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Notation

〈 • , • 〉 Euclidean inner product
‖ • ‖ Euclidean norm
‖ • ‖op Operator norm
‖ • ‖∞ Supremum norm
‖ • ‖F Frobenius norm

S⊥ Orthogonal complement of S

In n× n identity matrix
A > 0 A is strictly-positive definite
|A| Determinant of A
A† Moore–Penrose pseudo-inverse of A
col(A) Column space of A
A⊗B Kronecker product of A and B

N (x |µ,Σ) Density of the multivariate normal distribution with mean µ and covariance Σ at x

Assumptions

Throughout the appendix, we assume that the columns of H are linearly independent and that Σ > 0. As a consequence,
HTΣ−1H > 0.



A. How to Implement the OILMM

A.1. Parameters

The parameters of the OILMM are as follows:

Symbol Type Description

U Truncated orthogonal p×m matrix Orthogonal part of the basis H = US
1

2

S Positive, diagonal m×m matrix Diagonal part of the basis H = US
1

2

σ2 Positive scalar Part of the observation noise
D Positive, diagonal m×m matrix Part of the observation noise deriving from the latent processes
(θi)

m
i=1 Hyperparameters Hyperparameters for the latent processes, e.g. kernel parameters

A.2. Inference

Inference in the OILMM proceeds in three steps. Let Y ∈ R
p×n be a matrix where the columns correspond to observations.

Projection step. In the projection step, we project the data to generate “observations for the latent processes”. We denote
these observations by Yproj ∈ R

m×n, where again the columns corresponds to observations. We also construct the “projected
noise”, which is the observation noise under which the latent processes perform their observations.

(1) Construct the projection:

T = S− 1

2UT ∈ R
m×p.

(2) Project the observations:

Yproj = TY ∈ R
m×n.

(3) Construct the projected noise:

ΣT = σ2S−1 +D ∈ R
m×m
diag .

This is a diagonal matrix.

The ith row of Yproj, which we denote by y
(i)
proj ∈ R

n, corresponds to observations for latent process i.

Projection step (missing data). In the case of missing data, certain elements of Y are missing. Partition the columns (time
stamps) of Y into blocks Y (1) ∈ R

p×n1 , . . . , Y (k) ∈ R
p×nk where n1 + . . . + nk = n. These blocks should be chosen

such that, for every block Y (i), the observations for an output are either all missing or all available, i.e. every row of Y (i)

is either entirely missing or entirely available. Then consider the blocks Y (1) ∈ R
p×n1 , . . . , Y (k) ∈ R

p×nk separately by
repeatedly performing inference.

For every block—we henceforth suppress the dependence on the block index—denote by Yo ∈ R
p×n be the rows of the data

matrix corresponding to observed outputs. Similarly, let Uo ∈ R
p×m be the rows of U corresponding to observed outputs.

(1) Construct the projection:

T = S− 1

2 (UT

o Uo)
−1UT

o ∈ R
m×p.

(2) Project the observations:

Yproj = TYo ∈ R
m×n.

(3) Construct the projected noise:

ΣT = σ2S− 1

2 d[(Uo
TUo)

−1]S− 1

2 +D ∈ R
m×m
diag

where d[A] sets the off-diagonal elements of A to zero. This is a diagonal matrix.

Latent process inference step. In this step, we perform inference on the latent processes.

(1) For i = 1, . . . ,m, do the following:



Conditioning: Condition latent process i on data y
(i)
proj ∈ R

n where the observation noise is (ΣT )ii. The latent process
is just an independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by Titsias
(2009).

Prediction: Make predictions with the posterior of latent process i. Again, any GP package can be used to do this
step. Denote the predictive means by µ(i) ∈ R

n and the predictive marginal variances by ν(i) ∈ R
n.

(2) Collect the predictive means and marginal variances of the latent processes into matrices µ and ν:

µ =







(µ(1))T

...
(µ(m))T






∈ R

m×n, ν =







(ν(1))T

...
(ν(m))T






∈ R

m×n.

