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Abstract

We study the distribution and uncertainty of non-
convex optimization for noisy tensor completion
— the problem of estimating a low-rank tensor
given incomplete and corrupted observations of
its entries. Focusing on a two-stage nonconvex es-
timation algorithm proposed by (Cai et al., 2019),
we characterize the distribution of this estimator
down to fine scales. This distributional theory
in turn allows one to construct valid and short
confidence intervals for both the unseen tensor
entries and its underlying tensor factors. The
proposed inferential procedure enjoys several im-
portant features: (1) it is fully adaptive to noise
heteroscedasticity, and (2) it is data-driven and
adapts automatically to unknown noise distribu-
tions. Furthermore, our findings unveil the statis-
tical optimality of nonconvex tensor completion:
it attains un-improvable estimation accuracy —
including both the rates and the pre-constants —
under i.i.d. Gaussian noise.

1. Introduction
1.1. Noisy low-rank tensor completion

Tensor data are routinely employed in data and information
sciences to model (structured) multi-dimensional objects
(Kolda & Bader, 2009; Anandkumar et al., 2014; Sidiropou-
los et al., 2017; Zhang, 2019). In many practical scenarios
of interest, however, we do not have full access to a large-
dimensional tensor of interest, as only a sampling of its
entries are revealed to us; yet we would still wish to reliably
infer all missing data. This task, commonly referred to as
tensor completion, finds applications in numerous domains
including medical imaging (Semerci et al., 2014), visual
data analysis (Liu et al., 2013), seismic data reconstruction
(Kreimer et al., 2013), to name just a few. In order to make
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meaningful inference about the unseen entries, additional
information about the unknown tensor plays a pivotal role
(otherwise one is in the position with fewer equations than
unknowns). A common type of such prior information is
low-rank structure, which hypothesizes that the unknown
tensor is decomposable into the superposition of a small
number of rank-one tensors. Substantial attempts have been
made in the past few years to tackle this low-rank tensor
completion problem.

To set the stage for a formal discussion, suppose we are
interested in reconstructing a third-order tensor T* =
(T;.5.k)1<ije<a € R4 which is a priori known to
have low canonical polyadic (CP) rank. This means that T
admits the following CP decomposition'

T =) uwioueuw=1) (@) €

where u; € REA<I<T) represents the unknown ten-
sor factor, and the rank 7 is considerably smaller than the
ambient dimension d. What we have obtained is a highly in-
complete collection of noisy observations about the entries
of T* € R¥*4*d; more precisely, suppose we observe
T =Tk + Eijr:  (1,5,k)€Q, ()
where Q C [d]? with [d] := {1,--- ,d} is a subset of entries,
T;fl;’sk denotes the observed entry in the (i, j, k)-th position,
and we use E; ; . to represent the noise, in an attempt to
model more realistic scenarios. The presence of missing
data and noise, as well as the “notorious” tensor structure
(which is not as computationally friendly as its matrix ana-
log (Hillar & Lim, 2013)), poses severe computational and
statistical challenges for reliable tensor reconstruction.

1.2. Review: a nonconvex optimization approach

A natural reconstruction strategy based on the partial data
at hand is to resort to the following least-squares problem:

2

.

minimize f(U) = < u®3) _obs | (3

UeRdxr ) Z [ Z U ik bk 3)
(i5,k)eQ L 1=1

"For any u, v, w € R?, we denote by u @ v ® w € R4**x4

such that (u ® v ® w); j,x = wivjwg forall 1 < 4,5,k < d.
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Here and in the sequel, we define U := [ug,- - ,u,]. Un-
fortunately, owing to its highly nonconvex nature, the opti-
mization problem (3) is, in general, daunting to solve.

To alleviate computational intractability, a number of
polynomial-time algorithms have been proposed; partial
examples include convex relaxation (Gandy et al., 2011;
Romera-Paredes & Pontil, 2013; Huang et al., 2015), spec-
tral methods (Montanari & Sun, 2018; Cai et al., 2020a),
sum of squares hierarchy (Barak & Moitra, 2016; Potechin &
Steurer, 2017), alternating minimization (Jain & Oh, 2014;
Liu & Moitra, 2020). Nevertheless, most of these algorithms
either are still computationally prohibitive for large-scale
problems, or do not come with optimal statistical guaran-
tees; see Section 4. To address the computational and statis-
tical challenges at once, the recent work (Cai et al., 2019)
proposed a two-stage nonconvex paradigm that guarantees
efficient yet reliable solutions. In a nutshell, this algorithm
starts by computing a rough (but reasonable) initial guess
U° = [uf,---,ul] for all tensor factors, and iteratively
refines the estimate by means of the gradient descent (GD)
update rule:

Ut =U"'-nViU"), t=0,1- (4
See Algorithm 1 (the initialization scheme is more com-
plex to describe, and is hence postponed to Appendix A.1).
Despite the nonconvex optimization landscape, theoretical
guarantees have been developed for Algorithm 1 under ran-
dom sampling and random noise. Take the noiseless case
for instance: this approach converges linearly to the ground
truth under near-minimal sample complexity; furthermore,
the algorithm enjoys intriguing /5 and ¢, statistical guaran-
tees under a broad family of noise models.

