
ting is the same as the linear setting studied by (Ayoub
et al., 2020; Zhou et al., 2020), which generalizes the one
proposed by (Yang & Wang, 2019a). We remark that our
setting differs from the linear setting studied by (Yang &
Wang, 2019b; Jin et al., 2019). It can be shown that the
two settings are incomparable in the sense that one does
not imply the other (Zhou et al., 2020). Also, our setting is
related to the low-Bellman-rank setting studied by (Jiang
et al., 2017; Dong et al., 2019). In comparison, we focus on
policy-based reinforcement learning, which is significantly
less studied in theory. In particular, compared with the work
of (Yang & Wang, 2019b;a; Jin et al., 2019; Ayoub et al.,
2020; Zhou et al., 2020), which focuses on value-based
reinforcement learning, OPPO attains the same

√
T -regret

even in the presence of adversarially chosen reward func-

tions. Compared with optimism-led iterative value-function
elimination (OLIVE) (Jiang et al., 2017; Dong et al., 2019),
which handles the more general low-Bellman-rank setting
but is only sample-efficient, OPPO simultaneously attains
computational efficiency and sample efficiency in the linear
setting. Despite the differences between policy-based and
value-based reinforcement learning, our work shows that
the general principle of “optimism in the face of uncertainty”
(Auer et al., 2002; Bubeck & Cesa-Bianchi, 2012) can be car-
ried over from existing algorithms based on value iteration,
e.g., optimistic LSVI, into policy optimization algorithms,
e.g., NPG, TRPO, and PPO, to make them sample-efficient,
which further leads to a new general principle of “conserva-
tive optimism in the face of uncertainty and adversary” that
additionally allows adversarially chosen reward functions.

1.2. Notation

We denote by ‖ · ‖2 the `2-norm of a vector or the spectral
norm of a matrix. We denote by ∆(A) the set of probability
distributions on a set A and correspondingly define

∆(A |S, H) =
{
{πh(· | ·)}Hh=1 : πh(· |x) ∈ ∆(A)

for any x ∈ S and h ∈ [H]
}

for any set S and H ∈ Z+. For p1, p2 ∈ ∆(A), we denote
by DKL(p1 ‖ p2) the KL-divergence,

DKL(p1 ‖ p2) =
∑
a∈A

p1(a) log
p1(a)

p2(a)
.

Throughout this paper, we denote byC,C ′, C ′′, . . . absolute
constants whose values can vary from line by line.

2. Preliminaries
2.1. MDPs with Adversarial Rewards

In this paper, we consider an episodic MDP (S,A, H,P, r),
where S and A are the state and action spaces, respectively,
H is the length of each episode, Ph(· | ·, ·) is the transition
kernel from a state-action pair to the next state at the h-
th step of each episode, and rkh : S × A → [0, 1] is the
reward function at the h-th step of the k-th episode. We
assume that the reward function is deterministic, which is
without loss of generality, as our subsequent regret analysis
readily generalizes to the setting where the reward function
is stochastic.

At the beginning of the k-th episode, the agent determines
a policy πk = {πkh}Hh=1 ∈ ∆(A |S, H). We assume that
the initial state xk1 is fixed to x1 ∈ S across all the episodes,
which is without loss of generality, as our subsequent re-
gret analysis readily generalizes to the setting where xk1 is
sampled from a fixed distribution across all the episodes.
Then the agent iteratively interacts with the environment as
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follows. At the h-th step, the agent receives a state xkh and
takes an action following akh ∼ πkh(· |xkh). Subsequently,
the agent receives a reward rkh(xkh, a

k
h) and the next state

following xkh+1 ∼ Ph(· |xkh, akh). The k-th episode ends
after the agent receives the last reward rkH(xkH , a

k
H).

We allow the reward function rk = {rkh}Hh=1 to be adver-
sarially chosen by the environment at the beginning of the
k-th episode, which can depend on the (k − 1) historical
trajectories. The reward function rkh is revealed to the agent
after it takes the action akh at the state xkh, which together
determine the received reward rkh(xkh, a

k
h). We define the

regret in terms of competing with the globally optimal pol-
icy in hindsight (Cesa-Bianchi & Lugosi, 2006; Bubeck &
Cesa-Bianchi, 2012) as

Regret(T ) = max
π∈∆(A |S,H)

K∑
k=1

(
V π,k1 (xk1)− V π

k,k
1 (xk1)

)
,

(2.1)

where T = HK is the total number of steps taken by the
agent in all the K episodes. For any policy π = {πh}Hh=1 ∈
∆(A |S, H), the value function V π,kh : S → R associated
with the reward function rk = {rkh}Hh=1 is defined by

V π,kh (x) = Eπ
[ H∑
i=h

rki (xi, ai)
∣∣∣xh = x

]
. (2.2)

Here we denote by Eπ[·] the expectation with respect to
the randomness of the state-action sequence {(xh, ah)}Hh=1,
where the action ah follows the policy πh(· |xh) at the state
xh and the next state xh+1 follows the transition dynamics
Ph(· |xh, ah). Correspondingly, we define the action-value
function (also known as the Q-function) Qπ,kh : S ×A → R
as

Qπ,kh (x, a) = Eπ
[ H∑
i=h

rki (xi, ai)
∣∣∣xh = x, ah = a

]
.

(2.3)

By the definitions in (2.2) and (2.3), we have the following
Bellman equation,

V π,kh = 〈Qπ,kh , πh〉A, Qπ,kh = rkh + PhV π,kh+1. (2.4)

Here 〈·, ·〉A denotes the inner product over A, where the
subscript is omitted subsequently if it is clear from the
context. Also, Ph is the operator form of the transition
kernel Ph(· | ·, ·), which is defined by

(Phf)(x, a) = E[f(x′) |x′ ∼ Ph(· |x, a)] (2.5)

for any function f : S → R. By allowing the reward
function to be adversarially chosen in each episode, our
setting generalizes the stationary setting commonly adopted
by the existing work on value-based reinforcement learning
(Jaksch et al., 2010; Osband et al., 2014; Osband & Van Roy,

2016; Azar et al., 2017; Dann et al., 2017; Strehl et al., 2006;
Jin et al., 2018; 2019; Yang & Wang, 2019b;a), where the
reward function is fixed across all the episodes.

2.2. Linear Function Approximations

We consider the linear setting where the transition dynam-
ics are linear in a feature map, which is formalized in the
following assumption.

Assumption 2.1 (Linear MDP). We assume that the MDP
(S,A, H,P, r) is a linear MDP with the known feature map
ψ : S ×A× S → Rd, that is, for any h ∈ [H], there exists
θh ∈ Rd with ‖θh‖2 ≤

√
d such that

Ph(x′ |x, a) = ψ(x, a, x′)>θh

for any (x, a, x′) ∈ S ×A× S. Also, we assume that∥∥∥∫
S
ψ(x, a, x′) · V (x′)dx′

∥∥∥
2
≤
√
dH

for any (x, a) ∈ S ×A and V : S → [0, H].

See (Ayoub et al., 2020; Zhou et al., 2020) for various exam-
ples of linear MDPs, including the one proposed by (Yang
& Wang, 2019a). In particular, a tabular MDP corresponds
to the linear MDP with d = |S|2|A| and the feature vector
ψ(x, a, x′) being the canonical basis e(x,a,x′) of R|S|2|A|.
See also (Du et al., 2019a; Van Roy & Dong, 2019; Latti-
more & Szepesvari, 2019) for a related discussion on the
necessity of the linear representation.

We remark that (Yang & Wang, 2019b; Jin et al., 2019) study
another variant of linear MDPs, where the transition kernel
can be written as Ph(x′ |x, a) = ϕ(x, a)>µh(x′) for any
h ∈ [H] and (x, a, x′) ∈ S×A×S . Here ϕ : S×A → Rd
is a known feature map and µh : S → Rd is an unknown
function on S for any h ∈ [H]. Although the variant of
linear MDPs defined in Assumption 2.1 and the one studied
by (Yang & Wang, 2019b; Jin et al., 2019) both cover the
tabular setting and the one proposed by (Yang & Wang,
2019a) as special cases, they are two different definitions
of linear MDPs as their feature maps ψ(·, ·, ·) and ϕ(·, ·)
are defined on different domains. It can be shown that the
two variants are incomparable in the sense that one does not
imply the other (Zhou et al., 2020).

