
Empirical Study of the Benefits of Overparameterization
in Learning Latent Variable Models

Rares-Darius Buhai 1 Yoni Halpern 2 Yoon Kim 3 Andrej Risteski 4 David Sontag 1

Abstract goal is frequently to confirm or reject whether a particular

One of the most surprising and exciting discov-
eries in supervised learning was the benefit of
overparameterization (i.e. training a very large
model) to improving the optimization landscape
of a problem, with minimal effect on statistical
performance (i.e. generalization). In contrast,
unsupervised settings have been under-explored,
despite the fact that it was observed that overpa-
rameterization can be helpful as early as Dasgupta
& Schulman (2007). We perform an empirical
study of different aspects of overparameteriza-
tion in unsupervised learning of latent variable
models via synthetic and semi-synthetic experi-
ments. We discuss benefits to different metrics of
success (recovering the parameters of the ground-
truth model, held-out log-likelihood), sensitivity
to variations of the training algorithm, and be-
havior as the amount of overparameterization in-
creases. We find that across a variety of models
(noisy-OR networks, sparse coding, probabilistic
context-free grammars) and training algorithms
(variational inference, alternating minimization,
expectation-maximization), overparameterization
can significantly increase the number of ground
truth latent variables recovered.

1. Introduction
Unsupervised learning is an area of intense focus in recent
years. In the absence of labels, the goal of unsupervised
learning can vary. Generative adversarial networks, for
example, have shown promise for density estimation and
synthetic data generation. In commercial applications, un-
supervised learning is often used to extract features of the
data that are useful in downstream tasks. In the sciences, the

1Massachusetts Institute of Technology 2Google 3Harvard Uni-
versity 4Carnegie Mellon University. Correspondence to: Rares-
Darius Buhai <rbuhai@mit.edu>.

model fits well or to identify salient aspects of the data that
give insight into underlying causes and factors of variation.

Many unsupervised learning problems of interest, cast as
finding a maximum likelihood model, are computationally
intractable in the worst case. Though much theoretical work
has been done on provable algorithms using the method
of moments and tensor decomposition techniques (Anand-
kumar et al., 2014; Arora et al., 2017; Halpern & Sontag,
2013), iterative techniques such as variational inference are
still widely preferred. In particular, variational approxima-
tions using recognition networks have become increasingly
popular, especially in the context of variational autoencoders
(Mnih & Gregor, 2014; Kingma & Welling, 2014; Rezende
et al., 2014). Intriguingly, it has been observed, e.g. by Ye-
ung et al. (2017), that in practice many of the latent variables
have low activations and hence not used by the model.

Related phenomena have long been known in supervised
learning: it was folklore knowledge among practitioners
for some years that training larger neural networks can aid
optimization, yet not affect generalization substantially. The
seminal paper by Zhang et al. (2016) thoroughly studied this
phenomenon with synthetic and real-life experiments in the
supervised setting. In brief, they showed that some neural
network architectures that demonstrate strong performance
on benchmark datasets are so massively overparameterized
that they can “memorize" large image data sets (they can
perfectly fit a completely random data set of the same size).
Subsequent theoretical work provided mathematical expla-
nations of some of these phenomena (Allen-Zhu et al., 2018;
Allen-Zhu & Li, 2019). In contrast, overparameterization in
the unsupervised case has received much less attention.

This paper aims to be a controlled empirical study that mea-
sures and disentangles the benefits of overparameterization
in unsupervised learning settings. More precisely, we con-
sider the task of fitting three common latent-variable models
– discrete factor analysis models using noisy-OR networks,
sparse coding (interpreted as a probabilistic model, see Sec-
tion 2), and probabilistic context-free grammars. Through
experiments on synthetic and semi-synthetic data sets, we

Proceedings of the 37 th International Conference on Machine study the following aspects:
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s). • Latent variable recovery: We show that larger models

mailto:rbuhai@mit.edu

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

increase the number of ground truth latent variables re-
covered, as well as the number of runs in which all the
ground truth latent variables are recovered. Furthermore,
we show that recovering the ground-truth latent variables
from the overparameterized solutions can be done via a
simple filtering step: the optimization tends to converge to
a solution in which all latent variables that do not match
ground truth latent variables can either be discarded (i.e.
have low prior probability) or are near-duplicates of other
matched latent variables.

• Effects of extreme overparameterization: We show
that while the benefits of adding new latent variables have
diminishing returns, the harmful effects of extreme over-
parameterization are minor. Both the number of ground
truth recoveries and the held-out log-likelihood do not
worsen significantly as the number of latent variables in-
creases. Performance continues to increase even with,
e.g., 10 times the true number of latent variables.