Algorithm 1 A nonconvex algorithm for tensor completion.
1: Initialize U° = [u!,- - ,u?] via Algorithm 2.
2: Gradient updates: for ¢t = 0,1,...,t9 — 1 do

Ut =ut -, ViUY). 5)

3: Output U = [uq, -+ ,u,] :=U'.

1.3. Uncertainty quantification for tensor completion

In various decision making scenarios (e.g. medical imaging),
it is crucial not only to provide the users with the reconstruc-
tion outcome, but also to inform them of the uncertainty
or risk underlying the reconstruction. The latter task, often
termed uncertainty quantification, can be accomplished by
characterizing the distribution of our reconstruction, which
can be further employed to construct valid confidence in-
tervals for the unknowns. Two questions deserve particular
attention: given an estimate returned by the above noncon-
vex algorithm, how to identify a confidence interval when
predicting an unseen entry, and how to produce a confidence

region that is likely to contain the tensor factors of interest?

Unfortunately, classical distributional theory available in
the statistics literature, which typically operates in the large-
sample regime (with a fixed number of unknowns and a
sample size tending to infinity), is not applicable to assess
the uncertainty of the above nonconvex algorithm in high
dimension. In fact, due to the nonconvex nature of the algo-
rithm, it becomes remarkably challenging to track the distri-
bution of the solution returned by Algorithm 1. The absence
of distributional characterization prevents us from offering
a trustworthy uncertainty estimate to the users. While the
statistical performance of Algorithm 1 has been investigated
in (Cai et al., 2019), existing statistical guarantees — which
hide the (potentially huge) pre-constants — can only yield
confidence intervals that are overly wide and, as a result,
practically uninformative. In principle, we should aim for
valid confidence intervals that are as short as possible.

Further, an ideal uncertainty quantification procedure should
be adaptive to unknown noise distributions. Accomplishing
this goal becomes particularly challenging when the noise
variance is not only unknown but also location-varying —a
scenario commonly referred to as heteroscedasticity. In fact,
there is no shortage of realistic scenarios in which the data
heteroscedasticity makes it infeasible to pre-estimate local
variability in a uniformly reliable manner. Addressing this
challenge calls for the design of model-agnostic data-driven
procedures that are fully adaptive to noise heteroscedasticity.

1.4. Main contributions and insights

We now give an informal overview of the main contributions
and insights of this paper. To the best of our knowledge,
results of this kind were previously unavailable.

A distributional theory for nonconvex tensor completion.
Despite its nonconvex nature, a distributional representation
of the estimate returned by Algorithm 1 can be established
down to quite fine scales (i.e. down to the entrywise level).
Under mild conditions, (1) the resulting estimates for both
the unknown tensor factors and tensor entries are nearly
unbiased, and (2) the associated uncertainty of the estimates
is nearly zero-mean Gaussian, whose (co)-variance can be
accurately determined in a data-driven manner.

Entrywise confidence intervals. Our distributional theory
leads to construction of entrywise confidence intervals for
both the unknown tensor and the associated tensor factors.
Our inferential procedure is fully data-driven: it does not
require prior knowledge about the noise distributions, and it
automatically adapts to local variability of noise.

Optimality. We develop lower bounds under i.i.d. Gaussian
noise, showing that the proposed entrywise confidence in-
tervals are the shortest possible. Our results also reveal that
nonconvex optimization achieves un-improvable /5 estima-
tion accuracy (including both the rates and pre-constants).
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All in all, our results shed light on the unreasonable ef-
fectiveness of nonconvex optimization in noisy low-rank
tensor completion, which enables optimal estimation and
uncertainty quantification all at once.

1.5. Notation

For any matrix M, let || M || (resp. || M ||r) denote the spec-
tral (resp. Frobenius) norm of M, denote by || M ||2 o =
max; ||Ml,:H2 (resp. ||]\4—||00 = max; ; ‘Mz’j‘) the 62700
norm (resp. entrywise /o, norm) of M, and let M, .
(resp. M. ;) be the i-th row (resp. column). For any ten-
sors T € R¥*9X4 the Frobenius (resp. entrywise /o)

VEisk T2 esp. | Tl =
max; ; x |Ti.j]). We denote by [a + b] the interval [a —
b, a + b]. We use u; ; (resp. uj ;) to denote the i-th entry of

u; € RY (resp. uj € R%). We shall often let (i, j) denote
(¢ — 1)d + j whenever it is clear from the context.

norm of T is ||T||g :=

2. Models and assumptions

In this paper, we shall consider a setting with random sam-
pling and independent random noise as follows.

Assumption 1 (Random sampling). Suppose that Q) is a
symmetric index set.> Assume that each (i, j, k) with i <
7 < ks included in () independently with probability p.
Assumption 2 (Random noise). Suppose that E =
[Ei jk)1<i,jk<d IS a symmetric tensor> Assume that the
E; ;1’s are independent sub-Gaussian random variables
satisfying IE[.EZ-’]-,k] = 0andVar(E; j ) = 07 ; . Denoting
Omin = My j k04 5k and Omax = MaX; j k0 jk W€
assume throughout that oyax /o min = O(1).