3. Algorithm and Theory
3.1. Optimistic PPO (OPPO)

We present Optimistic PPO (OPPO) in Algorithm 1, which
involves a policy improvement step and a policy evaluation
step.

Policy Improvement Step. In the k-th episode, OPPO up-
dates πk based on πk−1 (Lines 4-9 of Algorithm 1). In
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detail, we define the following linear function of the policy
π ∈ ∆(A |S, H),

Lk−1(π)

= V π
k−1,k−1

1 (xk1) + Eπk−1

[ H∑
h=1

〈Qπ
k−1,k−1
h (xh, ·),

πh(· |xh)− πk−1
h (· |xh)〉

∣∣∣x1 = xk1

]
, (3.1)

which is a local linear approximation of V π,k−1
1 (xk1) at πk−1

(Schulman et al., 2015; 2017). In particular, we have that
Lk−1(πk−1) = V π

k−1,k−1
1 (xk1). The policy improvement

step is defined by

πk ← argmax
π∈∆(A |S,H)

Lk−1(π) (3.2)

− α−1 · Eπk−1 [D̃KL(π ‖πk−1) |x1 = xk1 ],

where D̃KL(π ‖πk−1) =

H∑
h=1

DKL

(
πh(· |xh)

∥∥πk−1
h (· |xh)

)
.

Here the KL-divergence regularizes π to be close to πk−1 so
that Lk−1(π) well approximates V π,k−1

1 (xk1), which further
ensures that the updated policy πk improves the expected
total reward (associated with the reward function rk−1) upon
πk−1. Also, α > 0 is the stepsize, which is specified in
Theorem 3.1. By executing the updated policy πk, the
agent receives the state-action sequence {(xkh, akh)}Hh=1 and
observes the reward function rk, which together determine
the received rewards {rkh(xkh, a

k
h)}Hh=1.

The policy improvement step defined in (3.2) corresponds
to one iteration of NPG (Kakade, 2002), TRPO (Schulman
et al., 2015), and PPO (Schulman et al., 2017). In particular,
PPO solves the same KL-regularized policy optimization
subproblem as in (3.2) at each iteration, while TRPO solves
an equivalent KL-constrained subproblem. In the special
case where the reward function rk−1

h is linear in the feature
map φk−1

h defined subsequently, which implies that the

Q-function Qπ
k−1,k−1
h is also linear in φk−1

h , the updated
policy πk can be equivalently obtained by one iteration of
NPG when the policy is parameterized by an energy-based
distribution (Agarwal et al., 2019; Wang et al., 2019). Such a
policy improvement step can also be cast as one iteration of
infinite-dimensional mirror descent (Nemirovsky & Yudin,
1983) or dual averaging (Xiao, 2010), where the Q-function
plays the role of the gradient (Liu et al., 2019; Wang et al.,
2019).

The updated policy πk obtained in (3.2) takes the following
closed form,

πkh(· |x) ∝ πk−1
h (· |x) · exp

(
α ·Qπ

k−1,k−1
h (x, ·)

)
(3.3)

for any h ∈ [H] and x ∈ S. However, the Q-function

Algorithm 1 Optimistic PPO (OPPO)
1: Initialize {π0

h(· | ·)}Hh=1 as uniform distributions on A
and {Q0

h(·, ·)}Hh=1 as zero functions.
2: For episode k = 1, 2, . . . ,K do
3: Receive the initial state xk1 .
4: For step h = 1, 2, . . . ,H do
5: Update the policy by
6: πkh(· | ·) ∝ πk−1

h (· | ·) · exp{α ·Qk−1
h (·, ·)}.

7: Take the action following akh ∼ πkh(· |xkh).
8: Observe the reward function rkh(·, ·).
9: Receive the next state xkh+1.

10: Initialize V kH+1(·) as a zero function.
11: For step h = H,H − 1, . . . , 1 do
12: Λkh ←

∑k−1
τ=1 φ

τ
h(xτh, a

τ
h)φτh(xτh, a

τ
h)> + λ · I .

13: wkh ← (Λkh)−1
∑k−1
τ=1 φ

τ
h(xτh, a

τ
h) · V τh+1(xτh+1).

14: φkh(·, ·)←
∫
S ψ(·, ·, x′) · V kh+1(x′)dx′.

15: Γkh(·, ·)← β · [φkh(·, ·)>(Λkh)−1φkh(·, ·)]1/2.
16: Qkh(·, ·)← rkh(·, ·) + φkh(·, ·)>wkh + Γkh(·, ·).
17: Qkh(·, ·)← min{Qkh(·, ·), H − h+ 1}+.
18: V kh (·)← 〈Qkh(·, ·), πkh(· | ·)〉A.

Qπ
k−1,k−1
h remains to be estimated through the subsequent

policy evaluation step. We denote by Qk−1
h the estimated Q-

function, which replaces the Q-function Qπ
k−1,k−1
h in (3.1)-

(3.3) and is correspondingly used in Line 6 of Algorithm 1.

Policy Evaluation Step. At the end of the k-th episode,
OPPO evaluates the policy πk based on the (k−1) historical
trajectories (Lines 11-18 of Algorithm 1). In detail, for any
h ∈ [H], we define the empirical mean-squared Bellman
error (MSBE) (Sutton & Barto, 2018) as

Mk
h (w) =

k−1∑
τ=1

(
V τh+1(xτh+1)− φτh(xτh, a

τ
h)>w

)2
, (3.4)

where φτh(·, ·) =

∫
S
ψ(·, ·, x′) · V τh+1(x′)dx′,

V τh+1(·) = 〈Qτh+1(·, ·), πτh+1(· | ·)〉A,

while we initialize V τH+1 as a zero function on S. The
policy evaluation step is defined by iteratively updating the
estimated Q-function Qk = {Qkh}Hh=1 associated with the
reward function rk = {rkh}Hh=1 by

wkh ← argmin
w∈Rd

Mk
h (w) + λ · ‖w‖22,

Qkh(·, ·)← min{rkh(·, ·) + φkh(·, ·)>wkh + Γkh(·, ·), H − h+ 1}+
(3.5)

in the order of h = H,H − 1, . . . , 1. Here λ > 0 is the
regularization parameter, which is specified in Theorem 3.1.
Also, Γkh : S × A → R+ is a bonus function, which quan-

tifies the uncertainty in estimating the Q-function Qπ
k,k
h
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based on only finite historical data. In particular, the weight
vector wkh obtained in (3.5) and the bonus function Γkh take
the following closed forms,

wkh = (Λkh)−1
(k−1∑
τ=1

φτh(xτh, a
τ
h) · V τh+1(xτh+1)

)
,

Γkh(·, ·) = β ·
(
φkh(·, ·)>(Λkh)−1φkh(·, ·)

)1/2
, (3.6)

where Λkh =

k−1∑
τ=1

φτh(xτh, a
τ
h)φτh(xτh, a

τ
h)> + λ · I.

Here β > 0 scales with d, H , and K, which is specified in
Theorem 3.1.

The policy evaluation step defined in (3.5) corresponds to
one iteration of least-squares temporal difference (LSTD)
(Bradtke & Barto, 1996; Boyan, 2002). In particular, as we
have

E[V τh+1(x′) |x′ ∼ Ph(· |x, a)] = (PhV τh+1)(x, a)

for any τ ∈ [k − 1] and (x, a) ∈ S × A in the empiri-
cal MSBE defined in (3.4), φk>h wkh in (3.5) is an estimator
of PhV kh+1 in the Bellman equation defined in (2.4) (with

V π
k,k

h+1 replaced by V kh+1). Meanwhile, we construct the
bonus function Γkh according to (3.6) so that φk>h wkh + Γkh
is an upper confidence bound (UCB), that is, it holds that

φkh(·, ·)>wkh + Γkh(·, ·) ≥ (PhV kh+1)(·, ·)

with high probability, which is subsequently characterized
in Lemma 4.3. Here the inequality holds uniformly for any
(h, k) ∈ [H]×[K] and (x, a) ∈ S×A. As the fact that rkh ∈
[0, 1] for any h ∈ [H] implies that Qπ

k,k
h ∈ [0, H − h+ 1],

we truncate Qkh to the range [0, H − h+ 1] in (3.5), which
is correspondingly used in Line 17 of Algorithm 1.