• Effects of training algorithm: We show that changes to
the training algorithm, such as significantly increasing
the batch size or using a different variational posterior,
do not significantly affect the beneficial effects of overpa-
rameterization. For learning noisy-OR networks, we test
two algorithms based on variational learning: one with a
logistic regression recognition network, and one with a
mean-field posterior (e.g. see Wainwright et al. (2008)).

• Latent variable stability over the course of training:
One possible explanation for why overparameterization
helps is that having more latent variables increases the
chances that at least one initialization will be close to
each of the ground-truth latent variables. (This is indeed
the idea of Dasgupta & Schulman (2007)). This does
not appear to be the dominant factor here. We track the
“matching” of the trained latent variables to the ground
truth latent variables (matching = minimum cost bipartite
matching, with a cost based on parameter closeness), and
show that this matching changes until relatively late in
the training process. This suggests that the benefit of
overparameterization being observed is not simply due to
increased likelihood of initializations close to the ground
truth values.

2. Learning Overparameterized Latent
Variable Models

We focus on three commonly used latent-variable mod-
els: noisy-OR networks, sparse coding, and probabilistic
context-free grammars. Noisy-OR networks and sparse cod-
ing are models with a single latent layer, representing one
of the simplest architectures for a generative model. Proba-
bilistic context-free grammars are, in contrast, hierarchical
latent variable models. Our experiments cover a wide range
of model categories: linear and non-linear, single-layer and
hierarchical, with simple and neural parameterizations.

Noisy-OR Networks: A noisy-OR network (Pearl, 1988)
is a bipartite directed graphical model, in which one layer
contains binary latent variables and the other layer contains
binary observed variables. Edges are directed from latent
variables to observed variables. The model has as param-
eters a set of prior probabilities π ∈ [0, 1]m for the latent
variables, a set of noise probabilities l ∈ [0, 1]n for the ob-
served variables, and a set of weights W ∈ Rn×m for the +
graph. If the latent variables are denoted as h ∈ {0, 1}m

and the observed variables as x ∈ {0, 1}n , the joint prob-
ability distribution specified by the model factorizes as:

n
p(x, h) = p(h)

Q
j=1 p(xj |h), where

mY
p(h) = πhi (1 − πi)

1−hi ,i
i=1

mY
p(xj = 0|h) = (1 − li) exp(−Wjihi).

i=1

It is common to refer to exp(−Wji) as the failure probabil-
ity between hi and xj (i.e. the probability with which, if
hi = 1, it “fails to activate” xj).

Training algorithm: We optimize an approximation of the
likelihood of the data under the model, the evidence lower
bound (ELBO). This is necessary because direct maximum
likelihood optimization is intractable. If the joint pdf is
p(x, h; θ), we have, using the notation in Mnih & Gregor
(2014):

log p(x; θ) ≥ Eq(·|x;φ) [log p(x, h; θ) − log q(h|x; φ)]
= L(x, θ, φ),

where q(·|x; φ) is a variational posterior, also known as
a recognition network in this setting. When q(h|x; φ) =
p(h|x; θ), ∀h, the inequality becomes equality; however, it
is intractable to compute p(h|x; θ). Instead, we will assume
that q belongs to a simpler family of distributions: a logistic
regression network parameterized by weights wi ∈ Rn and
bias terms bi ∈ R, ∀i ∈ {1, ..., m}, such that:

mY
q(h|x; φ) = σ(x · wi + bi)

hi (1 − σ(x · wi + bi))
1−hi .

i=1

Then, we maximize the lower bound by taking gradient
steps w.r.t. θ and φ. Furthermore, to improve the estimation
of the gradients, we use variance normalization and input-
dependent signal centering, as in Mnih & Gregor (2014).
For the input-dependent signal centering, we use a two-layer
neural network with 100 hidden nodes in the second layer
and tanh activation functions.

Extracting the ground-truth latent variables: As we are
training an overparameterized model, we need to filter the
learned latent variables to extract latent variables corre-
sponding to the ground-truth variables. First, we discard all

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

latent variables that are discardable, namely have learned
prior probability less than 0.02 or have all learned failure
probabilities of the related observable variables greater than
0.8. Then, for every pair of latent variables that are dupli-
cates (measured as having failure probability vectors closer
than 4.0 in l1 distance), we discard the one with lower prior
probability – such that for any cluster of duplicate latent
variables, only the one with the largest prior probability
survives.

Sparse Coding: A sparse coding model is specified by a
matrix A ∈ Rn×m with kAik2 = 1, ∀i (i.e. unit columns).
Samples are generated from this model according to x =
Ah, with h ∈ Rm , khk1 = 1 and khk0 = k (i.e. sparsity
k). The coordinates of the vector h play the role of the
latent variables, and the distribution h is generated from is
as follows: first, uniformly randomly choose k coordinates
of h to be non-zero; next, sample the values for the non-
zero coordinates uniformly in [0, 1]; finally, renormalize the
non-zero coordinates so they sum to 1.