Next, we introduce additional parameters about the un-
known tensor of interest. Recall that

s T
T*:g ul*®ul*®ul*=§
=1 =1

To begin with, we define

u;®3 c Rdxdxd.

*

R *
min 7

max *

min [lu}|3 and A

* (13
6
min fg?;irnqum (6)

allowing us to define the condition number by
K= A;lax//\:nin' (7)
To enable reliable tensor completion, we impose further

assumptions on the tensor factors {uj } as follows.

Assumption 3 (Incoherence and well-conditionedness).
Suppose that T™* satisfies

* Ho *
T < /2 T (s0)

>This means that if (i,5,k) € Q, then (j,i,k), (i,k,7),
(4, ky1), (k,i,9), (k,j,4) are all in Q.

3This means that F; jx = Ejix = Eix; = Ejri =
Eyij = Egjforany 1 <i,j,k <d.

1<1l<r (8b)

M1
il < /7 lluillz

(i, wp) <2 il g, 1#5 80

Further, assume that T™* is well-conditioned in the sense

that k (cf. (7)) obeys k = O (1).

Informally, when both 1o and 47 are small, the ¢2 energy of
both T and u; (1 <1 < r)is dispersed more or less evenly
across their entries. In addition, a small po implies that every
pair of the tensor factors of interest is nearly orthogonal to
(and hence incoherent with) each other. Finally, the well-
conditionedness assumption guarantees that no single tensor
component has significantly higher energy compared to the
rest of them. For the sake of notational simplicity, we shall
combine them into a single incoherence parameter

p = max {fio, fi1, P2} )

The focal point of this paper lies in distributional charac-
terization of and uncertainty assessment for the nonconvex
estimate (i.e. the solution U returned by Algorithm 1) in a
strong entrywise sense. In particular, we set out the goal
to (1) establish distributional representation of the estimate
U, and (2) construct short yet valid confidence intervals for
each entry of the tensor factor {ul*}lg 1< as well as each en-
try of the unknown tensor 7. To phrase the latter task more
precisely: given any target coverage level 0 < 1 —a < 1,
any 1 <! < randanyl < 4,5,k < d, the aim is to
compute intervals [¢1 7, ¢2 7] and [¢1 4, ¢2 4] such that

P{T}; ) € levr car]} =1—a+o(1)
up to global permutation and
P {Uzz € [CLu?CQ,u}} =l-a+ 0(1)

Ideally, this should be accomplished in a data-driven manner
without requiring prior knowledge about noise distributions.

3. Main results

This section presents our distributional theory for nonconvex
noisy tensor completion, and demonstrates how to conduct
uncertainty quantification in a data-driven and optimal man-
ner. In the sequel, we denote by U = [uy, - -+ ,u,] € R¥*"
the estimate returned by Algorithm 1, and let T' € R#*xd
indicate the resulting tensor estimate as follows

.
T:= u; @ u Q uy. 10

> oy WO U O U (10)

Given that one can only hope to recover U™ up to global
permutation*, we introduce a permutation matrix as follows

M:= min |[UQ-U"|g, (11

QeEp

“More precisely, we cannot distinguish w3, - - - , w from an
arbitrary permutation of them based on the observed data (2).
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where perm,. is the set of permutation matrices in R"*".
In order to guarantee reliable convergence of Algorithm
1, there are several algorithmic parameters (e.g. learning
rates) that need to be properly chosen. We shall adopt the
choices suggested by (Cai et al., 2019) throughout. Given
that our theory can be presented regardless of the reader’s
understanding of these choices, we defer the specification
of these algorithmic parameters to Appendix A.2 to avoid
distraction. All proofs are deferred to (Cai et al., 2020b).

3.1. Distributional guarantees for nonconvex estimates

We now establish distributional guarantees for the noncon-
vex estimate. For notational convenience, we introduce an
auxiliary matrix U* € R¥*" as well as a collection of
diagonal matrices Dj € R4 xd? (1 < k < d) such that
U* = [u*1<®u’1‘7

(Dz)u,j)’(i,j) =07k

12)
13)

2
Jur @uy] € R
1<4,5 <d;

here, we abuse the notation (4, j) to denote (¢ — 1)d + j. In
words, U™ lifts the tensor factors to a higher order, and D}
records the noise variance in the k-th slice of E. To simplify
presentation, we begin with the Gaussian noise case.

Theorem 1 (Distributional guarantees for tensor factor es-
timates (Gaussian noise)). Suppose that the E; ;. s are
Gaussian, and that Assumptions 1-3 hold. Assume that
i, &, = O(1) and that ty = cg logd,

c1 log5 d 02
p= B2

< Jmax

P
1T*]|o — log* d

for some sufficiently large (resp. small) constants
cg,c1,¢c2 > 0 (resp. cs > 0). Then with probability at
least 1 — o(1), one has the following decomposition:

UNI-U* = Z+W,
= 0(7A$‘}‘§“ ), and
forany1 <k <d, Z;,. ~ N(0,X}) with
L= 20U U DU (UTTO) T (15)

Remark 1. As an interpretation of Condition (14): (i) the
sample complexity pd® is O(d®/?poly log(d)), which is
widely conjectured to be computationally optimal (up to
some log factor) (Barak & Moitra, 2016); (ii) the typical size
of each noise component (as captured by {o;, ok 1) is allowed
to be substantially larger than the maximum magnitude of
the entries of 7" under our sample size assumption.

