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Abstract

This paper investigates the impact of pre-existing
offline data on online learning, in the context of
dynamic pricing. We study a single-product dy-
namic pricing problem over a selling horizon of
T periods. The demand in each period is deter-
mined by the price of the product according to
a linear demand model with unknown parame-
ters. We assume that the seller already has some
pre-existing offline data before the start of the sell-
ing horizon. The seller wants to utilize both the
pre-existing offline data and the sequential online
data to minimize the regret of the online learning
process. We characterize the joint effect of the
size, location and dispersion of the offline data on
the optimal regret of the online learning process.
Our results reveal surprising transformations of
the optimal regret rate with respect to the size of
the offline data, which we refer to as phase tran-
sitions. In addition, our results demonstrate that
the location and dispersion of the offline data also
have an intrinsic effect on the optimal regret, and
we quantify this effect via the inverse-square law.

1. Introduction

Classical statistical learning theory distinguishes between
offline and online learning. Offline learning deals with a
setting where the entire training data set is directly available
before the algorithm is applied, while online learning deals
with a setting where data become available in a sequential
manner that may depend on the actions taken by the algo-
rithm. While offline learning assumes access to offline data
(but not online data) and online learning assumes access to
online data (but not offline data), in reality, a broad class of
real-world problems incorporate both aspects: there is an
offline historical data set (based on historical actions) at the
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time that the learner starts an online learning process.

Currently, there is no standard framework for the above type
of learning problems, as classical offline learning theory
and online learning theory have different settings and goals.
While establishing a framework that bridges all aspects of
offline and online learning is generally a very complicated
task, in this paper, we propose a framework that bridges the
gap between offline and online learning in a specific problem
setting, which, however, already captures the essence of
many dynamic pricing problems that sellers face in practice.

The problem: online pricing with offline data. We study
the “Online Pricing with Offline Data” (OPOD) problem as
follows. Consider a seller offering a single product with
an infinite amount of inventory over a selling horizon of
T periods. Customer demand is determined by the price
charged by the seller according to an underlying linear de-
mand model. The seller knows neither the true demand
parameters nor the distribution of random noise. However,
we assume that before the selling horizon starts, she has
used some historical prices in the past and collected market
sales data. In other words, the seller has a pre-existing of-
fline data set before the start of the online learning process.
We assume that the pre-existing offline data set contains
n samples: {(p1, ﬁl), ooy (Pns Dn)}, where each sample
(Dis lA)i) is an input-output pair consisting of a historical
price p; and an associated demand observation D; gener-
ated from the same linear demand model (z+ = 1,...,n).
The seller’s objective is to design a learning algorithm that
utilizes both the offline data and the data collected on-the-
fly to learn the unknown demand model while concurrently
maximizing total revenue over 1" periods.

Following the convention of online learning, we measure
the performance of an algorithm for the aforementioned
OPOD problem by regret, which is the difference between
the optimal expected revenue and the total expected revenue
generated by the algorithm over 7" periods in the online
stage. A notable difference between the regret defined here
and the classical one is that the regret of the OPOD problem
depends on the pre-existing offline data. We refer to the
best achievable regret (which depends on offline data) as the
optimal regret of the OPOD problem.

At a high level, we seek to answer the following question:
How do offline data affect the statistical complexity of on-



Online Pricing with Offline Data: Phase Transition and Inverse Square Law

line learning? We investigate this fundamental question in
the OPOD framework, where the statistical complexity is
measured by the optimal regret of the problem.

Main contributions. We identify that the size, location
and dispersion of the offline data have an intrinsic effect
on the optimal regret, where the size is measured by the
number of offline samples n, the location is measured by
the distance between the average historical price and the
true optimal price J, and the dispersion is measured by the
the standard deviation of the historical prices ¢. Note that
0 is an instance-dependent quantity that uniquely appears
when offline learning and online learning are combined, as
it quantifies the relationship between the offline decisions
and the optimal online decision. We prove that the optimal
regret is ©(v/T A m), except for a corner case

of 62 < # < ﬁ where the optimal regret becomes

©(T6?). We summarize the order of the optimal regret
under different combinations of (n, o, d) in Table 1, where
the formal definitions of “©(-)”, “<”, “>" are provided
at the end of this section. We highlight that all the regret
bounds derived in this paper are non-asymptotic finite-time
bounds that hold uniformly over 7. We emphasize the
following technical highlights.