Reconstruction step. In the reconstruction step, we construct the predictions of the OILMM from the predictions of the
latent processes.

(1) Construct the basis: H = US
1

2 ∈ R
p×m.

(2) Construct the predictive mean of the OILMM:

predictive mean = Hµ ∈ R
p×n.

(3) Construct the predictive marginal variances of the OILMM:

predictive marginal variances = (H ◦H)ν ∈ R
p×n

where ◦ denotes the Hadamard product.

A.3. Posterior Sampling

Instead of computing posterior means and marginal variances, you might want to generate posterior samples.

Projection step. See App. A.2.

Latent process sampling step.

(1) For i = 1, . . . ,m, do the following:

Conditioning: Condition latent process i on data y
(i)
proj ∈ R

n where the observation noise is (ΣT )ii. The latent process
is just an independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by Titsias
(2009).

Sampling: Sample from the posterior of latent process i. Again, any GP package can be used to do this step.
Denote the sample by x̂(i) ∈ R

n.

(2) Collect the samples into a matrix:

X̂ =







(x(1))T

...
(x(m))T






∈ R

m×n.

Reconstruction step.

(1) Construct the basis: H = US
1

2 ∈ R
p×m.

(2) Construct the posterior sample for the OILMM:

posterior sample = HX̂ ∈ R
p×n.



A.4. Computation of the Log-Marginal Likelihood

Projection step. See App. A.2.

Latent process marginal likelihood calculation.

(1) For i = 1, . . . ,m, do the following:

Marginal likelihood: Compute the log-probability of data y
(i)
proj ∈ R

n under latent process i where the observation
noise is (ΣT )ii. Denote the resulting log-probability by LMLi. The latent process is just an
independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by
Titsias (2009).

Reconstruction step.

(1) Construct the “regularisation term”:

regulariser = −
n

2
log |S| −

n(p−m)

2
log 2πσ2 −

1

2σ2
(‖Y ‖2F − ‖UTY ‖2F )

where ‖ • ‖F denotes the Frobenius norm.

(2) Construct the log-probability of the data Y under the OILMM:

log p(Y ) = regulariser +
m
∑

i=1

LMLi.

Reconstruction step (missing data). In the case of missing data, (1) is slightly different:

(1) Construct the “regularisation term”:

regulariser = −
n

2
log |S| −

n

2
log |UT

o Uo| −
n(p−m)

2
log 2πσ2 −

1

2σ2
(‖Yo‖

2
F − ‖chol(UT

o Uo)
−1UT

o Yo‖
2
F )

where ‖ • ‖F denotes the Frobenius norm and chol( • ) the Cholesky decomposition. In this case, recall that n corresponds
to the number of time points in the current block and to p to the number of observed outputs in the current block.

B. Unifying Presentation of Multi-Output Gaussian Processes

Our attempt at a unifying presentation of MOGP models starts from setting up what we call the Mixing Model Hierarchy

(MMH). At the bottom of the Mixing Model Hierarchy stands the Instantaneous Linear Mixing Model (ILMM, Mod. 1 in
Sec. 2.1), which is a simple, but general class of MOGP models typically characterised by low-rank covariance structure.

The graphical model of the ILMM is illustrated in the top-left corner of Fig. 7, which highlights two restrictions of the
ILMM compared to a general MOGP: (i) the instantaneous spatial covariance of f , E[f(t)fT(t)] = HHT, does not vary
with time, because neither H nor K(t, t) = Im vary with time; and (ii) the noise-free observation f(t) is a function of x(t′)
for t′ = t only, meaning that, for example, f cannot be x with a delayed or a smoothed version of x. We hence call the
ILMM a time-invariant (due to (i)) and instantaneous (due to (ii)) MOGP.

The ILMM can be generalised in three ways. First, the mixing matrix H may vary with time. Then H ∈ R
p×m becomes a

matrix-valued function H : T → R
p×m, and the mixing mechanism becomes

f(t) |H,x = H(t)x(t).