Training algorithm: We use the simple alternating-
minimization algorithm given in Li et al. (2016). It starts
with a random initialization of A, such that A has unit
columns. Then, at each iteration, it "decodes" the latent
variables h for a batch of samples, s.t. a sample x is de-
coded as h = max(0, A†x − α), for some fixed α and the
current version of A. After decoding, it takes a gradient step
toward minimizing the “reconstruction error” kAh − xk22,
and then re-normalizes the columns of A such that it has
unit columns. Here, overparameterization means learning a
matrix A ∈ Rn×s with s > m, where m is the number of
columns of the ground truth matrix.

Extracting the latent variables: Similarly to the noisy-OR
case, we are training an overparameterized model, so to
extract latent variables which correspond to the ground-truth
variables we need to use a filtering step. First, we apply the
decoding step h = max(0, A†x − 0.005) to all samples x
in the training set, and mark as "present" all coordinates in
the support of h. Second, we discard the columns that were
never marked as "present". The intuition is rather simple:
the first step is a proxy for the prior in the noisy-OR case (it
captures how often a latent variable is "used"). The second
step removes the unused latent variables. (Note, one can
imagine a softer removal, where one removes the variables
used less than some threshold, but this simpler step ends up
being sufficient for us.)

Probabilistic Context-Free Grammars: A probabilistic
context-free grammar (PCFG) is a hierarchical generative
model of discrete sequences, and is an example of a struc-
tured latent variable model. Studying overparameterization
in structured settings is important as many real-world phe-
nomena exhibit complex dependencies that are more natu-
rally modeled through structured latent variables. We work

with the following PCFG formulation: our PCFG is a 6-
tuple G = (S, N , P, Σ, R, π) where S is the distinguished
start symbol, N is a finite set of nonterminals, P is a finite
set of preterminals, Σ is a finite set of terminal symbols, R
is a finite set of rules of the form,

the probability of rule r. Samples are generated from a

S → A, A ∈ N

A → B C, A ∈ N , B, C ∈ N ∪ P

T → w, T ∈ P, w ∈ Σ,

and π = {πr}r∈R are rule probabilities such that πr is

PCFG by starting from the start symbol S and recursively
(stochastically) rewriting the symbols from the rule set until
only terminal symbols remain. A PCFG defines a distribu-Q
tion over derivations (i.e., trees) t via p(t; π) = r∈tR

πr,
where tR is the set of rules used to derive t. It also defines
a distribution string of terminals x ∈ Σ∗ via, X

p(x; π) = p(t; π),
t∈TG (x)

where TG (x) = {t | yield(t) = x}, i.e., the set of trees
t such that t’s leaves are x. Learning PCFGs from raw
data is a challenging open problem, but Kim et al. (2019)
recently report some success with a neural PCFG which
obtains rule probabilities π through a neural network over

>symbol embeddings, e.g., πS→A ∝ exp(u f(wS)) whereA
wS , uA are the input/output symbol embeddings and f(·)
is a multilayer perceptron. We adopt the same neural param-
eterization in our experiments (see the Appendix for the full
parameterization), and therefore in this setup we study over-
parameterization in the context of modern deep generative
models whose conditional likelihoods are parameterized as
deep networks.

Training algorithm: Given a training set of sequences
{x(i)}N learning proceeds by maximizing the logi=1,
marginal likelihood of observed sequences with respect to
model parameters with gradient-based optimization. Un-
like the noisy-OR network, exact inference is tractable in
PCFGs with dynamic programming, and therefore we can
directly perform gradient ascent on the log marginal likeli-
hood without resorting to variational bounds.1 This allows
us to investigate the effects of overparameterization without
any potential confounds coming from variational approxi-
mations. In these experiments, overparameterization means
learning a PCFG with more nonterminal/preterminal sym-
bols than in the data-generating PCFG.

Extracting the ground-truth latent variables: Measuring
latent variable recovery in PCFGs is challenging due to the
recursive rewrite rules that make it difficult to align latent

1Note that gradient ascent on the log marginal likelihood is an
instance of the EM algorithm.

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

(a)

(b)

Figure 1: (a) Configuration of the IMG noisy-OR ground truth
model. In the first row, each 8×8 image represents a latent variable.
Each pixel in an 8 × 8 image represents the failure probability of
the latent variable with the corresponding observed variable (white
pixels correspond to failure probabilities different from 1.0). In
the second row, each node represents an observed variable; the
observed variables corresponding to the first row of the 8 × 8
images are shown. The edges show failure probabilities different
from 1.0. (b) Samples of the IMG data set. Each 8 × 8 image
represents a sample, and each pixel represents an observed variable
(white pixels correspond to 1).

symbols with one another. As a measure of grammar recov-
ery, we adopt a widely-used approach from the grammar
induction literature which compares parse trees from an
underlying model against parse trees from a learned model
(Klein & Manning, 2002). In particular, on a set of held-out
sentences we calculate the unlabeled F1 score between the
maximum a posteriori trees from the data-generating PCFG
and the maximum a posteriori trees from the learned PCFG.
Since this metric evaluates agreement based only on tree
topology (and not the labels), it circumvents issues that arise
due to label alignment (e.g., duplicate nonterminals).