(1) We prove a instance-dependent lower bound on the op-
timal regret by reducing the OPOD problem to a hybrid
of estimation and hypothesis testing problems. Our lower
bound is stronger and harder to prove than the traditional
“minimax” lower bound. See §4.

(2) We propose a parameter-free and anytime algorithm
that achieves the optimal regret without knowing ¢ and 7T,
based on the Optimism in the Face of Uncertainty (OFU)
principle. While the OFU principle is well-studied in the
linear bandit literature, previous analysis fails to provide
an instance-dependent upper bound in our setting as our
revenue function is quadratic and our optimal price is an
interior point. We overcome this methodological challenge
by conducting a period-by-period trajectory analysis. We
present novel inductive arguments to show that under a good
initialization, the random trajectory of the distance between
the optimistic price and the average historical price admits
a high-probability global lower bound. See §5.

(3) Combining (1) and (2) we obtain a tight instance-
dependent bound on the optimal regret. To the best of our
knowledge, this is the first “beyond the worst-case” instance-
dependent regret bound obtained in (i) the dynamic learning
and pricing literature, and (ii) a continuous-armed bandit
problem where the optimal action may not be an extremal
point (in contrast to the extremal-point requirement in Dani
et al. 2008 and Abbasi-Yadkori et al. 2011).

Our tight characterization of the optimal regret leads to im-
portant practical implications on the value of offline data.

Our results reveal significant transitions between the regret-
decaying patterns when the size of the offline data changes,
which we refer to as phase transitions. In addition, our
results demonstrate that the optimal regret is inversely pro-
portional to the square of the quantities 6 and o, which is
referred to as the inverse-square law. See §6.

We also conduct computational experiments to validate our
theoretical results. See §7.

Table 1. Optimal regret as a function of (n, o, §)
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Notations and remarks. Throughout the paper, all the vec-
tors are column vectors unless otherwise specified. For
each m € N, we use [m] to denote the set {1,2,...,m}.
For any « = (z1,...,2,) € R, we use || - || to denote
the [2 norm, i.e., |[z]| = (31, 22)2. Weuse a A b to
denote min{a, b} and a V b to denote max{a, b}. The nota-
tion f(T) = O(g(T)) represents that there exists a known
constant C' independent of the problem instance such that
f(T) < Cg(T) forall T > 0. Similarly, €2(-) and O(-) are
used by hiding constant factors, and O(-), €(-) and O(-)
are used by hiding constant factors and logarithmic factors.
The notations A < B and A > B represent A = O(B) and
A = Q(B) respectively.

Finally, we remark that the full version of this pa-
per (containing additional theoretical results, computa-
tional experiments, and missing proofs) is available at
https://arxiv.org/abs/1910.08693.

2. Related Literature

Dynamic pricing with online learning. Dynamic pricing
with online learning has generated great interest in recent
years, see den Boer (2015) for a comprehensive survey.
Among all the models studied in this area, the problem of
“dynamic pricing with an unknown linear demand model”
(DP-ULD) is possibly the most classical and basic one. In
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this problem, the demand is determined by the price accord-
ing to a linear demand model with unknown parameters
and random noise. The DP-ULD problem is first analyzed
in Broder & Rusmevichientong (2012), den Boer & Zwart
(2013), Keskin & Zeevi (2014), with ©(v/T) minimax re-
gret identified and various algorithms proposed. It then
becomes a “building block” for a vast dynamic pricing lit-
erature studying more complicated generalizations, e.g.,
den Boer (2014), Besbes & Zeevi (2015), Keskin & Zeevi
(2016), Qiang & Bayati (2016), den Boer & Keskin (2017),
Nambiar et al. (2019), Ban & Keskin (2019), Bastani et al.
(2019). All of the existing papers focus on the pure on-
line learning setting. In this paper, we take the classical
DP-ULD problem as our baseline, but significantly extend
it by incorporating offline data into online pricing.

The paper by Keskin & Zeevi (2014) is the most relevant
to ours. Starting from the classical DP—~ULD model, they
study whether knowing the frue expected demand under a
single price in advance helps reduce the regret. Depending
on whether the seller has this knowledge or not, they prove
that the best achievable regret is ©(log T') and ©(+/T) re-
spectively. Compared with their work, the OPOD problem
studied in our paper seems more relevant to practice, and is
more general in theory. Practically, while firms will never
know the true expected demand under a given price exactly
(which requires infinitely many demand observations), they
usually have some pre-existing historical data (which are
finitely many) before the online learning starts. Theoreti-
cally, the results in Keskin & Zeevi (2014) can be viewed
as a special case of our results when ¢ = 0,n = 0 or
o = 0,n = oo. In addition, for the case of 0 = 0,n = oo,
they make a strong assumption that § is lower bounded by
a known constant, and use this constant in their algorithm.
Since 4 is completely unknown and can be arbitrarily small
in reality (and in our problem), their algorithms and analysis
cannot be extended to our setting.