3.2. Regret Analysis

We establish an upper bound of the regret of OPPO (Algo-
rithm 1) in the following theorem. Recall that the regret is
defined in (2.1) and T = HK is the total number of steps
taken by the agent, where H is the length of each episode
and K is the total number of episodes. Also, |A| is the
cardinality of A and d is the dimension of the feature map
ψ.

Theorem 3.1 (Total Regret). Let α =
√

2 log |A|/(HT )
in (3.2) and Line 6 of Algorithm 1, λ = 1 in (3.5) and Line
12 of Algorithm 1, and β = C

√
dH2 · log(dT/ζ) in (3.6)

and Line 15 of Algorithm 1, where C > 1 is an absolute
constant and ζ ∈ (0, 1]. Under Assumption 2.1 and the
assumption that log |A| = O(d2 · [log(dT/ζ)]2), the regret
of OPPO satisfies

Regret(T ) ≤ C ′
√
d2H3T · log(dT/ζ)

with probability at least 1− ζ, where C ′ > 0 is an absolute
constant.

Proof. See Section 4 for a proof sketch and Appendix C for
a detailed proof.

Theorem 3.1 proves that OPPO attains a
√
d2H3T -regret

up to logarithmic factors, where the dependency on the total
number of steps T is optimal. In the stationary setting where
the reward function and initial state are fixed across all the
episodes, such a regret translates to a d2H4/ε2-sample com-
plexity (up to logarithmic factors) following the argument
of (Jin et al., 2018) (Section 3.1). Here ε > 0 measures
the suboptimality of the obtained policy πk in the following
sense,

max
π∈∆(A |S,H)

V π1 (x1)− V π
k

1 (x1) ≤ ε,

where k is sampled from [K] uniformly at random. Here
we denote the value function by V π1 = V π,k1 and the initial
state by x1 = xk1 for any k ∈ [K], as the reward function
and initial state are fixed across all the episodes. Moreover,
compared with the work of (Yang & Wang, 2019b;a; Jin
et al., 2019; Ayoub et al., 2020; Zhou et al., 2020), OPPO
additionally allows adversarially chosen reward functions
without exacerbating the regret, which leads to a notion of
robustness. Also, as a tabular MDP satisfies Assumption
2.1 with d = |S|2|A| and ψ being the canonical basis of Rd,
Theorem 3.1 yields an |S|2|A|

√
H3T -regret in the tabular

setting. Our subsequent discussion intuitively explains how
OPPO achieves such a notion of robustness while attaining
the
√
d2H3T -regret (up to logarithmic factors).

Discussion of Mechanisms. In the sequel, we consider
the ideal setting where the transition dynamics are known,
which, by the Bellman equation defined in (2.4), allows us
to access the Q-function Qπ,kh for any policy π and (h, k) ∈
[H]× [K] once given the reward function rk. The following
lemma connects the difference between two policies to the
difference between their expected total rewards through the
Q-function.

Lemma 3.2 (Performance Difference). For any policies
π, π′ ∈ ∆(A |S, H) and k ∈ [K], it holds that

V π
′,k

1 (xk1)− V π,k1 (xk1) (3.7)

= Eπ′
[ H∑
h=1

〈Qπ,kh (xh, ·), π′h(· |xh)− πh(· |xh)〉
∣∣∣x1 = xk1

]
.

Proof. See Appendix A.1 for a detailed proof.

For notational simplicity, we omit the conditioning on x1 =
xk1 , e.g., in (3.7) of Lemma 3.2, subsequently. The following
lemma characterizes the policy improvement step defined
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in (3.2), where the updated policy πk takes the closed form
in (3.3).

Lemma 3.3 (One-Step Descent). For any distributions
p∗, p ∈ ∆(A), state x ∈ S, and function Q : S × A →
[0, H], it holds for p′ ∈ ∆(A) with p′(·) ∝ p(·) · exp{α ·
Q(x, ·)} that

〈Q(x, ·), p∗(·)− p(·)〉 ≤ αH2/2

+ α−1 ·
(
DKL

(
p∗(·)

∥∥ p(·))−DKL

(
p∗(·)

∥∥ p′(·))).
Proof. See Appendix A.2 for a detailed proof.

Corresponding to the definition of the regret in (2.1), we de-
fine the globally optimal policy in hindsight (Cesa-Bianchi
& Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012) as

π∗ = argmax
π∈∆(A |S,H)

K∑
k=1

V π,k1 (xk1), (3.8)

which attains a zero-regret. In the ideal setting where the
Q-function Qπ

k,k
h associated with the reward function rk is

known and the updated policy πk+1
h takes the closed form

in (3.3), Lemma 3.3 implies

〈Qπ
k,k
h (x, ·), π∗h(· |x)− πkh(· |x)〉 (3.9)

≤ αH2/2 + α−1 ·
(
DKL

(
π∗h(· |x)

∥∥πkh(· |x)
)

−DKL

(
π∗h(· |x)

∥∥πk+1
h (· |x)

))
for any (h, k) ∈ [H] × [K] and x ∈ S. Combining (3.9)
with Lemma 3.2, we obtain

Regret(T )

=

K∑
k=1

(
V π
∗,k

1 (xk1)− V π
k,k

1 (xk1)
)

= Eπ∗
[ K∑
k=1

H∑
h=1

〈Qπ
k,k
h (xh, ·), π∗h(· |xh)− πkh(· |xh)〉

]
≤ αH3K/2 + α−1 ·

H∑
h=1

Eπ∗
[
DKL

(
π∗h(· |xh)

∥∥π1
h(· |xh)

)]
≤ αH3K/2 + α−1H · log |A|. (3.10)

Here the first inequality follows from telescoping the right-
hand side of (3.9) across all the episodes and the fact that the
KL-divergence is nonnegative. Also, the second inequality
follows from the initialization of the policy and Q-function
in Line 1 of Algorithm 1. Setting α =

√
2 log |A|/(HT )

in (3.10), we establish a
√
H3T · log |A|-regret in the ideal

setting.

Such an ideal setting demonstrates the key role of the KL-
divergence in the policy improvement step defined in (3.2),

where α > 0 is the stepsize. Intuitively, without the KL-
divergence, that is, setting α → ∞, the upper bound of
the regret on the right-hand side of (3.10) tends to infin-
ity. In fact, for any α <∞, the updated policy πkh in (3.3)
is “conservatively” greedy with respect to the Q-function
Qπ

k−1,k−1
h associated with the reward function rk−1. In

particular, the regularization effect of both πk−1
h and α in

(3.3) ensures that πkh is not “fully” committed to perform
well only with respect to rk−1, just in case the subsequent
adversarially chosen reward function rk significantly differs
from rk−1. In comparison, the “fully” greedy policy im-
provement step, which is commonly adopted by the existing
work on value-based reinforcement learning (Jaksch et al.,
2010; Osband et al., 2014; Osband & Van Roy, 2016; Azar
et al., 2017; Dann et al., 2017; Strehl et al., 2006; Jin et al.,
2018; 2019; Yang & Wang, 2019b;a), lacks such a notion
of robustness. On the other hand, an intriguing question
is whether being “conservatively” greedy is less sample-
efficient than being “fully” greedy in the stationary setting,
where the reward function is fixed across all the episodes.
In fact, in the ideal setting where the Q-function Qπ

k−1,k−1
h

associated with the reward function rk−1 in (3.3) is known,
the “fully” greedy policy improvement step with α → ∞
corresponds to one step of policy iteration (Sutton & Barto,
2018), which converges to the globally optimal policy π∗

within K = H episodes and hence equivalently induces an
H2-regret. However, in the realistic setting, the Q-function
Qπ

k−1,k−1
h in (3.1)-(3.3) is replaced by the estimated Q-

function Qk−1
h in Line 6 of Algorithm 1, which is obtained

by the policy evaluation step defined in (3.5). As a result of
the estimation uncertainty that arises from only observing
finite historical data, it is indeed impossible to do better than
the
√
T -regret even in the tabular setting (Jin et al., 2018),

which is shown to be an information-theoretic lower bound.
In the linear setting, OPPO attains such a lower bound in
terms of the total number of steps T = HK. In other words,
in the stationary setting, being “conservatively” greedy suf-
fices to achieve sample-efficiency, which complements its
advantages in terms of robustness in the more challenging
setting with adversarially chosen reward functions.