3. Empirical Study
We describe most of our results in the context of noisy-OR
networks, in Section 3.1. We then reinforce our conclusions
through discussions of the results for sparse coding (in Sec-
tion 3.2) and PCFGs (in Section 3.3), which are consistent
with the noisy-OR network experiments.

3.1. Noisy-OR Networks

We study the effect of overparameterization in noisy-OR
networks using 7 synthetic data sets:

(1) The first, IMG, is based on Šingliar & Hauskrecht (2006).
There are 8 latent variables and 64 observed variables. The
observed variables represent the pixels of an 8 × 8 image.
Thus, the connections of a latent variable to observed vari-
ables can be represented as an 8 × 8 image (see Figure 1).
Latent variables have priors πi = 0.25. All failure probabil-
ities different from 1.0 are 0.1.

(2) The second, PLNT, is semi-synthetic: we learn a noisy-
OR model from a real-world data set, then sample from the
learned model. We learn the model from the UCI plants
data set (Lichman et al., 2013), where each data point rep-
resents a plant that grows in North America and the 70
binary features indicate in which states and territories of
North America it is found. The data set contains 34,781
data points. The resulting noisy-OR model has 8 latent vari-
ables, prior probabilities between 0.05 and 0.20, and failure
probabilities either less than 0.5 or equal to 1.

The next three data sets are based on randomly generated
models with 8 latent and 64 observed variables (same as
IMG):

• (3) UNIF: Each latent variable’s prior is sampled πi ∼
U [0.1, 0.3] and it is connected to each observation with
probability 0.25. If connected, the corresponding fail-
ure probability is drawn from U [0.05, 0.2]; otherwise
it is 1.0.

• (4) CON8: πi = 1/8 for all i. Each latent variable is
connected to exactly 8 observed variables, selected at
random. If connected, the failure probability is 0.1;
otherwise it is 1.0.

• (5) CON24: Same as CON8, but each latent variable
is connected to 24 observed variables.

The rationale for the previous two distributions is to test
different densities for the connection patterns.

The final two are intended to assess whether overparameter-
ization continues to be beneficial in the presence of model
misspecification, i.e. when the generated data does not truly
come from a noisy-OR model, or when there are additional
(distractor) latent variables that occur with low probability.

(6) IMG-FLIP: First, generate a sample from the IMG model
described above. Then, with probability 10%, flip the value
of every fourth observed variable in the sample (i.e. x0, x4,
...).

(7) IMG-UNIF: This model has 16 latent variables and 64
observed variables. The first 8 latent variables are those
of the IMG model, again with prior probability 0.25. We
then introduce 8 more latent variables from the UNIF model,
with prior probabilities 0.05 each.

Noise probabilities are set to 0.001 for all models except
the one that generates the PLNT data set. For the PLNT
data set, the model uses the learned noise probabilities. To
create each data set, we generate 11, 000 samples from the
corresponding model. We split these samples into a training
set of 9, 000 samples, a validation set of 1, 000 samples, and
a test set of 1, 000 samples. For the randomly generated
models, we generate the ground truth model exactly once.

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Samples are generated exactly once from the ground truth
model and re-used in all experiments with that model.

To count how many ground truth latent variables are recov-
ered, we perform minimum cost bipartite matching between
the ground truth latent variables and the recovered latent
variables. The cost of matching two latent variables is the
l∞ distance between their weight vectors (removing first
the variables with prior probability lower than 0.02). Af-
ter finding the optimal matching, we consider as recovered
all ground truth latent variables for which the matching
cost is less than 1.0. Note the algorithm may recover the
ground truth latent variables without converging to a maxi-
mum likelihood solution because we do not require the prior
probabilities of the latent variables to match (some of the
latent variables may be split into duplicates) and because the
matching algorithm ignores the parameters corresponding
to the unmatched latent variables.

Overparameterization Improves Ground Truth Recov-
ery and Log-likelihood: For all data sets, we test the
recognition network algorithm using 8 latent variables (i.e.
no overparameterization), 16, 32, 64, and 128. For each
experiment configuration, we run the algorithm 500 times
with different random initializations of the generative model
parameters. We report in Figure 2 the average number of
ground truth latent variables recovered and the percentage
of runs with full ground truth recovery (i.e. where 8 ground
truth latent variables are recovered). We see that in all data
sets, overparameterization leads to significantly improved
metrics compared to using 8 latent variables. The same
trends are observed for the held-out log-likelihood. See the
Appendix (E, Table 1) for more detailed numerical results
for these experiments.