Multi-armed bandits. Our paper is also related to the liter-
ature of multi-armed bandits (MAB). In most of the literature
in MAB, the decision maker is assumed to start with no data
available before she sequentially pulls the arms. By contrast,
a few papers study bandit problems in settings where the
algorithms may utilize different types of historical informa-
tion, see, e.g., Shivaswamy & Joachims (2012), Bouneffouf
et al. (2019), Hsu et al. (2019), Gur & Momeni (2019), Ye
et al. (2020), of which Shivaswamy & Joachims (2012) is
the most relevant to this paper.

Shivaswamy & Joachims (2012) study the MAB problem
with offline observations of rewards collected before the
online learning algorithm starts. While they share similar
spirits with us in incorporating offline data and quantifying
how they affect the regret, there are significant differences
between the two papers in model settings, main results and

analytical techniques. First, Shivaswamy & Joachims (2012)
study the MAB problem with discrete and finitely many arms.
All their results rely on the finite-armed property and cannot
be extended to our setting where there are continuous and
infinitely many prices. Second, under the so-called well-
separated condition, Shivaswamy & Joachims (2012) prove
some regret upper bounds that change from O(logT) to
O(1) when the amount of offline observations of rewards
for each arm exceeds €2(log T'). Unfortunately, the authors
provide no regret lower bound, and hence no tight char-
acterization on the value of offline data. In comparison,
we characterize the optimal regret via matching upper and
lower bounds, and figure out surprising phase transitions as
well as the elegant inverse square law. Third, Shivaswamy &
Joachims (2012) use a conventional approach in bandit liter-
ature to upper-bound the regret via the reward gap between
the best and second best actions, while we are bounding the
regret via §, o and n. As a result, we present different regret
analysis that may be of independent interest.

3. Model Formulation

Basic model. Consider a firm selling a single product with
infinite amount of inventory over a selling horizon of T'
periods. In each period t € [T] = {1,...,T}, the seller
chooses a price p; from a given interval [I, u] C [0, c0) to
offer its customers, and then observes the random demand
D, for that period ¢. In this paper, we focus on the canonical
linear demand model: the demand in each period is a linear
function of the price plus some random noise. Specifically,
foreacht € [T1,

Dt:a*+5*pt+6t7 (])

where a* and 8* are two unknown demand parame-
ters in the known interval [aupin, @max] € (0,00) and
[Bmins Bmax] € (—00,0) respectively, and {¢; : t > 1}
are i.i.d. random variables with zero mean and the unknown
generic distribution ¢ ~ D. We assume that ¢ is an R2-
sub-Gaussian random variable, i.e., there exists a constant
R > 0 such that E[e®™] < e“F for any z € R, and
use £(R) to denote the class of all R?-sub-Gaussian ran-
dom variables. To simplify notation, let 8* = (a*, %),
of = [amin7 amax] X [5min7 ﬁmax]s and 0 = (Oé, B) be any
vector in the set O,

Given the demand parameter 6, the seller’s single-period
expected revenue is defined as r(p; ) = p(a + Bp), Vp €
[, u] Let ¢(0) be the price that maximizes the expected
revenue 7(p;0) over the interval [l,u], ie., ¥(0) =
argmax{r(p;0) : p € [l,u]}. In particular, we also use p*
to denote the underlying true optimal price, i.e., p* = 1) (6*).
Let *(6) be the optimal expected revenue under the demand

parameter 6, i.e., r*(0) = ¥(0)(a + B (0)).

Without loss of generality, we assume that for any § € ©F,
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the optimal price under @ is an interior point of the feasible
set [, u], and 1(0) = —55. This is because for any 6 € of,
=55 € =53, _Oé“é“ ], and we can choose [ and u such
that the range of —55 belongs to [/, u], which guarantees

that —7 is an 1nter10r point of the interval [, u].