In words, Theorem 1 reveals that the estimation error of
U can be decomposed into a Gaussian component Z and
a residual term W. Encouragingly, the residual term W
is, in some sense, dominated by the Gaussian term and can

be safely neglected. To see this, recall that o; ; . > Omin,
leading to a lower bound’

Bj = 2 (TT07) 7 = Bl diag (|lu ;)

202,
= (1= o(1)) 2 I.

This tells us that the typical ¢, norm of each row Zj, . ex-
Omin VT

Akl
than || W2, (by virtue of Theorem 1). To conclude, the
nonconvex estimate U is—up to global permutation — a
nearly un-biased estimate of the true tensor factors U™, with

estimation errors being approximately Gaussian.

ceeds the order o

which is hence much larger

As it turns out, this distributional characterization can be
extended to accommodate a much broader class of noise
beyond Gaussian noise, as stated below.

Theorem 2 (Distributional guarantees for tensor factor esti-
mates (general noise)). Suppose that {E; ; 1} are not nec-
essarily Gaussian but satisfy Assumption 2. Then the de-
composition in Theorem 1 continues to hold, except that Z
is not necessarily Gaussian but instead obeys

P{Zy.c A} —P{gr € A}|=0(1), 1<k<d

for any convex set A C R". Here, g ~ N (O,
covariance matrix X3, defined in (15).

%) with

Before continuing, there is another important observation
that is worth pointing out (which is not stated in Theorems
1-2 but will be made precise in the analysis): for any three
different rows ¢, j, k, the corresponding errors Z; ., Z; . and
Zy, . are “nearly” statistically independent. This is a crucial
observation that immediately leads to entrywise distribu-
tional characterizations for the resulting tensor estimate 7',
as summarized below.

Theorem 3 (Distributional guarantees for tensor entry es-
timates). Instate the assumptions of Theorem 2. Consider
any 1 < i < j <k <dobeying

196002l + 1050l + 16y lls o eromas [0
[U*l2,00 T T eV d?p
(16)

for some large constant c; > 0, with U* defined in (12).
Then the estimate T defined in (10) obeys

sup P{ Tk < T+ 7 fois0 b = @0 =0 (1),
TE
a7

3To see why the penultimate inequality holds, note that under
our assumptions,

U0 = [(ul ")), o, < diag(Jluf)

+ (”géa]?((ui uj)*)I = (1 + o(1))diag (||u;|2)-
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where ®(-) is the CDF of a standard Gaussian random
variable. Here, the variance parameters {v} j i} are defined
such that for any three distinct numbers i, j, k,

* r7 ~ T ~ ~ T
Vi ik = U&7k),:2:(U&7k)’:) + U(*i’k)’:E;(U(i’k)’:)

+ 0G5 SO0 .) (18a)

Vi =AU S50 UG 20060

(18b)

T (18¢)

Vi = 9U(1z) 2*(U(* i), ) )
where 33} is defined in (15).

In short, the above theorem indicates that: if the “strength”
of a tensor entry T*j & 18 not exceedingly small, then our
nonconvex estimate of this entry is nearly unbiased, whose
estimation error is approximately zero-mean Gaussian with
variance v; ; ;. (which admits a closed-form expression). To
see this, note that when (14) holds, the right-hand side of
Condition (16) is at most O (d~'/*/\/Iog d), which is van-
ishingly small. In other words, the Gaussian approximation
is nearly tight unless the energy ||U(j k), H2 + HU (i) ||2

||U Y ||, is vanishingly small compared to the average
size. This entrywise distributional theory allows one to
accommodate a broad family of noise models.

3.2. Confidence intervals

The preceding distributional guarantees pave the way for
uncertainty quantification. To achieve this, it remains to
compute the unknown covariance matrices {3} } and the
variance parameters {v; ; ; }, which are functions of both the
ground truth {u}} and the noise variance {07 ; , } and are
not known a priori. In particular, in the heteroscedastic case
where {0 & are location-varying, it might be infeasible
to estimate all variance parameters reliably.

Variance and covariance estimation. Fortunately, de-
spite the absence of prior knowledge about the truth and
the noise parameters, we are still able to faithfully estimate
these important parameters from the data at hand, using
simple plug-in rules. Specifically:

1. Rather than estimating all {c; ;1 } directly, we turn at-
tention to estimating the noise components { E; ; 1, } instead,
with the assistance of our tensor estimate 1" as follows

Eijr =T~ Tijn (k) €Q (19

We then construct a diagonal matrix Dy, € R% % obeying

—172
(D’f)(i,j),(i,j) =p EijrLGiken) - (20)

Note that Dy, (1 < k < d) is not really a faithful estimate
of the Dj;, defined in (13), but it suffices for our purpose.