4. Proof Sketch
4.1. Regret Decomposition

For the simplicity of discussion, we define the model pre-
diction error as

ιkh = rkh + PhV kh+1 −Qkh, (4.1)

which arises from estimating PhV kh+1 in the Bellman equa-

tion defined in (2.4) (with V π
k,k

h+1 replaced by V kh+1) based
on only finite historical data. Also, we define the following
filtration generated by the state-action sequence and reward
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functions.

Definition 4.1 (Filtration). For any (k, h) ∈ [K]× [H], we
define Fk,h,1 as the σ-algebra generated by the following
state-action sequence and reward functions,

{(xτi , aτi )}(τ,i)∈[k−1]×[H] ∪ {rτ}τ∈[k] ∪ {(xki , aki )}i∈[h].

For any (k, h) ∈ [K] × [H − 1], we define Fk,h,2 as the
σ-algebra generated by

{(xτi , aτi )}(τ,i)∈[k−1]×[H] ∪ {rτ}τ∈[k]

∪ {(xki , aki )}i∈[h] ∪ {xkh+1},

while for any k ∈ [K], we define Fk,H,2 as the σ-algebra
generated by

{(xτi , aτi )}(τ,i)∈[k]×[H] ∪ {rτ}τ∈[k+1].

The σ-algebra sequence {Fk,h,m}(k,h,m)∈[K]×[H]×[2] is a
filtration with respect to the timestep index

t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m. (4.2)

In other words, for any t(k, h,m) ≤ t(k′, h′,m′), it holds
that Fk,h,m ⊆ Fk′,h′,m′ .

By the definition of the σ-algebra Fk,h,m, for (k, h,m) ∈
[K] × [H] × [2], the estimated value function V kh and Q-
function Qkh are measurable to Fk−1,H,2, as they are ob-
tained based on the (k − 1) historical trajectories and the
reward function rk adversarially chosen by the environment
at the beginning of the k-th episode, both of which are
measurable to Fk−1,H,2.

In the following lemma, we decompose the regret defined
in (2.1) into three terms. Recall that the globally optimal
policy in hindsight π∗ is defined in (3.8) and the model
prediction error ιkh is defined in (4.1).

Lemma 4.2 (Regret Decomposition). It holds that

Regret(T ) (4.3)

=

K∑
k=1

(
V π
∗,k

1 (xk1)− V π
k,k

1 (xk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

]
︸ ︷︷ ︸

(i)

+MK,H,2︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
h=1

(
Eπ∗ [ιkh(xh, ah)]− ιkh(xkh, a

k
h)
)

︸ ︷︷ ︸
(iii)

,

which is independent of the linear setting in Assumption 2.1.
Here {Mk,h,m}(k,h,m)∈[K]×[H]×[2] is a martingale adapted
to the filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2], both with re-

spect to the timestep index t(k, h,m) defined in (4.2) of
Definition 4.1.

Proof. See Appendix B.1 for a detailed proof.

Lemma 4.2 allows us to characterize the regret by upper
bounding terms (i), (ii), and (iii) in (4.3), respectively. In
detail, term (i) corresponds to the right-hand side of (3.2)
in Lemma 3.2 with the Q-function Qπ

k,k
h replaced by the

estimated Q-function Qkh, which is obtained by the policy
evaluation step defined in (3.5). In particular, as the updated
policy πk+1

h is obtained by the policy improvement step
in Line 6 of Algorithm 1 using πkh and Qkh, term (i) can be
upper bounded following a similar analysis to the discussion
in Section 3.2, which is based on Lemmas 3.2 and 3.3 as
well as (3.10). Also, by the Azuma-Hoeffding inequality,
term (ii) is a martingale that scales as O(BM

√
TM) with

high probability, where TM is the total number of timesteps
and BM is an upper bound of the martingale differences.
More specifically, we prove that TM = 2HK = 2T and
BM = 2H in Appendix C, which implies that term (ii)
is O(

√
H2T ) with high probability. Meanwhile, term (iii)

corresponds to the model prediction error, which is char-
acterized subsequently in Section 4.2. Note that the regret
decomposition in (4.3) of Lemma 4.2 is independent of the
linear setting in Assumption 2.1, and therefore, applies to
any forms of estimated Q-functions Qkh in more general
settings. In particular, as long as we can upper bound term
(iii) in (4.3), our regret analysis can be carried over even
beyond the linear setting.

4.2. Model Prediction Error

To upper bound term (iii) in (4.3) of Lemma 4.2, we char-
acterize the model prediction error ιkh defined in (4.1) in
the following lemma. Recall that the bonus function Γkh is
defined in (3.6).

Lemma 4.3 (Upper Confidence Bound). Let λ = 1 in (3.5)
and Line 12 of Algorithm 1, and β = C

√
dH2 · log(dT/ζ)

in (3.6) and Line 15 of Algorithm 1, where C > 1 is an
absolute constant and ζ ∈ (0, 1]. Under Assumption 2.1, it
holds with probability at least 1− ζ/2 that

−2Γkh(x, a) ≤ ιkh(x, a) ≤ 0

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.

Proof. See Appendix B.2 for a detailed proof.

Lemma 4.3 demonstrates the key role of uncertainty quan-
tification in achieving sample-efficiency. More specifically,
due to the uncertainty that arises from only observing finite
historical data, the model prediction error ιkh(x, a) can be
possibly large for the state-action pairs (x, a) that are less
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visited or even unseen. However, as is shown in Lemma 4.3,
explicitly incorporating the bonus function Γkh into the esti-
mated Q-function Qkh ensures that ιkh(x, a) ≤ 0 with high
probability for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.
In other words, the estimated Q-function Qkh is “optimistic
in the face of uncertainty”, as ιkh(x, a) ≤ 0 or equivalently

Qkh(x, a) ≥ rkh(x, a) + (PhV kh+1)(x, a) (4.4)

implies that Eπ∗ [ιkh(xh, ah)] in term (iii) of (4.3) is up-
per bounded by zero. Also, Lemma 4.3 implies that
−ιkh(xkh, a

k
h) ≤ 2Γkh(xkh, a

k
h) with high probability for any

(k, h) ∈ [K] × [H]. As a result, it only remains to upper
bound the cumulative sum

∑K
k=1

∑H
h=1 2Γkh(xkh, a

k
h) corre-

sponding to term (iii) in (4.3), which can be characterized
by the elliptical potential lemma (Dani et al., 2008; Rus-
mevichientong & Tsitsiklis, 2010; Chu et al., 2011; Abbasi-
Yadkori et al., 2011; Jin et al., 2019). See Appendix C for a
detailed proof.

To illustrate the intuition behind the model prediction er-
ror ιkh defined in (4.1), we define the implicitly estimated
transition dynamics as

P̂k,h(x′ |x, a)

= ψ(x, a, x′)>(Λkh)−1
k−1∑
τ=1

φτh(xτh, a
τ
h) · V τh+1(xτh+1),

where Λkh is defined in (3.6). Correspondingly, the policy
evaluation step defined in (3.5) takes the following equiva-
lent form (ignoring the truncation step for the simplicity of
discussion),

Qkh ← rkh + P̂k,hV kh+1 + Γkh. (4.5)

Here P̂k,h is the operator form of the implicitly estimated
transition kernel P̂k,h(· | ·, ·), which is defined by

(P̂k,hf)(x, a) =

∫
S
P̂k,h(x′ |x, a) · f(x′)dx′

for any function f : S → R. Correspondingly, by (4.1) and
(4.5) we have

ιkh = rkh + PhV kh+1 −Qkh
= (Ph − P̂k,h)V kh+1 − Γkh, (4.6)

where Ph − P̂k,h is the error that arises from implicitly
estimating the transition dynamics based on only finite his-
torical data. Such a model estimation error enters the regret
in (4.3) of Lemma 4.2 only through the model prediction
error (Ph − P̂k,h)V kh+1, which allows us to bypass explic-
itly estimating the transition dynamics, and instead, employ
the estimated Q-function Qkh obtained by the policy evalu-
ation step defined in (4.5). As is shown in Appendix B.2,
the bonus function Γkh upper bounds (Ph − P̂k,h)V kh+1 in

(4.6) with high probability for any (k, h) ∈ [K]× [H] and
(x, a) ∈ S × A, which then ensures the optimism of the
estimated Q-function Qkh in the sense of (4.4).