Offline data. In reality, the seller does not know the exact
values of o* and 3%, but has access to some pre-existing
offline data before the start of the online learning process.
We assume that the offline data set contains n independent
samples: {(p1, D1), .-, (Pn, Dn)}, where py, ..., py, are
n fixed prices, and for each ¢ € [n], D, is a demand sample
under the historical price p;, drawn independently according
to the underlying linear demand model (1). The seller can
use the offline data as well as the data generated on-the-
fly to estimate the unknown parameters and maximize the
revenue. We refer to this problem as the online pricing with
offline data (OPOD) problem.

Let p1., be the average historical price, i.e., p1., =
% 2?21 Pi, and o be the standard deviation of the historical

prices, i.e., 0 = \/% > i (B
be |p1., — p*|. Intuitively, the quantity § measures how far

the offline data set is away from the true (unknown) optimal
price p*, and is referred to as the generalized distance.

— P1:n)?. In addition, let §

Pricing policies and performance metrics. For each
t > 0, let H; be the vector of information available at
the end of period ¢ (or at the beginning of period ¢ + 1),
le Ht = (plaDh"'7pn7Dn7p17D17"'7pt:Dt) A
pricing policy is defined as a sequence of functions 7 =
(71,72, .. .), where 7, : R2"+26=2 5 [] 4] is a measurable
function which maps the information vector H;_; to a feasi-
ble price. Therefore, the policy 7 generates a price sequence
(p1,p2, .. .) with each p; adapted to H;_1.

Let II be the set of all policies. For any policy 7 € II,
let p; (T') be the T-period expected revenue, i.e., pj (T') =
Ej [Zt 1 7(pe; 0)], where EF[] is the expectation induced
by the policy = when the demand parameter is 6. The regret
of the policy 7 is defined as

Ry (T) =Tr*(0) — p5 (T),
which is the gap between the expected revenues generated

by the clairvoyant policy that knows the exact value of ¢
and the pricing policy 7.

Optimal regret. As shown in the existing literature, even
when there is no offline data available, many simple and
pure-online policies, e.g., the explore-then-commit pol-
icy in Broder & Rusmevichientong (2012) and the semi-
myopic policies in Keskin & Zeevi (2014), already guaran-
tee O(\/T) regret for all § € OF. Intuitively, in the presence
of the offline data, the performance of a “reasonable” pric-
ing policy should be as good as, if not better than the regret

when there were no offline data available, and hence, for
any demand parameter ¢ € Of, the regret of such pricing
policies should not exceed ©(v/T'). Therefore, in this paper,
we restrict our attention to such “reasonable” policies, and
more formally, we define the class of admissible policies as:

me — {77 ell: Vo e 6f, RI(T) < KO\/TlogT},

where K > 0 is an arbitrary constant. For any admissible
policy 7 € II°, the instance-dependent regret is defined as

R™(T,n,0,0) = sup
DEE(R);
0€0T:|9(0)—p1.pn |E[(1—€)8,(146)3]

Ry (T),

where £ € (0,1) is an arbitrary constant. In other words,
we consider the environment class as the set of all possi-
ble problem instances such that the distance between the
associated optimal price and the average historical price has
the same order as the generalized distance §.! The optimal
(instance-dependent) regret is defined as

R*(T,n,0,6) = iné R™(T,n,o,0). 2)
mell®

We use the optimal regret to measure the statistical com-
plexity of the OPOD problem. We refer the reader to the full
version of this paper for more discussions on the definition
of the optimal regret.

4. Lower Bound

In this section, we establish a lower bound on the optimal
regret.

Theorem 1. Suppose #@;me > %, then for any admis-

sible policym ¢ I°, T > 2,n > 1,6 € [0,u — ], and
o€ 0,u—1

R‘“’(T7n’g,5)
2 76 < 1L, .
_ [ T, if0? S ik S L
Q(l(\){;f A W), Otherwzse.

Theorem 1 distinguishes the lower bound on the optimal
regret under two cases. We call the case §2 < mlﬂ <4 77 @
the “corner case”, and its complement as the “regular case”
We remark that the corner case rarely happens because it
requires that the generalized distance ¢ is very small and the
dispersion no? is very large, such that there is no need of

online learning, see the discussion in §5.2.

When all the historical prices are identical, i.e., a =0,
we can actually prove an additional lower bound Q(* g ).