Harm of Extreme Overparameterization Is Minor; Ben-
efits Are Often Significant: The results suggest that there
may exist an optimal level of overparameterization for each
data set, after which overparameterization stops conferring
benefits (the harmful effect then may appear because larger
models are more difficult to train). The peak happens at
32 latent variables for IMG, at 128 for PLNT, at 64 for
UNIF, at 128 for CON8, and at 64 for CON24. Therefore,
overparameterization can continue to confer benefits up to
very large levels of overparameterization. In addition, even
when 128 latent variables are harmful with respect to lower
levels of overparameterization, 128 latent variables lead to
significantly improved metrics compared to no overparame-
terization.

Unmatched Latent Variables Are Discarded or Dupli-
cates: When the full ground truth is recovered in an over-
parameterized setting, the unmatched latent variables usu-
ally fall into two categories: discardable or duplicates, as
described in Section 2. We next test this observation sys-
tematically.

We applied the filtering step to all experiments reported
in Figure 2 and focused on the runs where the algorithm
recovered the full ground truth. In nearly all of these runs,
the filtering step keeps exactly 8 latent variables that match
the ground truth latent variables. Exceptions are 255 runs
out of a total of 6929 runs (i.e. 3.68%); in these exception
cases, the filtering step tends to keep more latent variables,
out of which 8 match the ground truth, and the others are
duplicates with higher failure probabilities (but nonetheless
lower than the threshold of 0.80). Note that the solutions
containing duplicates are not in general equivalent to the
ground truth solutions in terms of likelihood: we give an
illustrative example in Appendix (H).

Batch Size Does Not Change the Effect: We also test the
algorithm using batch size 1000 instead of 20. Although the
performance decreases – as may be expected given folklore
wisdom that stochasticity is helpful in avoiding local minima
– overparameterization remains beneficial across all metrics.
This shows that the effect of overparameterization is not
tied to the stochasticity conferred by a small batch size. For
example, on the IMG data set, we recover on average 5.91,
7.17, and 7.32 ground truth latent variables for learning
with 8, 16, and 32 latent variables, respectively. See the
Appendix (E, Table 2) for detailed results.

Variational Distribution Does Not Change the Effect:
To test the effect of the choice of variational distribution,
on all data sets, we additionally test the algorithm using a
per-sample mean-field variational posterior instead of the
logistic regression recognition network. The variational pos-
terior models the latent variables as independent Bernoulli.
In each epoch, for each sample, the variational posterior is
updated from scratch until convergence using coordinate
ascent, and then a gradient update is taken w.r.t. the param-
eters of the generative model. Thus, this approximation is
more flexible than the recognition network: the Bernoulli pa-
rameters can be learned separately for each sample instead
of being outputs of a global logistic regression network.

Though the specific performance achieved on each data set
often differs significantly from the previous results, overpa-
rameterization still leads to clearly improved metrics on all
data sets. For example, on the IMG data set, we recover on
average 6.72, 7.52, and 7.23 ground truth latent variables
for learning with 8, 16, and 32 latent variables, respectively.
See the Appendix (E, Table 3).

Matching to Ground-truth Latent Variables Is Unsta-
ble: To understand the optimization dynamics better, we
inspect how early the recovered latent variables start to con-
verge toward the ground truth latent variables they match in
the end. If this convergence started very early, it could indi-
cate that each latent variable converges to the closest ground
truth latent variable – then, overparameterization would sim-
ply make it more likely that each ground truth latent variable
has a latent variable close to it at initialization.

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Figure 2: Performance of the noisy-OR network learning algorithm. The plots show statistics for 500 runs of the algorithm with random
initializations on different data sets with different number of latent variables. The x-axis shows the number of latent variables used for
learning. The y-axis on the top row shows the average number of ground truth latent variables recovered and in the bottom the percentage
of runs with full ground truth recovery. The 95% confidence intervals are shown in red bars.

The story is more complex. First, early on (especially within
the first epoch), there is significant conflict between the
latent variables, and it is difficult to predict which ground
truth latent variable each will converge to. We illustrate this
in Figure 3 for a run that recovers the full ground truth on
the IMG data set when learning with 16 latent variables. In
part (a) of the Figure, at regular intervals in the optimization
process, we matched the latent variable to the ground truth
latent variables and counted how many pairs are the same as
at the end of the optimization process. Especially within the
first epoch, the number of such pairs is small, suggesting the
latent variables are not “locked” to their final state. Part (b)
of the Figure pictorially depicts different stages in the first
epoch of the run with 16 latent variables, clearly showing
that in the beginning there are many latent variables that are
in “conflict” for the same ground truth latent variables.