2. Estimate U* via the plug-in estimator

2
U:=[u ®uy, -, u @u,] € RE*",
3. Substitute the above estimators into the expressions of the
(co)-variance parameters to yield our estimates. Specifically,
forany 1 < k < d, we compute

% =20T0)'UTDOUTO)T @

as an estimate of 33 We also produce estimates for {v; ; ; }
as follows: for any three distinct numbers 1 < ¢, 5,k < d,

~ ~ T, = ~ T
vigk = UGn) Zi(UGr),:) + U2 (Uaw,:)

+ U053k (Ug,) (22a)

Vi =4 ﬁ(i,k),:zi(ﬁ(i,k),:)T + ﬁ(i,i),:zk (ﬁ(i,i),:)T§
(22b)

Vi = U, 2 (U(m‘),:)T- (22¢)
Confidence intervals. With the above variance and co-
variance estimates in place, we are positioned to introduce
our uncertainty quantification procedure. This is accom-
plished by constructing entrywise confidence intervals for
both the tensor factors and the unknown tensor as follows.

e Foreachl < k < dand1 <[ < r, we construct a
(1 — a)-confidence interval for the k-th entry of the
I-th tensor factor (up to global permutation) as follows

C|1 @ = [ul_,k +

U,k

(Ze)i - @711 —/2)], (23)

where ®~1(-) is the inverse CDF of N'(0, 1), [a+b] :=
[a —b,a + b], and Xy, is constructed in (21).

e For each 1 < 4,5,k < d, we construct a (1 — a)-
confidence interval for the (i, j, k)-th entry of T*:

Clp® o= [Tijk = Oy 71— a/2)], (24)

where v; ; 1 is constructed in (22).

As it turns out, the proposed (entrywise) confidence intervals
are nearly accurate, as revealed by the following theorem.

Theorem 4 (Validity of confidence intervals). Instate the
assumptions of Theorem 2. There is a permutation m(-) :
[d] — [d] such that for any 0 < « < 1, the confidence
interval constructed in (23) obeys

P{ute € Clirth =1-ato(1), 1< 1< n1<k<d

In addition, for any 1 < i,j, k < d obeying (16) and any
0 < a < 1, the confidence interval (24) obeys

IP’{T*]kECI1 * }:1—a+0(1).
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This theorem justifies the validity of the inferential pro-
cedure we propose. Several important features are worth
emphasizing:

* “Fine-grained” entrywise uncertainty quantification.
Our results enable trustworthy uncertainty quantifica-
tion down to quite fine scales, namely, we are capable
of assessing the uncertainty reliably at the entrywise
level for both the tensor factors and the tensor of inter-
est. To the best of our knowledge, accurate entrywise
uncertainty characterization for noisy tensor comple-
tion is previously unavailable.

* Adaptivity to heterogeneous and unknown noise dis-
tributions. The proposed confidence intervals do not
require prior knowledge about the noise distributions,
and automatically adapt to noise heteroscedasticity
(i.e. the case when the noise variance varies across
entries). Such model-free and adaptive features are of
eminently practical value.

* No need of sample splitting. The whole procedure
studied here — including both estimation and uncer-
tainty quantification—does not rely on any sort of
data splitting, thus effectively preventing unnecessary
information loss due to sample splitting.

Lower bounds. One might naturally wonder whether the
proposed confidence intervals can be further improved; con-
cretely, is it possible to identify a shorter confidence interval
that remains valid? As it turns out, our procedures are, in
some sense, statistically optimal under Gaussian noise, as
confirmed by the following fundamental lower bound.

Theorem 5 (Fundamental lower bounds). Consider any
unbiased estimator u for uj (1 <1 < r) and any unbiased

estimator T for T*. Suppose {E; ; 1} are i.i.d. Gaussian.
Under the assumptions of Theorem 2, one necessarily has

Var[t ] > (1 - 0(1))(22)H7
Var[T; 4] > (1 —o(1)v}, 5 1 <i,j.k <d; (25b)

B [l - wi ] > B2

1<k<d, (25a)

e, 1 <1 <75 (250)
P,
(6 —o(1))o2, dr

min
p

E [T -1}]

v

(25d)

Taken collectively with Theorems 2 and 3, the above result
reveals that our nonconvex estimators {u; } and T" achieve
minimal mean square estimation errors in a very sharp man-
ner at the entrywise level. Recognizing that the proposed
confidence intervals allow for accurate assessment of the
uncertainty (by virtue of Theorem 4), we conclude that
the proposed entrywise inferential procedures are, in some
sense, un-improvable under i.i.d. Gaussian noise (including
both the rates and the pre-constants).

3.3. Back to estimation: ¢/, optimality of nonconvex
estimates

Thus far, we have established the distributions of the estima-
tors u;, (1 <1 <7, 1 <k <d)andT;; (for those 7, j, k
obeying (16)). These results taken together allow one to pin
down the ¢ risk of the nonconvex optimization approach in
a sharp manner. Our result is this:

Theorem 6 (Sharp ¢, estimation risk). Instate the assump-
tions of Theorem 2. With probability 1 — o(1), the estimates
returned by Algorithm I obey

2+ 0(1))02,,.d

wrqy = wi |y = =2 1< i<y (260)
puill,
2

T - T*|7 = 6+ 0(1;)0ma"dr (26b)

for some permutation 7(-) : [d] — [d].