5. Conclusion
We study the sample efficiency of policy-based reinforce-
ment learning in the episodic setting of linear MDPs with
full-information feedback. We proposed an optimistic vari-
ant of the proximal policy optimization algorithm, dubbed
as OPPO, which incorporates the principle of “optimism
in the face of uncertainty” into policy optimization. When
applied to the episodic MDP with unknown transition and
adversarial reward, OPPO provably achieves a near-optimal√
d2H3T -regret. To the best of our knowledge, OPPO is

the first provably efficient policy optimization algorithm
that explicitly incorporates exploration.
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A. Proofs of Lemmas in Section 3
A.1. Proof of Lemma 3.2

Proof. In this section, we focus on the k-th episode and omit the episode index k for notational simplicity. For any h ∈ [H]
and policy π ∈ ∆(A |S, H), we define the Bellman evaluation operator Th,π by

(Th,πV )(x) = E[rh(x, a) + V (x′) | a ∼ πh(· |x), x′ ∼ Ph(· |x, a)]

= 〈(rh + PhV )(x, ·), πh(· |x)〉 (A.1)

for any function V : S → R. By the definition of the value function V πh in (2.2), we have

V πh =

H∏
i=h

Ti,π0 (A.2)

for any h ∈ [H], where 0 is a zero function on S. Here
∏H
i=h Ti,π denotes the sequential composition of the Bellman

evaluation operators Ti,π . Thus, for any policies π′, π ∈ ∆(A |S, H), it holds that

V π
′

1 − V π1 =

H∏
h=1

Th,π′0−
H∏
h=1

Th,π0

=

H∏
h=1

Th,π′0−
H−1∑
h=1

( h∏
i=1

Ti,π′
H∏

i=h+1

Ti,π0−
h∏
i=1

Ti,π′
H∏

i=h+1

Ti,π0
)
−

H∏
h=1

Th,π0

=

1∑
h=H

( h∏
i=1

Ti,π′
H∏

i=h+1

Ti,π0−
h−1∏
i=1

Ti,π′
H∏
i=h

Ti,π0
)
. (A.3)

Meanwhile, by (A.2) we have that, on the right-hand side of (A.3),

h∏
i=1

Ti,π′
H∏

i=h+1

Ti,π0−
h−1∏
i=1

Ti,π′
H∏
i=h

Ti,π0

=

h−1∏
i=1

Ti,π′(Th,π′ − Th,π)

H∏
i=h+1

Ti,π0 =

h−1∏
i=1

Ti,π′(Th,π′ − Th,π)V πh+1. (A.4)

By the definition of the Bellman evaluation operator Th,π in (A.1), we have

(Th,π′ − Th,π)V πh+1 = 〈rh + PhV πh+1, π
′
h − πh〉A = 〈Qπh, π′h − πh〉A, (A.5)

where the last equality follows from (2.4). Combining (A.3), (A.4), (A.5), and the linearity of the Bellman evaluation
operator defined in (A.1), we obtain

V π
′

1 (x1)− V π1 (x1) =

H∑
h=1

(h−1∏
i=1

Ti,π′〈Qπh, π′h − πh〉A
)

(x1)

= Eπ′
[ H∑
h=1

〈Qπh(xh, ·), π′h(· |xh)− πh(· |xh)〉
∣∣∣x1

]
,

which concludes the proof of Lemma 3.2.

A.2. Proof of Lemma 3.3

Proof. For any function g : A → R and distributions p, p′, p∗ ∈ ∆(A) that satisfy

p′(·) ∝ p(·) · exp
(
α · g(·)

)
,
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we have

α · 〈g, p∗ − p′〉 = 〈z + log(p′/p), p∗ − p′〉
= 〈z, p∗ − p′〉+ 〈log(p∗/p), p∗〉+ 〈log(p′/p∗), p∗〉+ 〈log(p′/p),−p′〉
= DKL(p∗ ‖ p)−DKL(p∗ ‖ p′)−DKL(p′ ‖ p). (A.6)

Here z : A → R is a constant function defined by

z(a) = log
(∑
a′∈A

p(a′) · exp
(
α · g(a′)

))
,

which implies that 〈z, p∗ − p′〉 = 0 in (A.6) as p′, p∗ ∈ ∆(A). Moreover, by (A.6) we have

α · 〈Q(x, ·), p∗(·)− p(·)〉 = α · 〈Q(x, ·), p∗(·)− p′(·)〉 − α · 〈Q(x, ·), p(·)− p′(·)〉
≤ DKL

(
p∗(·)

∥∥ p(·))−DKL

(
p∗(·)

∥∥ p′(·))−DKL

(
p′(·)

∥∥ p(·)) (A.7)
+ α · ‖Q(x, ·)‖∞ · ‖p(·)− p′(·)‖1

for any state x ∈ S. Meanwhile, by Pinsker’s inequality, it holds that

DKL(p′ ‖ p) ≥ ‖p− p′‖21/2. (A.8)

Combining (A.7), (A.8), and the fact that ‖Q(x, ·)‖∞ ≤ H for any state x ∈ S, we obtain

α · 〈Q(x, ·), p∗(·)− p(·)〉
≤ DKL

(
p∗(·)

∥∥ p(·))−DKL

(
p∗(·)

∥∥ p′(·))− ‖p(·)− p′(·)‖21/2 + αH · ‖p(·)− p′(·)‖1
≤ DKL

(
p∗(·)

∥∥ p(·))−DKL

(
p∗(·)

∥∥ p′(·))+ α2H2/2,

which concludes the proof of Lemma 3.3.

B. Proofs of Lemmas in Section 4
For notational simplicity, we define the operators Jh and Jk,h respectively by

(Jhf)(x) = 〈f(x, ·), π∗h(· |x)〉, (Jk,hf)(x) = 〈f(x, ·), πkh(· |x)〉 (B.1)

for any (k, h) ∈ [K]× [H] and function f : S ×A → R. Also, we define

ξkh(x) = (JhQkh)(x)− (Jk,hQkh)(x) = 〈Qkh(x, ·), π∗h(· |x)− πkh(· |x)〉 (B.2)

for any (k, h) ∈ [K]× [H] and state x ∈ S.

B.1. Proof of Lemma 4.2

Proof. We decompose the instantaneous regret at the k-th episode into the following two terms,

V π
∗,k

1 (xk1)− V π
k,k

1 (xk1) = V π
∗,k

1 (xk1)− V k1 (xk1)︸ ︷︷ ︸
(i)

+V k1 (xk1)− V π
k,k

1 (xk1)︸ ︷︷ ︸
(ii)

. (B.3)

Term (i). By the definitions of the value function V π
∗,k

h in (2.4), the estimated value function V kh in (3.4), the operators Jh
and Jk,h in (B.1), and ξkh in (B.2), we have

V π
∗,k

h − V kh = JhQπ
∗,k
h − Jk,hQkh

= Jh(Qπ
∗,k
h −Qkh) + (Jh − Jk,h)Qkh = Jh(Qπ

∗,k
h −Qkh) + ξkh (B.4)

for any (k, h) ∈ [K]× [H]. Meanwhile, by the definition of the model prediction error, that is, ιkh = rkh + PhV kh+1 −Qkh,
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we have that, on the right-hand side of (B.4),

Qπ
∗,k
h = rkh + PhV π

∗,k
h+1 , Qkh = rkh + PhV kh+1 − ιkh,

which implies

Qπ
∗,k
h −Qkh = Ph(V π

∗,k
h+1 − V

k
h+1) + ιkh. (B.5)

Combining (B.4) and (B.5), we obtain

V π
∗,k

h − V kh = JhPh(V π
∗,k

h+1 − V
k
h+1) + Jhιkh + ξkh (B.6)

for any (k, h) ∈ [K]× [H]. For any k ∈ [K], recursively expanding (B.6) across h ∈ [H] yields

V π
∗,k

1 − V k1 =
( H∏
h=1

JhPh
)

(V π
∗,k

H+1 − V
k
H+1) +

H∑
h=1

(h−1∏
i=1

JiPi
)
Jhιkh +

H∑
h=1

(h−1∏
i=1

JiPi
)
ξkh,

where V π
∗,k

H+1 = V kH+1 = 0. Therefore, we obtain

V π
∗,k

1 − V k1 =

H∑
h=1

(h−1∏
i=1

JiPi
)
Jhιkh +

H∑
h=1

(h−1∏
i=1

JiPi
)
ξkh.