ISince the objective of this paper is to study the impact of the
order of the generalized distance § on the complexity of the online
learning process, allowing |1)(0) — P1.x | to perturb around ¢ within
a constant factor does not affect this goal.
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Therefore, whenn = 0, orc = 0, n = oo and § is a
constant, our results recover both Theorem 1 and Theorem
3 in Keskin & Zeevi (2014).

We next outline the key idea in the proof of Theorem 1
(the detailed proof can be found in the full version of this
paper). Our 7proof consists of two steps. First, by relating the
regretto Y, EZ[(py —1)(6))?], we consider an “auxiliary’
estimation problem for the optimal price (), and appeal
to the multivariate van Trees inequality, which is a Bayesian
version of the Cramér-Rao bound. By choosing a suitable
instance-dependent prior distribution of §, and decomposing
the Fisher information into a function of the regret, we
prove the regret lower bound Q(v/T A m)

’

for any pricing policy. When 62 > T2, or 62 < T2
and no? > /T, Theorem 1 is implied from this bound.
Second, for the remaining case when 62 < T2 < L by
defining an instance-dependent hypothesis testing problem,

we use the KL divergence arguments to prove the regret
VT

log T

lower bound ( ) for any admissible policy 7 € T1°.

Although the van Trees inequality and KL divergence ar-
guments are also used in Keskin & Zeevi (2014) and
Broder & Rusmevichientong (2012) respectively for a simi-
lar DP-ULD problem, our result and analysis are different
from theirs in several aspects. First, compared with Keskin
& Zeevi (2014), we need to carefully choose an instance-
dependent prior distribution of 6 that depends on the gener-
alized distance 9, such that its Fisher information is in the
order of ©(§72). By contrast, in Keskin & Zeevi (2014),
it is only required to define an instance-independent prior
with constant Fisher information. In addition, in the van
Trees inequality, we also need to decompose the quadratic
form of the Fisher information matrix to incorporate the
effects of the offline data into the regret bound, while it is
unnecessary in Keskin & Zeevi (2014) since they do not
assume the existence of offline data. Second, compared with
Broder & Rusmevichientong (2012), our result is stronger
in the sense that even with the help of the offline data, when
2 <7172 < —L., the regret is still lower bounded by

(~2(\/T) for any admissible policy. Moreover, since we need
to show an instance-dependent lower bound, we have to
define an instance-dependent hypothesis set, decompose the
KL divergence using the offline data, and also leverage the
property of m € II°.

5. Algorithms and Upper Bounds

In §5.1, we first propose the “Online and Offline Optimism
in the Face of Uncertainty” (O3FU) algorithm, and prove
that it matches the lower bound on regret for the regular case.
In §5.2, we present the Tweaked O3FU (T-O3FU) algorithm,
which is built upon the O3FU algorithm and matches the
lower bound for both the regular and corner cases.

5.1. O3FU Algorithm: Optimal in the Regular Case

The first algorithm O3FU is constructed based on the prin-
ciple of “Optimism in the Face of Uncertainty”, and the
pseudo-code is given in the following Algorithm 1. We
define

wy :R\/Z log (l(l + (14 u)(t + n)//\))

€t
+ )‘(a?nax + ﬁ?nin)’ (3)

where the constants €, and A are algorithm input.

Algorithm 1 O3FU Algorithm

Input: offline data {(p1, D1), ..., (pn, Dy)}. support of
demand parameters OF, support of feasible price [/, u],
regularization parameter A = 1 + u?, {w, : t > 1}
defined in (3) with ¢, = % A -15.
Initialization: V,, = A\ + ) " [1 p;]T[1 pil, Yo =
Sy Dilt pi] T
fort =1toT do
ift =1,0ort >1and C;_1 NOF = () then
Let p, = I{p1.,, > “TH} + ul{p1., < “TH}
end if
ift>1andC; 1N Of # () then
Let (pt, 0:) = argmax,e (1) 0cc,_,net P(a + Bp).
end if
Charge the price p; and observe the demand Dy;
Update Vz,nA: V;E—l,n+[1 pt]T[l pt]’ Yrt,n = th—l,n“i’
D1 p]T, 0, = V;;lYt,n;
Update C; = {0 € R? : [|0 — 0|y, , < wy}.
end for

As a result of the OFU principle, the O3FU algo-
rithm achieves the balance between exploration and
exploitation by maximizing the “optimistic revenue”
maxgec, ,not P(a + Bp), which can be thought of as the
sum of the estimated revenue and a “bonus” of exploration.
Th O3FU algorithm is parameter-free in the sense that it
does not need to use any information about the unknown
0. It is also an anytime algorithm since it does not need to
know the length of the selling horizon T'.