Here, the characterization of the 5 risk (26a) for u; is a
straightforward consequence of Theorems 1-2. In compari-
son, establishing the /5 risk (26b) for T" requires more work,
as Theorem 3 is valid only for a subset of the entries obey-
ing (16). Fortunately, a majority of the entries of T satisfy
(16), thus allowing for a nearly accurate approximation of
the Euclidean risk of T'. Theorem 6 taken together with
Theorem 5 delivers an encouraging news: when the noise
is i.i.d. Gaussian, nonconvex optimization is information-
theoretically optimal in a sharp manner when estimating
both the unknown tensor and its underlying tensor factors.

3.4. Numerical experiments

To validate our theory and demonstrate the practical applica-
bility of our inferential procedures, we perform a series of
numerical experiments for a variety of settings. Specifically,
we set d = 100, p = 0.2, and generate the ground-truth
tensor T* = >",_, (u})®? in a random fashion such that
uy N (0,1,). Regarding the algorithmic parameters
for nonconvex optimization (i.e. Algorithm 1 and Algo-
rithm 2 in Supplementary materials A.1), we choose L = r2,
€h = 0.4, m; = 3 x 107°/p, and t; = 100. The noise
components are independently drawn from Gaussian distri-
butions, obeying E; j j ~ N(O,U?’j’k), 1<i<j<k<d

with variance o? ;1 constructed as follows. We generate
wi ik = UNIf[0,1],1 < 4,4,k < d and let
2,8
> O Wigk &

0', . =
1,5,k B
2r<icj<k<d Wik

)

where (3 dictates the degree of heteroscedasticity. The noise
becomes more heteroscedastic as [ increases, and setting
B = 0 reduces to the homoscedastic case where the noise
variances are identical across all entries. In what follows,
we shall set 3 = 5.
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Figure 1. Q-Q (quantile-quantile) plots of R1 1s R%J,g and Rll{;,»
vs. a standard Gaussian distribution (where r = 4, p = 0.2,
o =0.1and 8 = 5).

Table 1. Empirical coverage rates of tensor factor entries for vary-
ing r and .

(r,o) Mean(CR) | Std(CR)
(2,107?) 0.9481 0.0201
(2,107 0.9477 0.0228
(2,1) 0.9478 0.0215
(4,1072) 0.9450 0.0218
(4,1071) 0.9472 0.0231
(4,1) 0.9462 0.0234
Tensor factor entries. We begin with inference for the en-

tries of the tensor factors of interest. Consider the construc-
tion of 95% confidence intervals (i.e. o = 0.05). Define the
normalized estimation error as follows

1
Ry = ——=—— (w

i)

_Ul*,k)v 1<i<r 1<k<d.

Foreachl <[ <rand1 < k < d, we denote by CR; ;, the
empirical coverage rate for the tensor factor entry uj . over
100 independent trials. Let Mean(CR) (resp. Std (CR)) de-
note the average (resp. the standard deviation) of {CR; x}
over all tensor factor entries. Figure 1 displays the Q-Q
(quantile-quantile) plots of R1 1» RY 2 and RY 1,3 Vs. a stan-
dard Gaussian random variable, and Table 1 summarizes the
numerical results for varying r and 0. Encouragingly, the
empirical coverage rates are all very close to 95%, and the
empirical distributions of the normalized estimation errors
are all well approximated by a standard Gaussian distribu-
tion.

Tensor entries. Next, we turn to inference for tensor en-
tries. Similar to the above case, we intend to construct 95%
confidence intervals. Define

1
*
R’L S — (ﬂajvk - Tivjuk) ’
Vi, j,k

1<i<j<k<d.

Foreach1 < i < j < k < d, we record the empirical
coverage rate CR; ;;, for the tensor entry 77", , over 100
Monte Carlo trials. Denote by Mean(CR) (resp Std(CR))
the average (resp. the standard deviation) of {CR; ; » } over
entries 1 < ¢ < 7 < k < d. Figure 2 depicts the Q-Q
(quantile-quantile) plots of R ; |, R, , and R, 5 vs. a

Empirical quantiles of B}, ,

(a) (b) (©

Figure 2. Q-Q (quantile-quantile) plots of RIM, RI,I,z and
RIQ’S vs. a standard Gaussian distribution (where r = 4, p = 0.2,
o =0.1and 8 = 5).

Table 2. Empirical coverage rates of tensor entries for different r
and 0.

(r,o) Mean(CR) | Std(CR)
(2,10°2) | 0.9494 | 0.0218
(2,1007) | 09513 | 0.0218

(2,1) 0.9475 0.0222
(4,10°2) | 0.9434 | 0.0225
(4,10°T) | 0.9494 | 0.0220

(1,1) 0.9494 | 0.0219

standard Gaussian random variable. Table 2 collects the
numerical results Mean(CR) and Std(CR) for a variety of
settings. Similar to previous experiments, the confidence
intervals and the Q-Q plots match our theoretical prediction
in a reasonably well manner.