By the definitions of Ph in (2.5), Jh in (B.1), and ξkh in (B.2), we further obtain

V π
∗,k

1 (xk1)− V k1 (xk1) (B.7)

=

H∑
h=1

Eπ∗ [ιkh(xh, ah) |x1 = xk1 ] +

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

∣∣x1 = xk1
]

for any k ∈ [K].

Term (ii). By the definitions of the value function V π
k,k

h in (2.4), the estimated value function V kh in (3.4), and the operator
Jk,h in (B.1), we have

V kh (xkh)− V π
k,k

h (xkh) =
(
Jk,h(Qkh −Q

πk,k
h )

)
(xkh) + ιkh(xkh, a

k
h)− ιkh(xkh, a

k
h) (B.8)

for any (k, h) ∈ [K]× [H]. By the definition of the model prediction error ιkh in (4.1), we have

ιkh(xkh, a
k
h) = rkh(xkh, a

k
h) + (PhV kh+1)(xkh, a

k
h)−Qkh(xkh, a

k
h)

=
(
rkh(xkh, a

k
h) + (PhV kh+1)(xkh, a

k
h)−Qπ

k,k
h (xkh, a

k
h)
)

+
(
Qπ

k,k
h (xkh, a

k
h)−Qkh(xkh, a

k
h)
)

=
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(xkh, a

k
h) + (Qπ

k,k
h −Qkh)(xkh, a

k
h), (B.9)

where the last equality follows from (2.4). Plugging (B.9) into (B.8), we obtain

V kh (xkh)− V π
k,k

h (xkh) =
(
Jk,h(Qkh −Q

πk,k
h )

)
(xkh) + (Qπ

k,k
h −Qkh)(xkh, a

k
h) (B.10)

+
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(xkh, a

k
h)− ιkh(xkh, a

k
h),

which implies

V kh (xkh)− V π
k,k

h (xkh) =
(
Jk,h(Qkh −Q

πk,k
h )

)
(xkh)− (Qkh −Q

πk,k
h )(xkh, a

k
h)︸ ︷︷ ︸

Dk,h,1

(B.11)

+
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(xkh, a

k
h)− (V kh+1 − V

πk,k
h+1 )(xkh+1)︸ ︷︷ ︸

Dk,h,2

+ (V kh+1 − V
πk,k
h+1 )(xkh+1)− ιkh(xkh, a

k
h)
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for any (k, h) ∈ [K]× [H]. For any k ∈ [K], recursively expanding (B.11) across h ∈ [H] yields

V k1 (xk1)− V π
k,k

1 (xk1)

= V kH+1(xkH+1)− V π
k,k

H+1 (xkH+1)−
H∑
h=1

ιkh(xkh, a
k
h) +

H∑
h=1

(Dk,h,1 +Dk,h,2),

where V kH+1(xkH+1) = V π
k,k

H+1 (xkH+1) = 0. Therefore, we obtain

V k1 (xk1)− V π
k,k

1 (xk1) = −
H∑
h=1

ιkh(xkh, a
k
h) +

H∑
h=1

(Dk,h,1 +Dk,h,2). (B.12)

By Definition 4.1 and the definitions of Dk,h,1 and Dk,h,2 in (B.11), we have

Dk,h,1 ∈ Fk,h,1, Dk,h,2 ∈ Fk,h,2, E[Dk,h,1 | Fk,h−1,2] = 0, E[Dk,h,2 | Fk,h,1] = 0 (B.13)

for any (k, h) ∈ [K]× [H]. Here we have that Fk,0,2 = Fk−1,H,2 for any k ≥ 2, as (4.2) of Definition 4.1 implies

t(k, 0, 2) = t(k − 1, H, 2) = (k − 1) · 2H.

Also, we define F1,0,2 to be empty. Thus, (B.13) allows us to define the martingale

Mk,h,m =

k−1∑
τ=1

H∑
i=1

(Dτ,i,1 +Dτ,i,2) +

h−1∑
i=1

(Dk,i,1 +Dk,i,2) +

m∑
`=1

Dk,h,`

=
∑

(τ,i,`)∈[K]×[H]×[2],
t(τ,i,`)≤t(k,h,m)

Dτ,i,` (B.14)

with respect to the timestep index t(k, h,m) defined in (4.2) of Definition 4.1. Such a martingale is adapted to the filtration
{Fk,h,m}(k,h,m)∈[K]×[H]×[2]. In particular, we have that, on the right-hand side of (B.12),

K∑
k=1

H∑
h=1

(Dk,h,1 +Dk,h,2) =MK,H,2. (B.15)

Combining (B.3), (B.7), (B.12), and (B.15), we obtain

K∑
k=1

(
V π
∗,k

1 (xk1)− V π
k,k

1 (xk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗ [ιkh(xh, ah) |x1 = xk1 ]

+

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

∣∣x1 = xk1
]

−
K∑
k=1

H∑
h=1

ιkh(xkh, a
k
h) +MK,H,2,

which concludes the proof of Lemma 4.2.

B.2. Proof of Lemma 4.3

Proof. Recall that φkh defined in (3.4) takes the following form,

φkh(x, a) =

∫
S
ψ(x, a, x′) · V kh+1(x′)dx′
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for any (k, h) ∈ [K] × [H] and (x, a) ∈ S × A. Also, recall that the estimated Q-function Qkh obtained by the policy
evaluation step defined in (3.5) takes the following form,

Qkh(x, a) = min{rkh(x, a) + φkh(x, a)>wkh + Γkh(x, a), H − h+ 1}+, (B.16)

where wkh = (Λkh)−1
(k−1∑
τ=1

φτh(xτh, a
τ
h) · V τh+1(xτh+1)

)
for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Here Γkh and Λkh are defined in (3.6). Meanwhile, by Assumption 2.1 we
have

(PhV kh+1)(x, a) =

∫
S
ψ(x, a, x′)>θh · V kh+1(x′)dx′

= φkh(x, a)>θh = φkh(x, a)>(Λkh)−1Λkhθh (B.17)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Plugging the definition of Λkh in (3.6) into (B.17), we obtain

(PhV kh+1)(x, a) = φkh(x, a)>(Λkh)−1
(k−1∑
τ=1

φτh(xτh, a
τ
h)φτh(xτh, a

τ
h)>θh + λ · θh

)
= φkh(x, a)>(Λkh)−1

(k−1∑
τ=1

φτh(xτh, a
τ
h) · (PhV τh+1)(xτh, a

τ
h) + λ · θh

)
(B.18)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Here the second equality follows from (B.17) with V kh+1 replaced by V τh+1

for any τ ∈ [k − 1]. Combining (B.16) and (B.18), we obtain

φkh(x, a)>wkh − (PhV kh+1)(x, a) (B.19)

= φkh(x, a)>(Λkh)−1
(k−1∑
τ=1

φτh(xτh, a
τ
h) ·

(
V τh+1(xτh+1)− (PhV τh+1)(xτh, a

τ
h)
))

︸ ︷︷ ︸
(i)

−λ · φkh(x, a)>(Λkh)−1θh︸ ︷︷ ︸
(ii)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.