We call such MOGP models time-varying (see Fig. 7, top right). Second, f(t) may depend on x(t′) for all t′ ∈ T . Then
the mixing matrix H ∈ R

p×m becomes a matrix-valued time-invariant filter H : T → R
p×m, and the mixing mechanism

becomes

f(t) |H,x =

∫

H(t− τ)x(τ) dτ.
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Figure 7. Graphical models illustrating the difference between time-invariant/time-varying and instantaneous/convolutional multi-output
GP models, for data sampled at real-valued times t1, t2, . . . (sampling period ∆t). Abbreviations used: xn = x(tn), fn = f(tn),
Hn = H(n∆t), and Hm

n = H(tm, tn). For simplicity, the dynamics of x are depicted as a Markov chain; since x is modelled with a GP,
xn actually depends on xn′ for all n′ ≤ n.
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f(t) = H(t)x(t) f(t) =

∫

H(t, τ)x(τ) dτ

f(t) =

∫

H(t− τ)x(τ) dτ

[1–3, 5–7, 9,
13, 14, 19–21] [4, 8, 10, 11]

[12, 17]

[15][16, 18]

Form of H Form of K Mixing

[1, 5, 6, 16] H k(t, t′)I Instantaneous
[2]

[

H1 · · · Hq

]

diag(k1(t, t
′)I, . . . , kq(t, t

′)I) Instantaneous
[3, 7, 9, 13, 20, 21] H diag(k1(t, t

′), . . . , kq(t, t
′)) Instantaneous

[4, 10, 11, 15] H(t− t′) diag(δ(t− t′), . . . , δ(t− t′)) Convolutional
[8] Green’s function diag(k1(t, t

′), . . . , kq(t, t
′)) Convolutional

[12, 17] H(t) diag(k1(t, t
′), . . . , kq(t, t

′)) Instantaneous
[14]

[

H I
]

diag(k1(t, t
′), . . . , kq+p(t, t

′)) Instantaneous
[18] Lower triangular diag(k1(t, t

′), . . . , kq(t, t
′)) Instantaneous

[19] H1 ⊗ · · · ⊗Hq k(t, t′)I Instantaneous

[1] Intrinstic Coregionalisation Model (Goovaerts, 1997)
[2] Linear Model of Coregionalisation (Goovaerts, 1997)
[3] Semiparametric Latent Factor Model (Teh & Seeger, 2005)
[4] Dependent Gaussian Processes (Boyle & Frean, 2005)
[5] Multi-Task Gaussian Processes (Bonilla et al., 2008)
[6] Osborne et al. (2008)
[7] Higdon et al. (2008)
[8] Latent Force Models (Álvarez et al., 2009)
[9] Gaussian Process Factor Analysis (Yu et al., 2009)
[10] Multi-Output Gaussian Processes Through Variational Inducing Kernels (Álvarez et al., 2010)
[11] Convolved Multiple Output Gaussian Processes (Álvarez & Lawrence, 2011)
[12] Gaussian Process Regression Network (Wilson et al., 2012)
[13] Spatio–Temporal Bayesian Filtering and Smoothing (Särkkä et al., 2013)
[14] Collaborative Multi-Output Gaussian Processes (Nguyen & Bonilla, 2014)
[15] Generalised Gaussian Process Convolution Model (Bruinsma, 2016)
[16] Semi-Parametric Network Structure Discovery Models (Dezfouli et al., 2017)
[17] Grouped Gaussian Processes (Dahl & Bonilla, 2019)
[18] The Gaussian Process Autoregressive Regression Model (Requeima et al., 2019)
[19] High-Order Gaussian Process Regression (Zhe et al., 2019)
[20] Instantaneous Linear Mixing Model (Mod. 1)
[21] Orthogonal Instantaneous Linear Mixing Model (Mod. 2)

Figure 8. The Mixing Model Hierarchy, which organises MOGPs from the machine learning and geostatistics literature according to their
distinctive modelling assumptions



Table 3. Complexities of learning and inference in the ILMM and OILMM, ignoring the projection. In the table, n is the number of time
points; p is the number of outputs; m is the number of latent processes; r is the number of inducing points, typically r ≪ n; and d is the
state dimensionality, typically d ≪ n,m.