{5 estimation accuracy. Finally, we verify the Euclidean
estimation guarantees we develop for Algorithm 1 in Theo-
rem 6. Figure 3 plots the Euclidean estimation errors of the
tensor factor estimate w; (resp. the tensor estimate 717). In
this series of experiments, we focus on the homoskedastic
case, i.e. 3 = 0. As one can see, the empirical /5 risks are
exceedingly close to the Cramér-Rao lower bounds supplied
in Theorem 5.

4. Prior art

Much progress has been made towards solving low-rank
tensor completion. Inspired by the success of convex relax-
ation for matrix completion (Candes & Recht, 2009; Candes
& Plan, 2010; Gross, 2011; Li, 2013; Chen et al., 2019c¢),
an estimate based on tensor nuclear norm minimization
was proposed by (Yuan & Zhang, 2016; 2017), which en-
ables information-theoretically optimal sample complexity.
Unfortunately, the tensor nuclear norm is itself NP-hard
to compute and hence computationally infeasible in prac-
tice. To allow for more economical algorithms, a widely
adopted strategy is to unfold the tensor data into a matrix
(Tomioka et al., 2010; Gandy et al., 2011; Liu et al., 2013;
Mu et al., 2014), thus transforming it into a low-rank ma-
trix completion problem (Candes & Recht, 2009; Keshavan
et al., 2010a; Chi et al., 2019). However, unfolding a third-
order tensor often leads to an extremely unbalanced matrix,
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Figure 3. (a) {2 estimation error of w; vs. the Cramér—Rao lower
bound; (b) Euclidean estimation errors of T" vs. the Cramer-Rao
lower bound (where r = 4, p = 0.2 and 8 = 0).

thereby resulting in sub-optimal sample complexity when
directly invoking matrix completion theory. To address this
issue, a recent line of work (Barak & Moitra, 2016; Potechin
& Steurer, 2017) suggested the use of sum-of-squares (SOS)
hierarchy, which performs convex relaxation after lifting
the data into higher dimension. The SOS-based algorithms
achieve a sample complexity on the order of 7d®/? for third-
order tensors, which is widely conjectured to be optimal
among all polynomial-time algorithms. However, despite
their polynomial-time complexity, the SOS-based methods
remain too expensive for solving large-scale practical prob-
lems, primarily due to the lifting operation.

Motivated by the above computational concerns, several
nonconvex approaches have been developed, which often
consist of two stages: (1) finding a rough initialization; (2)
local refinement. Existing initialization schemes include
unfolding-based spectral methods (Xia & Yuan, 2019a; Xia
et al., 2020; Montanari & Sun, 2018; Cai et al., 2020a; 2019;
Liu & Moitra, 2020). tensor power methods (Jain & Oh,
2014), tensor SVD (Zhang & Aeron, 2017), and so on. To
improve the estimation accuracy, the local refinement stage
invokes nonconvex optimization algorithms like alternating
minimization (Jain & Oh, 2014; Liu & Moitra, 2020), gra-
dient descent (Cai et al., 2019; Han et al., 2020), manifold-
based optimization (Xia & Yuan, 2019a), block coordinate
decent (Ji et al., 2016), etc. These were motivated in part
by the effectiveness of nonconvex optimization in solving
nonconvex low-complexity problems (Burer & Monteiro,
2003; Srebro, 2004; Keshavan et al., 2010a;b; Jain et al.,
2013; Chen & Candes, 2017; Chen & Wainwright, 2015;
Ma et al., 2019; Chen & Candes, 2018; Chen et al., 2019b;
Netrapalli et al., 2014; Hao et al., 2020; Zhang et al., 2016;
Cai et al., 2017; Chen et al., 2019a; Wang & Giannakis,
2016; Chen et al., 2020; Sun et al., 2018; Qu et al., 2019;
Tong et al., 2020; Zhang et al., 2017); see an overview of
recent development in (Chi et al., 2019). Various statisti-
cal and computational guarantees have been provided for
these algorithms, all of which have been shown to run in
polynomial time. In particular, (unfolding-based) spectral
initialization followed by gradient descent converges lin-
early to an accuracy that is within a logarithmic factor from

optimal (Cai et al., 2019).

None of the above results, however, suggested how to evalu-
ate the uncertainty of the resulting estimates in a meaningful
way. Despite a large body of work on statistical estimation
for noisy tensor completion, it remains completely unclear
how to exploit existing results to construct valid yet short
confidence intervals for the unknown tensor. Perhaps the
work closest to the current paper is inference and uncer-
tainty quantification for noisy matrix completion and matrix
denoising (Chen et al., 2019d; Xia & Yuan, 2019b; Cheng
et al., 2020), which enables optimal construction of confi-
dence intervals on the basis of nonconvex matrix completion
algorithms. Inference for singular subspaces has also been
investigated under both low-rank matrix regression and de-
noising settings (Xia, 2018; 2019). While these results
might potentially be applicable here by first matricizing the
data, the resulting sample complexity, as discussed above,
could be pessimistic. Finally, construction of confidence
intervals has been extensively studied in a variety of high-
dimensional sparse estimation settings (Zhang & Zhang,
2014; van de Geer et al., 2014; Javanmard & Montanari,
2014; Ren et al., 2015; Cai et al., 2016; Ning & Liu, 2017;
Cai & Guo, 2017; Sur et al., 2019; Jankova & van de Geer,
2018; Miolane & Montanari, 2018). Both the inferential
approaches and analysis techniques therein, however, are
drastically different from the ones employed for inference
for either tensor completion or matrix completion.