Term (i). As is defined in (3.6), (Λkh)−1 is a positive-definite matrix. By the Cauchy-Schwarz inequality, the absolute value
of term (i) is upper bounded as

|(i)| ≤
√
φkh(x, a)>(Λkh)−1φkh(x, a) ·

∥∥∥k−1∑
τ=1

φτh(xτh, a
τ
h) ·

(
V τh+1(xτh+1)− (PhV τh+1)(xτh, a

τ
h)
)∥∥∥

(Λk
h)−1

(B.20)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S × A. Under the event E defined in (D.1) of Lemma D.1, which happens with
probability at least 1− ζ/2, it holds that

|(i)| ≤ C ′′
√
dH2 · log(dT/ζ) ·

√
φkh(x, a)>(Λkh)−1φkh(x, a) (B.21)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Here C ′′ > 0 is an absolute constant and ζ ∈ (0, 1].

Term (ii). Similar to (B.20), the absolute value of term (ii) is upper bounded as

|(ii)| ≤ λ ·
√
φkh(x, a)>(Λkh)−1φkh(x, a) · ‖θh‖(Λk

h)−1

≤
√
λ ·
√
φkh(x, a)>(Λkh)−1φkh(x, a) · ‖θh‖2 ≤

√
λd ·

√
φkh(x, a)>(Λkh)−1φkh(x, a) (B.22)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Here the first inequality follows from the Cauchy-Schwarz inequality, the
second inequality follows from the fact that Λkh � λ · I , and the last inequality follows from Assumption 2.1, which assumes
that ‖θh‖2 ≤

√
d.
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Combining (B.19), (B.21), (B.22), and the fact that λ = 1, we obtain

|φkh(x, a)>wkh − (PhV kh+1)(x, a)|

≤ C
√
dH2 · log(dT/ζ) ·

√
φkh(x, a)>(Λkh)−1φkh(x, a) (B.23)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A under the event E defined in (D.1) of Lemma D.1. Here C > 1 is an absolute
constant. Setting

β = C
√
dH2 · log(dT/ζ)

in the bonus function Γkh defined in (3.6), by (B.23) we obtain

|φkh(x, a)>wkh − (PhV kh+1)(x, a)| ≤ Γkh(x, a) (B.24)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A under E . As (3.5) implies that (PhV kh+1)(x, a) ≥ 0, by (B.24) we have

φkh(x, a)>wkh + Γkh(x, a) ≥ 0 (B.25)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A under E . Hence, for the model prediction error ιkh defined in (4.1), by (B.16),
(B.24), and (B.25) we have

−ιkh(x, a) = Qkh(x, a)− (rkh + PhV kh+1)(x, a)

≤ rkh(x, a) + φkh(x, a)>wkh + Γkh(x, a)− (rkh + PhV kh+1)(x, a) ≤ 2Γkh(x, a) (B.26)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S × A under E . Meanwhile, as (3.5) implies that (PhV kh+1)(x, a) ≤ H − h and
hence

(rkh + PhV kh+1)(x, a) ≤ H − h+ 1,

by (4.1), (B.16), and (B.24) we have

ιkh(x, a) = (rkh + PhV kh+1)(x, a)−Qkh(x, a)

≤ (rkh + PhV kh+1)(x, a)−min{rkh(x, a) + φkh(x, a)>wkh + Γkh(x, a), H − h+ 1}
= max{(PhV kh+1)(x, a)− φkh(x, a)>wkh − Γkh(x, a), (rkh + PhV kh+1)(x, a)− (H − h+ 1)}
≤ 0 (B.27)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A under E . Thus, combining (B.26), (B.27), and Lemma D.1, which ensures
that E happens with probability at least 1− ζ/2, we conclude the proof of Lemma 4.3.

C. Proof of Theorem 3.1
Proof. We upper bound terms (i)-(iii) in (4.3) of Lemma 4.2 respectively, that is,

Regret(T ) =

K∑
k=1

(
V π
∗,k

1 (xk1)− V π
k,k

1 (xk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

∣∣x1 = xk1
]

︸ ︷︷ ︸
(i)

+MK,H,2︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
h=1

(
Eπ∗ [ιkh(xh, ah) |x1 = xk1 ]− ιkh(xkh, a

k
h)
)

︸ ︷︷ ︸
(iii)

.
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Term (i). By Lemma 3.3 and the policy improvement step in Line 6 of Algorithm 1, we have

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

∣∣x1 = xk1
]

≤
K∑
k=1

H∑
h=1

(
αH2/2 + α−1 · Eπ∗

[
DKL

(
π∗h(· |xh)

∥∥πkh(· |xh)
)
−DKL

(
π∗h(· |xh)

∥∥πk+1
h (· |xh)

) ∣∣x1 = xk1
])

≤ αH3K/2 + α−1 ·
H∑
h=1

Eπ∗
[
DKL

(
π∗h(· |xh)

∥∥π1
h(· |xh)

) ∣∣x1 = xk1
]

≤ αH3K/2 + α−1H · log |A|. (C.1)

Here the second last inequality follows from the fact that the KL-divergence is nonnegative. Also, the last inequality follows
from the initialization of the policy and Q-function in Line 1 of Algorithm 1, which implies that π1

h(· |xh) is a uniform
distribution on A and hence

DKL

(
π∗h(· |xh)

∥∥π1
h(· |xh)

)
=
∑
a∈A

π∗h(a |xh) · log
(
|A| · π∗h(a |xh)

)
= log |A|+

∑
a∈A

π∗h(a |xh) · log
(
π∗h(a |xh)

)
≤ log |A|.

Here the inequality follows from the fact that the entropy of π∗h(· |xh) is nonnegative. Thus, setting α =
√

2 log |A|/(HT )
in Line 6 of Algorithm 1, by (C.1) we obtain

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· |xh)− πkh(· |xh)〉

∣∣x1 = xk1
]
≤
√

2H3T · log |A|, (C.2)

where T = HK.

Term (ii). Recall that the martingale differences Dk,h,1 and Dk,h,2 defined in (B.11) take the following forms,

Dk,h,1 =
(
Jk,h(Qkh −Q

πk,k
h )

)
(xkh)− (Qkh −Q

πk,k
h )(xkh, a

k
h),

Dk,h,2 =
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(xkh, a

k
h)− (V kh+1 − V

πk,k
h+1 )(xkh+1).

By the truncation of Qkh to the range [0, H − h+ 1] in (3.5), we have

Qkh, Q
πk,k
h , V kh+1, V

πk,k
h+1 ∈ [0, H],

which implies that |Dk,h,1| ≤ 2H and |Dk,h,2| ≤ 2H for any (k, h) ∈ [K]×[H]. Therefore, applying the Azuma-Hoeffding
inequality to the martingale defined in (B.14), we obtain

P
(
|MK,H,2| > t

)
≤ 2 exp

(
−t2

16H2T

)
for any t > 0. Setting t =

√
16H2T · log(4/ζ) with ζ ∈ (0, 1], we obtain

|MK,H,2| ≤
√

16H2T · log(4/ζ) (C.3)

with probability at least 1− ζ/2, where T = HK.

Term (iii). As is shown in Lemma 4.3, it holds with probability at least 1− ζ/2 that

−2Γkh(x, a) ≤ ιkh(x, a) ≤ 0 (C.4)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Meanwhile, by the definitions of ιkh and Qkh in (4.1) and (3.5), respectively,
we have that |ιkh(x, a)| ≤ 2H , which together with (C.4) implies

−ιkh(x, a) ≤ 2 min{H,Γkh(x, a)}
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for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A with probability at least 1− ζ/2. Hence, we obtain

K∑
k=1

H∑
h=1

(
Eπ∗ [ιkh(xh, ah) |x1 = xk1 ]− ιkh(xkh, a

k
h)
)
≤ 2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} (C.5)

with probability at least 1− ζ/2. By the definition of Γkh in (3.6), we have

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} = β ·

H∑
h=1

K∑
k=1

min
{
H/β,

√
φkh(xkh, a

k
h)>(Λkh)−1φkh(xkh, a

k
h)
}
. (C.6)

Recall that we set

β = C
√
dH2 · log(dT/ζ) (C.7)

with C > 1 being an absolute constant, which implies that H ≤ β. Thus, (C.6) implies

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} ≤ β ·

H∑
h=1

K∑
k=1

min
{

1,
√
φkh(xkh, a

k
h)>(Λkh)−1φkh(xkh, a

k
h)
}
. (C.8)