Second, even in the later stages of the algorithm, it is often
the case that the contribution of one ground truth latent vari-
able is split between multiple recovered latent variables, or
that the contribution of multiple ground truth latent variables
is merged into one recovered latent variable. This is illus-
trated in part (c) (the same successful run depicted in Figure
3 (b)), which shows multiple later stages of the optimization
process which contain “conflict” between latent variables
(specifically, after 10 epochs, there are two latent variables
that capture disjoint parts of the diamond-shaped ground
truth latent variable; it takes another 20 epochs for one of
them to converge to the diamond shape by itself). See the
Appendix (F) for the evolution of the optimization process
across more intervals.

Of course, the observations above do not rule out the pos-
sibility that closeness at initialization between the latent
variables and the ground truth latent variables is an impor-
tant ingredient of the beneficial effect of overparameteri-
zation. However, we showed that any theoretical analysis

will have to take into consideration “conflicts” that appear
during learning.

Effects of Model Mismatch: The experiments on the
IMG-FLIP and IMG-UNIF data sets, which can be viewed
as noisy version of the IMG data set, allow the evaluation of
overparameterization in settings with model mismatch. We
show that, in both data sets, overparameterization allows the
algorithm to recover the underlying IMG latent variables
more accurately, while modeling the noise with extra latent
variables. In general, we think that in misspecified settings
the algorithm tends to learn a projection of the ground truth
model onto the specified noisy-OR model family, and that
overparameterization often allows more of the noise to be
“explained away” through latent variables.

For both data sets, the first bump in the recovery metrics
happens when we learn with 9 latent variables, which allows
8 latent variables to be used for the IMG data set, and the
extra latent variable to capture some of the noise. More
overparameterization increases the accuracy even further.
For example, on the IMG-FLIP data set, we recover on
average 4.40, 5.59, and 5.99 ground truth latent variables
when learning with 8, 9, and 10 latent variables, respectively.
See the Appendix (E, Table 4) for detailed results.

For IMG-FLIP, in successful runs, the algorithm tends to
learn a model with an extra latent variable with significant
non-zero prior probability that approximates the shape of the
noise (i.e. a latent variable with connections to every fourth
observed variable). For IMG-UNIF, the algorithm uses the
extra latent variables to capture the 0.05 prior probability
ground truth latent variables. The algorithm often merges
many of these latent variables. See the Appendix (G) for
examples of the latent variables recovered in successful
runs.

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

(a)

(b)

(c)

Figure 3: State of the optimization process on a successful run
of the noisy-OR network learning algorithm on the IMG data set
with 16 latent variables. (a) The blue line (with “x”) shows the
number of latent variables matched to the same ground truth latent
variable as at the end of the optimization. The red line (with “o”)
is the negative held-out log-likelihood. The graph is truncated at
5 epochs. (b) The shapes of the latent variables after 1/9 epochs,
2/9 epochs, and 3/9 epochs. (c) The shape of the latent variables
after 10 epochs, 20 epochs, and 30 epochs.

3.2. Sparse Coding

We find that the conclusions for sparse coding are quali-
tatively the same as for the noisy-OR models. Thus, for
reasons of space, we only describe them briefly; see Ap-
pendix (E, Table 5) for full details.

We again evaluate using synthetic data sets. A is sampled
in pairs of columns such that the angle between each pair
is a fixed γ. Specifically, we first generate 12 random unit
columns; then, for each of these columns, we generate an-
other column that is a random rotation at angle γ of the
original column. As a result, columns in different pairs have
with high probability an absolute value inner product of

1approximately √ (i.e., roughly orthogonal), whereas the
n

columns in the same pair have an inner product determined
by the angle γ. The smaller the angle γ, the more difficult
it is to learn the ground truth, because it is more difficult to
distinguish columns in the same pair. We construct two data
sets, the first with γ = 5° and the second with γ = 10°.

We experimented with learning using a matrix with 24
columns (the true number) and with 48 columns (overparam-
eterized). To measure how many ground truth columns are
recovered, we perform minimum cost bipartite matching be-
tween the recovered columns and the ground truth columns.

5000 samples 50000 samples
|N | |P| NLL F1 NLL F1

10 10 6.330 − 6.330 −

10 10 6.747 58.1 6.647 69.4
20 20 6.660 62.1 6.582 76.5
30 30 6.658 64.4 6.581 74.0
40 40 6.655 62.0 6.576 72.3

Table 1: Results from the neural PCFG experiments, where both
the training set size and the number of nonterminal/preterminal
symbols are varied. The data-generating PCFG is shown at the
top, while the learned PCFGs are shown at the bottom. F1 score
is calculated by comparing the MAP parse trees from the learned
PCFG against the MAP parse trees from the data-generating PCFG,
ignoring the tree labels. For reference, a random tree baseline
obtains an unlabeled F1 score of 30.3.

As cost, we use the l2 distance between the columns and
consider correct all matches with cost below 0.002. We mea-
sure the error between the recovered matrix and the ground
truth matrix as the sum of costs in the bipartite matching
result (including costs larger than the threshold).