The following theorem provides a per-instance upper bound
on the regret of the O3FU algorithm.
Theorem 2. Let w be the O3FU algorithm. Then for any
T>1,n>102>0,pr., € [l,u], and 0 € OfF,

T(logT)? )
(A T)(Prin — ¥(0))? +no>”

R3(T) = O(VT(logT) A

Compared with Theorem 1, the upper bound in Theorem 2
matches with the lower bound up to a logarithmic factor in
the regular case. Therefore, in the regular case, our O3FU
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algorithm is optimal, and the optimal regret in this case is
R*(Tanv(sv 0) = @(\/T/\ (rz/\]’)é%)

To show Theorem 2, we need to prove both an instance-
independent upper bound O(v/TlogT) and an instance-

dependent upper bound O(%). The first bound
can be easily proved by treating our problem as a linear
bandit and applying arguments in the regret analysis therein,
e.g., Abbasi-Yadkori et al. (2011). To prove the second

bound, our analysis relies on the following crucial lemma.
Lemma 1. SMppOS@ o < |w(9) _plzn‘: |¢(9) - pl:n| >
max{ Z(Q%g‘;%“) T;/f/';T NCIT~Y4Y, and 6 € C, for
each t € [T, then two sequences of events {Uy1 : t > 1}
and {U; 5 : t > 2} also hold, where

V2

b 0 = Bual .

2
wt_lcg

U1 = {|pt — Prn| = min {1 —

=110 -6, <
Ura = {10 = 0P < s

where C1, Cy and C5 are constants.

Lemma 1 indicates that under the O3FU algorithm,
the algorithm’s pricing sequence is uniformly bounded
away from the average historical price p;., proportional
to the unknown quantity |¢)(6) — p1.,| (as implied by
{U;1}L_)), and will gradually approach ¢(6) in an [%-
rate of O( (n/\t)(w(eiofptm)una? ) (as implied by {U; 2 }7_,),
with high probability. This implies that the algorithm can
“automatically” explore to a suitable degree, to create an
efficient “collaboration” between the online prices and his-
torical prices, while concurrently approaching the unknown
optimal price. This property is nontrivial and cannot be im-
plied from the existing analysis of the OFU-type algorithms.
To prove this crucial lemma, we conduct a period-by-period
trajectory analysis of the random pricing sequence generated
by our algorithm. Specifically, we find that the occurrence
of Uy o relies on the joint occurrence of Uy 1,...,U;—11,
while the occurrence of U; 5 (combined with the specific
structure of the optimistic revenue curve) in turn leads to
the occurrence of Uy ;. We thus introduce novel induction-
based arguments to prove Lemma 1, see details in the full
version of this paper.

In the linear bandits, Abbasi-Yadkori et al. (2011) proved an
( (logA T) 2 )

instance-dependent upper bound O by assuming a
polytope action set, with A defined as the sub-optimality gap
between the rewards of the best and second best extremal
points. We emphasize that their analysis cannot be applied
to our setting. The property that guarantees the instance-
dependent bound in Abbasi-Yadkori et al. (2011) comes
from the fact that their algorithm only selects actions among
the extremal points of the action set, which only holds under
their assumptions. Our problem, however, has a quadratic

1)(@(0) = prn)? +no? )7

objective function, with the optimal price being an interior
point of the interval [l, u]. As a result, the sub-optimality
gap becomes zero, and standard arguments do not work.

5.2. T-O3FU Algorithm: Optimal in All Cases

While the O3FU algorithm is optimal (up to a logarithm
factor) in the regular case, it achieves O(%) regret in the

corner case, which is slightly looser than the (~2(T52) lower
bound in Theorem 1. To close this small gap, we first make
several observations on the corner case condition.

(i) When —L; < ﬁ and 6% < ﬁ, the offline data pro-
vides so much information such that there is no need of
exploration in the online stage. Indeed, the least-square
estimation error from the offline data is within O(-1;).
Thus, by simply charging the fixed myopic price calculated
based on the offline data in every online period, we achieve
O(%) regret. In fact, this rate of estimation error cannot
be improved in the online process by any admissible policy.
Therefore, if the algorithm knows that it is in the corner

case, then there is no need of exploration.