By Lemma D.3 and the definition of Λkh in (3.6), we obtain

K∑
k=1

min{1, φkh(xkh, a
k
h)>(Λkh)−1φkh(xkh, a

k
h)} ≤ 2 log

(
det(ΛK+1

h )

det(Λ1
h)

)
(C.9)

for any h ∈ [H], where Λ1
h = λ · I and ΛK+1

h ∈ FK,H,2 by Definition 4.1. Moreover, Assumption 2.1 implies

‖φkh(x, a)‖2 ≤
√
dH

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A, which further implies

ΛK+1
h =

K∑
k=1

φkh(xkh, a
k
h)φkh(xkh, a

k
h)> + λ · I � (dH2K + λ) · I

for any h ∈ [H]. As we set λ = 1, it holds for any h ∈ [H] that

2 log

(
det(ΛK+1

h )

det(Λ1
h)

)
≤ 2d · log

(
(dH2K + λ)/λ

)
≤ 4d · log(dHT ). (C.10)

Combining (C.8)-(C.10) and the Cauchy-Schwarz inequality, we obtain

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h)} ≤ β ·

H∑
h=1

(
K ·

K∑
k=1

min{1, φkh(xkh, a
k
h)>(Λkh)−1φkh(xkh, a

k
h)}
)1/2

≤ β ·
H∑
h=1

√
K ·

(
2 log

(
det(ΛK+1

h )

det(Λ1
h)

))1/2

≤ 2β
√
dH2K · log(dHT ). (C.11)

By (C.5), (C.7), and (C.11), it holds with probability at least 1− ζ/2 that

K∑
k=1

H∑
h=1

(
Eπ∗ [ιkh(xh, ah) |x1 = xk1 ]− ιkh(xkh, a

k
h)
)

≤ 4β
√
dH2K · log(dHT ) ≤ 8C

√
d2H3T · log(dT/ζ), (C.12)

where C > 1 is an absolute constant, ζ ∈ (0, 1], and T = HK.
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Plugging the upper bounds of terms (i)-(iii) in (C.2), (C.3), and (C.12), respectively, into (4.3) of Lemma 4.2, we obtain

Regret(T ) ≤ C ′
√
d2H3T · log(dT/ζ)

with probability at least 1−ζ , whereC ′ > 0 is an absolute constant. Here we use the fact that log |A| = O(d2 ·[log(dT/ζ)]2)
in (C.2) and (C.12). Therefore, we conclude the proof of Theorem 3.1.

D. Supporting Lemmas
In this section, we present the supporting lemmas.

Lemma D.1. Let λ = 1 in (3.5) and Line 12 of Algorithm 1. For any ζ ∈ (0, 1], the event E that, for any (k, h) ∈ [K]× [H],∥∥∥k−1∑
τ=1

φτh(xτh, a
τ
h) ·

(
V τh+1(xτh+1)− (PhV τh+1)(xτh, a

τ
h)
)∥∥∥

(Λk
h)−1

≤ C ′′
√
dH2 · log(dT/ζ) (D.1)

happens with probability at least 1− ζ/2, where C ′′ > 0 is an absolute constant.

Proof. By the definition of the filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2] in Definition 4.1 and the Markov property, we have

E[V τh+1(xτh+1) | Fτ,h,1] = (PhV τh+1)(xτh, a
τ
h). (D.2)

Conditioning on Fτ,h,1, the only randomness comes from xτh+1, while V τh+1 is a deterministic function. To see this, note
that V τh+1 is determined by Qτh+1 and πτh+1, which are further determined by the historical data in Fτ,h,1. We define

ητ,h = V τh+1(xτh+1)− (PhV τh+1)(xτh, a
τ
h).

By (D.2), conditioning on Fτ,h,1, ητ,h is a zero-mean random variable. Moreover, as V τh+1 ∈ [0, H], conditioning on Fτ,h,1,
ητ,h is an H/2-sub-Gaussian random variable, which is defined in (D.5) of Lemma D.2. Also, ητ,h is Fk,h,2-measurable,
as xτh+1 ∈ Fτ,h,2 for any τ ∈ [k − 1]. Hence, for any fixed h ∈ [H], by Lemma D.2, it holds with probability at least
1− ζ/(2H) that ∥∥∥k−1∑

τ=1

φτh(xτh, a
τ
h) ·

(
V τh+1(xτh+1)− (PhV τh+1)(xτh, a

τ
h)
)∥∥∥2

(Λk
h)−1

≤ H2/2 ·
(

log
(
det(Λkh)1/2 det(λ · I)−1/2

)
+ log(2H/ζ)

)
(D.3)

for any k ∈ [K]. To upper bound det(Λkh) in (D.3), recall that Λkh is defined by

Λkh =

k−1∑
τ=1

φτh(xτh, a
τ
h)φτh(xτh, a

τ
h)> + λ · I.

By the triangle inequality, the spectral norm of Λkh is upper bounded as

‖Λkh‖2 ≤ λ+

k−1∑
τ=1

‖φτh(xτh, a
τ
h)‖22 ≤ λ+ dH2K.

Here the last inequality follows from Assumption 2.1, which implies

sup
(x,a)∈S×A

∥∥∥∫
S
ψ(x, a, x′) · V (x′)dx′

∥∥∥
2
≤
√
dH

for any V : S → [0, H]. Hence, det(Λkh) in (D.3) is upper bounded as

det(Λkh) ≤ ‖Λkh‖d2 ≤ (λ+ dH2K)d. (D.4)

Moreover, setting λ = 1, combining (D.3) and (D.4), and applying the union bound for any h ∈ [H], we obtain that, with
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probability at least 1− ζ/2,∥∥∥k−1∑
τ=1

φτh(xτh, a
τ
h) ·

(
V τh+1(xτh+1)− (PhV τh+1)(xτh, a

τ
h)
)∥∥∥2

(Λk
h)−1

≤ H2/2 ·
(
d/2 · log

(
(λ+ dH2K)/λ

)
+ log(2H/ζ)

)
≤ C ′′2dH2 · log(dT/ζ)

for any (k, h) ∈ [K]× [H], where C ′′ > 0 is an absolute constant. Thus, we conclude the proof of Lemma D.1.

Lemma D.2 (Concentration of Self-Normalized Process (Abbasi-Yadkori et al., 2011)). Let {F̃t}∞t=0 be a filtration and
{ηt}∞t=1 be an R-valued stochastic process such that ηt is F̃t-measurable for any t ≥ 0. Moreover, we assume that, for any
t ≥ 0, conditioning on F̃t, ηt is a zero-mean and σ-sub-Gaussian random variable with the variance proxy σ2 > 0, that is,

E[eληt | F̃t] ≤ eλ
2σ2/2 (D.5)

for any λ ∈ R. Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is F̃t-measurable for any t ≥ 0. Also, let
Y ∈ Rd×d be a deterministic and positive-definite matrix. For any t ≥ 0, we define

Y t = Y +
t∑

s=1

XsX
>
s , St =

t∑
s=1

ηs ·Xs.

For any δ > 0, it holds with probability at least 1− δ that

‖St‖2Y −1
t

≤ 2σ2 · log

(
det(Y t)

1/2 det(Y )−1/2

δ

)
for any t ≥ 0.

Proof. See Theorem 1 of (Abbasi-Yadkori et al., 2011) for a detailed proof.

Lemma D.3 (Elliptical Potential Lemma (Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Jin et al., 2019)). Let {φt}∞t=1 be an Rd-valued sequence. Meanwhile, let Λ0 ∈ Rd×d be a
positive-definite matrix and Λt = Λ0 +

∑t−1
j=1 φjφ

>
j . It holds for any t ∈ Z+ that

t∑
j=1

min{1, φ>j Λ−1
j φj} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Moreover, assuming that ‖φj‖2 ≤ 1 for any j ∈ Z+ and λmin(Λ0) ≥ 1, it holds for any t ∈ Z+ that

log

(
det(Λt+1)

det(Λ1)

)
≤

t∑
j=1

φ>j Λ−1
j φj ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof. See Lemma 11 of (Abbasi-Yadkori et al., 2011) for a detailed proof.