As in the case of noisy-OR networks, overparameterization
consistently improves the number of ground truth columns
recovered, the number of runs with full ground truth re-
covery, and the error. For example, for γ = 10°, learning
with 24 columns gives on average 19.77 recovered columns,
17.2% full recoveries, and 2.28 error, while learning with
48 columns gives 23.84 recovered columns, 88.4% full re-
coveries, and 0.04 average error.

3.3. Neural PCFG

In our final experiment we follow the semi-synthetic ap-
proach and first learn a neural PCFG with 10 nontermi-
nals and 10 preterminals (i.e. |N | = |P| = 10) on the
Penn Treebank (Marcus et al., 1993). We set this as our
data-generating distribution. We subsequently learn PCFGs
on sequences generated from the data-generating PCFG
while varying the number of nonterminals (N) and preter-
minals (P). We train on 5000/50000 samples from the
data-generating PCFG and test on 1000 held-out samples.

The results are shown in Table 1. Consistent with the previ-
ous sections, we find that overparameterization in the latent
space improves both held-out NLL and ground-truth latent
variable recovery (as measured by the unlabeled F1 score
between predicted vs. ground-truth parse trees). We also
observe that as with noisy-OR-networks, extreme overpa-
rameterization only has a minor impact on latent variable
recovery.

4. Related Work
On the empirical side, a few previous papers have consid-
ered overparameterized models for unsupervised learning

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

and evaluated using synthetic distributions where assessing
ground truth recovery is possible. Šingliar & Hauskrecht
(2006) and Dikmen & Févotte (2011) observe that, in over-
parameterized settings, the unnecessary latent variables are
discarded and that the log-likelihood does not decrease.
However, they do not observe any beneficial effects. In
the former case, this is likely because their variational ap-
proximation is too weak; in the latter case, it is because the
ground truth is already recovered without overparameteri-
zation. Hughes et al. (2015) show that larger levels of over-
parameterization can lead to better held-out log-likelihood
than lower levels of overparameterization for some learning
algorithms. Separately, they show that some of their over-
parameterized learning algorithms recover the ground truth;
however, they do not investigate how this ability varies as a
function of the amount of overparameterization.

On the theoretical side, to our knowledge, the earliest paper
that points out a (simple) benefit of overparameterization
is Dasgupta & Schulman (2007) in the context of recov-
ering the means of k well-separated spherical Gaussians
given samples from the mixture. They point out that using
O(k ln k) input points as "guesses" (i.e. initializations) for
the means allows us to guarantee, by the coupon collector
phenomenon, that we include at least one point from each
component in the mixture – which would not be so if we only
used k. A filtering step subsequently allows them to recover
the k components. We could reasonably conjecture that the
benefits in our setting are due to a similar reason: overpa-
rameterization could guarantee at least one trained latent
variable close to each ground truth latent variable. However,
simple high-dimensional concentration of measure easily
implies that the probability of having a reasonably highly-
correlated initialization (e.g. in terms of inner product) is an
exponentially low probability event. Moreover, the results
in Section 3.1 demonstrate a large amount of switching in
terms of which trained variable is closest to each ground
truth variable. We believe new theoretical arguments are
needed.

More recently, Li et al. (2018) explored matrix completion
and Xu et al. (2018) mixtures of two Gaussians. In Li et al.
(2018), the authors consider fitting a full-rank matrix to the
partially observed matrix, yet prove gradient descent finds
the correct, low-rank matrix. This setting is substantially
simpler than ours: the authors can leverage linearity in
the analysis (in a suitable sense, matrix completion can
be viewed as a noisy version of matrix factorization, for
which gradient descent has a relatively simple behavior).
Noisy-OR has substantive nonlinearities (in fact, this makes
analyzing even non-gradient descent algorithms involved
(Arora et al., 2017)), and sparse coding is complicated by
sparsity in the latent variables.

In Xu et al. (2018), the authors prove that when fitting a

symmetric, equal-weight, two-component mixture, treat-
ing the weights as variables helps EM avoid local minima.
(This flies in contrast to the intuition that knowing that the
weights are equal, one should incorporate this information
directly into the algorithm.) This setting is also much sim-
pler than ours: their analysis does not even generalize to
non-symmetric mixtures and relies on the fact that the up-
dates have a simple closed-form.

5. Discussion
The goal of this work was to exhibit the first controlled
and thorough study of the benefits of overparameterization
in unsupervised learning settings, more concretely noisy-
OR networks, sparse coding, and probabilistic context-free
grammars. The results show that overparameterization is
beneficial and impervious to a variety of changes in the
settings of the learning algorithm. We believe that our em-
pirical study provides strong motivation for a program of
theoretical research to understand the limits of when and
how gradient-based optimization of the likelihood (or its
approximations) can succeed in parameter recovery for un-
supervised learning of latent variable models.