Model Runtime Memory

General MOGP O(n3p3) O(n2p2)
ILMM (Mod. 1) O(n3m3) O(n2m2)
OILMM (Mod. 2) O(n3m) O(n2m)
OILMM (Mod. 2) + Titsias (2009) O(nmr2) O(nmr)
OILMM (Mod. 2) + Hartikainen & Särkkä (2010) O(nmd3) O(nmd2)

APPLICATION TO SEPARABLE SPATIO–TEMPORAL GPS (SEC. 3.9)

OILMM (Mod. 2) O(n3p) O(n2p)
OILMM (Mod. 2) + Titsias (2009) O(npr2) O(npr)
OILMM (Mod. 2) + Hartikainen & Särkkä (2010) O(npd3) O(npd2)
Kronecker product factorisation (Saatçi, 2012, Ch. 5) O(n3+p3) O(n2+p2)

Table 4. Complexities of projecting the data and reconstructing the predictions in the ILMM and OILMM. In the table, n is the number of
time points; p is the number of outputs; and m is the number of latent processes.

Action Runtime Memory

Storing data − O(np)
Construction of projection T O(m2p) O(mp)
Projection O(nmp) O(np)
Construction of predictive marginal statistics O(nmp) O(np)

APPLICATION TO SEPARABLE SPATIO–TEMPORAL GPS (SEC. 3.9)

Construction of projection T O(p3) O(p2)
Projection O(np2) O(np)
Construction of predictive marginal statistics O(np2) O(np)

We call such MOGP models convolutional (see Fig. 7, bottom left). Finally, f(t) may depend on x(t′) for all t′ ∈ T and

this relationship may vary with time. Then the mixing matrix H ∈ R
p×m becomes a matrix-valued time-varying filter

H : T × T → R
p×m, and the mixing mechanism becomes

f(t) |H,x =

∫

H(t, τ)x(τ) dτ.

We call such MOGP models time-varying and convolutional (see Fig. 7, bottom right). The graphical models corresponding
to these generalisations of the ILMM are depicted in Fig. 7.

The ILMM can be extended in one other way, which is to include a prior distribution on H . This extension and the two
previously proposed generalisations together form the Mixing Model Hierarchy (MMH), which is depicted in Fig. 8. The
MMH organises multi-output Gaussian process models according to their distinctive modelling assumptions. Fig. 8 shows
how sixteen MOGP models from the machine learning and geostatistics literature can be recovered as special cases of the
various generalisations of the ILMM.

Not all multi-output Gaussian process models are covered by the MMH, however. For example, Deep GPs (Damianou,
2015) and variations thereon (Kaiser et al., 2018) are excluded because they transform the latent processes nonlinearly to
generate the observations.

C. Runtime and Memory Complexities

For the ILMM and OILMM, Tab. 3 gives an overview of the runtime and memory complexities associated to learning and
inference, and Tab. 4 gives an overview of the runtime and memory complexities associated to projecting the data and
reconstructing the predictions.



D. Maximum Likelihood Estimate

Prop. 2. Denote p(y |x) = N (y |Hx,Σ), and let T be the m× p matrix (HTΣ−1H)−1HTΣ−1. Then

Ty = argmax
x

p(y |x)

and Ty is an unbiased estimate of x: E[Ty |x] = x.

Proof. Note that
log p(y |x) ≃ − 1

2 (y −Hx)TΣ−1(y −Hx)

Using invertibility of HTΣ−1H , an elementary calculation then shows that the unique maximum with respect to x is given
by

x = (HTΣ−1H)−1HTΣ−1y = Ty.

To show that Ty is an unbiased estimate of x, we use that E[y |x] = Hx:

E[Ty |x] = THx = (HTΣ−1H)−1(HTΣ−1H)x = x.