5. Discussions

This paper has explored the problem of uncertainty quantifi-
cation for nonconvex tensor completion. The main contribu-
tions lie in establishing (nearly) precise distributional guar-
antees for the nonconvex estimates down to an entrywise
level. Our distributional representation enables data-driven
construction of confidence intervals for both the unknown
tensor and its underlying tensor factors. Our inferential pro-
cedure and the accompanying theory are model agnostic,
which do not require prior knowledge about the noise dis-
tributions and are fully adaptive to location-varying noise
levels. Our results uncover the unreasonable effectiveness
of nonconvex optimization, which are statistically optimal
for both estimation and confidence interval construction.

The findings of the current paper further suggest numerous
possible extensions that are worth pursuing. To begin with,
our current results are only optimal when both the rank r
and the condition number x are constants independent of
the ambient dimension d. Can we further refine the analysis
to enable optimal inference for more general settings? It
would also be interesting to go beyond uniform random
sampling by considering the type of sampling patterns with
a heterogeneous missingness mechanism.
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A. More details about Algorithm 1
A.1. The initialization scheme

For self-completeness, we record in this section the de-
tailed initialization procedure employed in the two-stage
nonconvex algorithm proposed in (Cai et al., 2019) (namely,
Algorithm 1). This is summarized in Algorithm 2, with aux-
iliary procedures detailed in Algorithm 3. As a high-level
interpretation, Algorithm 2 estimates the subspace spanned
by the tensor factor {u] }1<;<, via a spectral method (simi-
lar to PCA-type methods (Montanari & Sun, 2018; Zhang
et al., 2018; Cai et al., 2020a)), whereas Algorithm 3 at-
tempts to retrieve estimates for individual tensor factors
from this subspace estimate Uspace. Here and through-

out, we denote T°bs := [Tzojskh<i,j,k§d’ where we set

¢ Q.
vector u € RY, we define the vector product of a tensor
T € R¥*4xd _denoted by T x3 u € R?*? — such that

[T X3 u] ij = Elgkgd Ti,j,kuk>Viaj € [d}

T, = 0 for any (i,j, k)

ik In addition, for any

Algorithm 2 Spectral initialization for nonconvex tensor
completion

1: Input: tensor 7.

2: Let UspaceAUSpace be the rank-r eigen-decomposition
of Pofrdiag(AAT), where A = unfold (T°b5) is the
mode-1 matricization of T°°, and Posr-diag (£ ) extracts
out the off-diagonal entries of Z.

3: Output: an initial estimate U? € R?*" on the basis of
Uspace € R¥*7" using Algorithm 3.

Algorithm 3 Retrieval of low-rank tensor factors from a
given subspace estimate.

1: Input: number of restarts L, pruning threshold €, sub-
space estimate Uspace € RY*" given by Algorithm 2.

2. forr=1,...,Ldo

3:  Generate an independent vector g7 ~ N (0, I 7).

4:  Compute

(v, A, gap, ) < Algorithm 4 (T°", p, Uspace, g7 ) .-

5: end for
6: Generate tensor factor estimates
{(w', A1), (W' \)}

Algorithm 5 ({ (v", A\, gap,,) }T L €th)-
7. Output: initial estimate

U’ = [/\1/311)1, cee )\71./311;7"].

Algorithm 4 Retrieve-one-tensor-factor
1: Input: tensor T', sampling rate p, subsapce estimate
Uspace, Gaussian random vector g.
2: Compute

0= UspaceU paced>
M = p 1T0bs X3 07

(27a)
(27b)
3: Let v be the leading singular vector of M obeying

(TP p®3) > 0, and set A\ = (p~1T°bs p®3),
4: Output: (v,\,01(M) — 02(M)).

A.2. Choices of algorithmic parameters

To guarantee fast convergence of Algorithm 1, there are a
couple of algorithmic parameters — namely, the number of
restart attempts L, the pruning threshold €, in Algorithm 3,
as well as the learning rates 7, — that need to be prop-
erly chosen. Unless otherwise noted, this paper adopts the
following choices suggested by (Cai et al., 2019):

*4/3
_ 2k2 3/2 min
L= C4T 10g d> N = Co *8/3’

m ax

(w“ logd amm [rd log d [ ur 1og d
€th = Cp

where ¢4 > 0 is some sufficiently large constant, and
s, cg > 0 are some sufficiently small constants. The inter-
ested reader is referred to (Cai et al., 2019) for justification.

Algorithm 5 Prune

1: Input: tensor estimate tuples {(v", A, gap,) }le,
pruning threshold e,.

2: Set® = {(v7, )\T,gapT)}f:1

fori=1,...,rdo

4:  Choose (v7, A\, gap, ) from © with the largest gap,;
setw’ =v" and \; = \,.
Update © <+ © \ {(VT, )\T,gapT)
(7, wih| > 1 — e}

6: end for
7: Output: {(w!,\1),..., (w", A}

hod

€ 0
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