(ii) In the extreme case of §2 < m172’ if an algorithm

knows that it is in the corner case, then by simply charg-
ing the average historical price pi., in every online pe-
riod, it achieves O(T'62) regret for all instances such that
[t(0) — P1.n| = ©(0), which is even better than 5(;7)

(iii) However, since the algorithm does not know the value
of § and may not know the selling horizon 7" in advance,
it does not know whether it is in the corner case. If the
conditions in (i) do not hold, then the algorithm still needs
exploration and online learning; if the condition in (ii) does
not hold, then the algorithm still needs offline regression.

The above observations explain why the corner case is spe-
cial, and indicate that an all-case optimal algorithm has
to utilize the offline data to learn whether the corner case
happens through online decision making. Motivated by
these observations, we design the Tweaked O3FU (T-O3FU)
algorithm, whose pseudo-code is given in Algorithm 2.

Compared with the O3FU algorithm, the first major dif-
ference in the T-O3FU algorithm lies in the preliminary
step that tests whether the distance between the average
historical price py.,, and the interval {¢(0) : 0 € Co} is
smaller than a constant times the length of the interval
{¥(0) : 0 € Cy}. The goal of this step is to test whether
5?2 < % holds. Specifically, since p* lies in this confidence
interval {¢)(6) : 0 € Cy} with high probability, if p;., is
“close enough” to this confidence interval, then 62 < n}?
with high probability. The second major difference lies in
the “re-starting” step after the threshold period (|no?|)2.
The goal of this step is to decide whether no? < /T, with-
out knowing 7" in advance.
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Algorithm 2 T-O3FU Algorithm

Input: offline data {(p1, ﬁl), ooy (Pns ﬁn)}, support of
demand parameters O, support of feasible price [/, u],
regularization parameter A = 1 + u2, tuning parameter
K.

Initialization: Vo, = A + Y 7, [1 p:]T[L pil, Yo, =
Sy Dill 9], 0 = V5, Yo, Co = {0 € R? : [0 —
Oollvi,, < wo}-

.p min [9(0)—p1:m|
it = ecey— < K then

fort = 1to (|no?])? do
Charge the price p; = p1.p;
Observe demand realization D;.
if the algorithm hasn’t stopped then
Treat all the data available up to period (|no?|)?
as the offline data and run the O3FU Algorithm.
end if
end for
else
Run the O3FU Algorithm.
end if

The following theorem provides a regret upper bound for
the T-O3FU algorithm, see a proof in the full version of this

paper.

Theorem 3. Let m be the T-O3FU algorithm. Then for

any T > 1, n > 1, 0 > 0, p1.n € [l,u], and

0 € OF, under the regular case, the regret R;(T) =
T(log T)?

O((VTlog T)A (n/\T)(pl:(n —gw()e))2+na2 ), and under the cor-

ner case, R5(T) = O(T(p1.n, — ¥(0))?).

The T-O3FU algorithm is optimal for both the regular and
the corner cases: the upper bound in Theorem 3 matches the
lower bound in Theorem 1 up to a logarithmic factor. We
are thus able to completely characterize the optimal regret
in each case.

Corollary 1. The optimal regret for the OPOD problem is

R*(T,n,o,9)
_ @(\/T A m) , for the regular case;
(C] (T 52) , for the corner case.

6. Phase Transitions and Inverse-Square Law

The characterization of the optimal regret for the OPOD
problem in Corollary 1 leads to important implications.

First, the decaying patterns of the optimal regret are quite
different when the offline sample size n belongs to different
ranges. Consider a simple case when 6 = O(1) and 0 =
o(1), which happens when the average historical price is
well-separated from the optimal price, and the offline data

are not so dispersive. In this case, the optimal regret remains
at the level of ©(v/T) when the offline sample size n is
within O(v/T'), then decays according to (:)(TTL) when n is
between O(v/T) and O(T). After that, the optimal regret

remains at ©(log T') when n is between O(T') and O(Z%),

and finally decays according to (:)(%) In this example,
there are four ranges of the offline sample size, referred
to as the first, second, third and fourth phase respectively,
and the optimal regret exhibits different decaying patterns
in different phases. We refer to the significant transitions
between the regret-decaying patterns of different phases
as phase transitions. For the above example, the result
also demonstrates that changing the order of the offline
sample size within the first or third phase does not help to
reduce the optimal regret, while increasing the order of the
offline sample size in the second and fourth phases leads to a
considerably fast decay rate of the optimal regret. The above
phase transitions hold more generally when § = Q(T~ %)
and 0 = O(9), as depicted in Figure 1. Other values of ¢
and o lead to different phase transitions, see the full version
of this paper for detailed discussion.
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Figure 1. Phase transitions when § = Q(T’i) and o = O(9)