E. Sufficient Statistic

To prove sufficiency of Ty , we need the property of T that it “preserves the signal-to-noise ratio”. This is characterised in
the following lemma.

Lem. 1.
N (y |Hx,Σ)

N (y | 0,Σ)
=

N (Ty |x, (HTΣ−1H)−1)

N (Ty | 0, (HTΣ−1H)−1)
.

Proof. It is simple to check the equality by direct verification. We show, however, how the equality may be derived. To
begin with, we have

(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − 2xTHTΣ−1y + xTHTΣ−1Hx.

Here
HTΣ−1y = (HTΣ−1H)(HTΣ−1H)−1HTΣ−1y = (HTΣ−1H)Ty,

so
(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − 2xT(HTΣ−1H)Ty + xT(HTΣ−1H)x.

Adding and subtracting yT T(HTΣ−1H)Ty, we find

(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − yT T(HTΣ−1H)Ty + (x− Ty)T(HTΣ−1H)(x− Ty).

Hence, rearranging,

(y −Hx)TΣ−1(y −Hx)− yTΣ−1y = (x− Ty)T(HTΣ−1H)(x− Ty)− yT T(HTΣ−1H)Ty,

which yields the result.

Prop. 3. The MLE Ty of x is a minimal sufficient statistic for x.

Proof of Prop. 3. By a general characterisation of minimal sufficient statistics (see, e.g., Th. 6.2.13 in Casella & Berger,
2001), Ty is a minimal sufficient statistic for x if and only if it is true that p(y1 |x)/p(y2 |x) is constant as a function of x if
and only if Ty1 = Ty2. Indeed, by Lem. 1,

log
p(y1 |x)

p(y2 |x)
= (Ty1 − Ty2)

T(HTΣ−1H)−1x+ const.

which, by invertibility of HTΣ−1H , does not depend on x if and only if Ty1 = Ty2.



F. Proof of Prop. 1

Proof of Prop. 1. By Prop. 3,

p(f |Y ) =

∫

p(f |x)p(x |Y ) dx =

∫

p(f |x)p(x |TY ) dx = p(f |TY )

where TY are observations for the process Ty. Since

y |x ∼ GP(Hx, δ[t− t′]Σ),

the process Ty has distribution
Ty |x ∼ GP(THx, δ[t− t′]TΣT T).

By explicit calculation, we find that
TH = (HTΣ−1H)−1HTΣ−1H = I

and
TΣT T = (HTΣ−1H)−1HTΣ−1ΣΣ−1H(HTΣ−1H)−1 = (HTΣ−1H)−1.

Thus
Ty |x ∼ GP(x, δ[t− t′]ΣT ) where ΣT = (HTΣ−1H)−1.

Moreover, using Lem. 1, the probability of the data Y is given by

p(Y ) =

∫ n
∏

i=1

N (yi |Hx,Σ)p(x) dx =

[

N (yi | 0,Σ)

N (yi | 0,ΣT )

]
∫ n
∏

i=1

N (Tyi |x,ΣT )p(x) dx.

G. Interpretation of the Likelihood

Prop. 4. The regularisation terms in like likelihood in Prop. 1 can be written as

log
N (y | 0,Σ)

N (Ty | 0,ΣT )
= −

1

2
(p−m) log 2π −

noise “lost by projection”

1

2
log

|Σ|

|ΣT |
−

1

2
‖(Ip −HT )y‖2Σ,

data “lost by projection”

where ‖ • ‖Σ denotes the norm induced by the weighted inner product 〈 • , • 〉Σ = 〈Σ−1 • , • 〉.