We note that overparameterization is a common strategy in
practice – though it’s usually treated as a recipe to develop
more fine-grained latent variables (e.g., more specific topics
in a topic model). In our paper, in contrast, we precisely
document the extent to which it can aid optimization and
enable recovering the ground-truth model.

We also note that our filtering step, while appealingly simple,
will likely be insufficient in more complicated scenarios –
e.g. when the activation priors have a more heavy-tailed
distribution. In such settings, more complicated variable
selection procedures would have to be devised, tailored to
the distribution of the priors.

As demonstrated in Section 3.1, the choice of variational
distribution has impact on the performance which cannot be
offset by more overparameterization. In fact, when using the
weaker variational approximation in Šingliar & Hauskrecht
(2006) (which introduced some of the datasets we use), we
were not able to recover all sources, regardless of the level
of overparameterization. This delicate interplay between
the power of the variational family and the level of overpa-
rameterization demands more study.

Inextricably linked to our study is precise understanding of
the effects of architecture – especially so with the deluge of
different varieties of (deep) generative models. Our neural
PCFG experiments demonstrate the phenomenon in one
instance of a deep generative model. We leave the task of
designing controlled experiments in more complex settings
for future work.

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Finally, the work of Zhang et al. (2016) on overparameteri-
zation in supervised settings considered a data-poor regime:
where the number of parameters in the neural networks
is comparable or larger than the training set. We did not
explore such extreme levels of overparameterization.

REFERENCES

Allen-Zhu, Z. and Li, Y. Can sgd learn recurrent neural
networks with provable generalization? arXiv preprint
arXiv:1902.01028, 2019.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. arXiv preprint arXiv:1811.04918, 2018.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Tel-
garsky, M. Tensor decompositions for learning latent
variable models. The Journal of Machine Learning Re-
search, 15(1):2773–2832, 2014.

Arora, S., Ge, R., Ma, T., and Risteski, A. Provable learning
of noisy-or networks. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1057–1066. ACM, 2017.

Dasgupta, S. and Schulman, L. A probabilistic analysis of
em for mixtures of separated, spherical gaussians. Journal
of Machine Learning Research, 8(Feb):203–226, 2007.

Dikmen, O. and Févotte, C. Nonnegative dictionary learn-
ing in the exponential noise model for adaptive music
signal representation. In Advances in Neural Information
Processing Systems, pp. 2267–2275, 2011.

Halpern, Y. and Sontag, D. Unsupervised learning of noisy-
or bayesian networks. arXiv preprint arXiv:1309.6834,
2013.

Hughes, M., Kim, D. I., and Sudderth, E. Reliable and
scalable variational inference for the hierarchical dirichlet
process. In Artificial Intelligence and Statistics, pp. 370–
378, 2015.

Kim, Y., Dyer, C., and Rush, A. M. Compound Probabilistic
Context-Free Grammars for Grammar Induction. In ACL,
2019.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In Proceedings of ICLR, 2014.

Klein, D. and Manning, C. A Generative Constituent-
Context Model for Improved Grammar Induction. In
Proceedings of ACL, 2002.

Li, Y., Liang, Y., and Risteski, A. Recovery guarantee of
non-negative matrix factorization via alternating updates.
In Advances in neural information processing systems,
pp. 4987–4995, 2016.

Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in
over-parameterized matrix sensing and neural networks
with quadratic activations. In Conference On Learning
Theory, pp. 2–47, 2018.

Lichman, M. et al. Uci machine learning repository, 2013.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics, 19:313–330, 1993.

Mnih, A. and Gregor, K. Neural variational inference and
learning in belief networks. In International Conference
on Machine Learning, pp. 1791–1799, 2014.

Pearl, J. Probabilistic reasoning in intelligent systems: Net-
works of plausible inference. 1988.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
Backpropagation and Approximate Inference in Deep
Generative Models. In Proceedings of ICML, 2014.

Šingliar, T. and Hauskrecht, M. Noisy-or component analy-
sis and its application to link analysis. Journal of Machine
Learning Research, 7(Oct):2189–2213, 2006.

Wainwright, M. J., Jordan, M. I., et al. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning, 1(1–2):1–305,
2008.

Xu, J., Hsu, D. J., and Maleki, A. Benefits of over-
parameterization with em. In Advances in Neural In-
formation Processing Systems, pp. 10685–10695, 2018.

Yeung, S., Kannan, A., Dauphin, Y., and Fei-Fei, L. Tack-
ling over-pruning in variational autoencoders. arXiv
preprint arXiv:1706.03643, 2017.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

	Introduction
	Learning Overparameterized Latent Variable Models
	Empirical Study
	Noisy-OR Networks
	Sparse Coding
	Neural PCFG

	Related Work
	Discussion