Second, Corollary 1 also characterizes the impacts of the lo-
cation and dispersion of the offline data on the optimal regret.
For the (more interesting) regular case, such impacts can
be stated in the following inverse-square law: the optimal
regret is inversely proportional to the generalized distance
¢ and standard deviation o of the offline data. Therefore,
the factors ¢ and o are intrinsic in the regret bound. The
dependency of the optimal regret on o is consistent with our
intuition. Indeed, as the historical prices become more dis-
persive, i.e., o increases, the seller gains more information
about the unknown demand parameters before she starts on-
line learning, and hence will incur smaller regret loss. The
dependency of the optimal regret on ¢ is more intriguing,
which actually suggests that the closer the historical prices
are to the optimal price, the worse the optimal regret will
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be. Seemingly counterintuitive, this is a consequence of the
exploration-exploitation tradeoff. Specifically, whenever
an algorithm tries to learn the true demand model, it has to
make substantial efforts on exploration by charging different
prices from the existing average historical price. Therefore,
when ¢ is very small, such a deviation will also lead to a
significant gap with the optimal price, leading to greater
revenue loss for the seller.

optimal regret R*(T, n, 0, 8)

RRE
~
.l
=2}
4

offline sample size n

Figure 2. Optimal regret when § = Q(T~ %) and o changes

It is also interesting to investigate the joint effect of ¢ and o
on the optimal regret. When § 2> T~ 1, there is an important
trichotomy on the behavior of the optimal regret, depending
on whether o is less than, equal to or greater than . This is
illustrated in Figure 2, where the green, red and blue curves
depict the above three cases respectively. If o = o(d) as
shown in the green curve, as discussed before, the optimal
regret exhibits four decaying patterns as n shifts between
different ranges. If o and § are of the same order, as shown
in the red curve, the optimal regret exhibits two decaying

patterns with changing n: when n is within O(g), the
optimal regret remains at the level of ©(v/T), and when
n exceeds Q(g), the optimal regret decays according to
(:)(%) Finally, if 6 = o(o) as shown in the blue curve, the
optimal regret exhibits two decaying patterns: it remains at
the level of ©(v/T) when 7 is within O(%L), and decays

according to (:)(%) when n exceeds Q(g) Therefore, as
o gradually increases, depending on its magnitude relative
to 4, the number of phases of the optimal regret changes
from four phases to two phases, and the entire patterns
of the phase transitions of the optimal regret also change

accordingly.

When the generalized distance § = O(T~ 1), Corollary 1
indicates that there are three phases of the optimal regret

as n changes. When n = O(T@)’ the optimal regret stays

at ©(v/T). When n is between @(g) and O(5753), the
optimal regret experiences a sudden drop from @(\/T) to

O(T6?). When n increases to © (5557 ), the optimal regret
o

corresponds to the corner case defined in §4. In this case, a
smaller § leads to a lower optimal regret, which is in con-
trast to the inverse-square law for the regular case. This
is because when the offline data are extremely dispersive,
and the average historical price happens to be very close to
the true optimal price, the policy that always charges p1.,
incurs small regret. In this case, there is no need for ex-
ploration and the exploration-exploitation tradeoff does not
exist. By contrast, the inverse-square law in the regular case
is a consequence of the exploration-exploitation tradeoff.

decays according to (:)(—2) In particular, the second phase

7. Numerical Experiments

We conduct a numerical study on a synthetic data set to test
the performance of our algorithm. Specifically, we com-
pare our O3FU algorithm with the modified constrained
iterated least squares (CILS) algorithm in Keskin & Zeevi
(2014), for both settings without and with offline data. We
also investigate the effects of the offline data on our al-
gorithm’s empirical regret. Our results demonstrate that
O3FU performs comparably with CILS when there is no
offline data, and significantly outperforms CILS when there
exist offline data. Moreover, O3FU is more stable than
CILS (i.e., the variance of the empirical regret of O3FU is
much smaller than CILS). We thus believe O3FU should
be preferable in many real-life scenarios. The numerical
results also provide empirical evidence for phase transitions
and the inverse-square law. All the details of the numerical
experiments can be found in the full version of this paper at
https://arxiv.org/abs/1910.08693.
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