Proof. The first two terms come directly from the multivariate Gaussian densities. We show how the third term may be
obtained. Rearrange

〈y, T TΣ−1
T Ty〉 = 〈Σ− 1

2 y, (Σ
1

2T TΣ−1
T TΣ

1

2 )Σ− 1

2 y〉 = 〈Σ− 1

2 y, PΣ− 1

2 y〉

where
P = Σ

1

2 (T TΣ−1
T T )Σ

1

2 = Σ− 1

2H(HTΣ−1H)−1HTΣ− 1

2 = Σ− 1

2HTΣ
1

2

which is the orthogonal projection onto col(Σ− 1

2H). Recall that an orthogonal projection P is defined by P 2 = P and
P T = P . Then

〈y,Σ−1y〉 − 〈y, T TΣ−1
T Ty〉 = 〈Σ− 1

2 y, (Ip − P )Σ− 1

2 y〉

= 〈Σ− 1

2 y, (Ip − P )2Σ− 1

2 y〉

= 〈(Ip − P )TΣ− 1

2 y, (Ip − P )Σ− 1

2 y〉

= ‖(Ip − P )Σ− 1

2 y‖2,

where we note that (Ip − P )2 = Ip − P and that Ip − P is symmetric. (In fact, P⊥ = Ip − P is the orthogonal projection
onto col(Σ− 1

2H)⊥.) To conclude, see that

‖(Ip − P )Σ− 1

2 y‖2 = ‖Σ− 1

2 (Ip − Σ
1

2PΣ− 1

2 )y‖2 = ‖(Ip −HT )y‖2Σ.

We note that HT is a projection, but not necessarily an orthogonal projection.
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Figure 9. Comparison of the time it takes to construct the basis H to the total time of a log-marginal likelihood computation for a range of
numbers of data points n and numbers of latent processes m. The data used is from the temperature extrapolation experiment (Sec. 4.3).

H. Tensor Product Basis

If the observations can be naturally represented as multi-index arrays in R
p1×···×pq , where the total number of outputs is

p =
∏q

i=1 pi, to obtain a reduction in parameters of H , a natural choice is to correspondingly decompose H = H1⊗· · ·⊗Hq

where ⊗ is the Kronecker product and Hi a pi ×mi matrix. The latent processes are then naturally seen as a R
m1×···×mq -

valued process, where their total number is m =
∏q

i=1 mi. In this parametrisation of the ILMM, Prop. 5 shows that the
projection and projected noise also become the Kronecker products: T = T1 ⊗ · · · ⊗ Tq and ΣT = ΣT1

⊗ · · · ⊗ΣTq
. Using

the vectorisation trick, TY can be computed efficiently without the need to explicitly construct T .

Prop. 5. Let H be a basis that is a tensor product of other bases and let the observation noise Σ factorise similarly:

H = H1 ⊗ · · · ⊗Hq and Σ = Σ1 ⊗ · · · ⊗ Σq.

Then the projection is the tensor product of the projections and the projected noise is the tensor product of the projected
noises:

T = T1 ⊗ · · · ⊗ Tq and ΣT = ΣT1
⊗ · · · ⊗ ΣTq

where Ti = (HT
i Σ

−1
i Hi)

−1HT
i Σ

−1
i and Σi = (HT

i Σ
−1
i Hi)

−1.

Proof. Follows directly from the compatibility of the Kronecker product with matrix multiplication, transposition, and
inversion.

I. Cost of Parametrising the Basis

For the OILMM, the only computation that does not scale linearly with the number of latent processes m is the parametrisa-
tion of the orthogonal part U of the basis H , which takes O(m2p) time. We argue that this cost is dominated by the cost
O(n3m+ nmp) of computing the log-marginal likelihood of the projected data:

(i) typically m ≤ n, p;

(ii) the cost of computing the log-marginal likelihood of the projected data scales with n, and often n ≫ m, p; and

(iii) assuming that p is not much bigger than n, computing the log-marginal likelihood of the projected data costs at least
O(n) more, so the cost of parametrising the basis H should become insignificant as n grows.

We compare the time it takes to construct the basis H to the total time of a log-marginal likelihood computation for a range of
numbers of data points n and numbers of latent processes m. We use the data from the temperature extrapolation experiment
(Sec. 4.3). The results are depicted in Fig. 9. Observe that, even in the worst case when m = p = 247, parametrising
the basis H takes no more than 1.5% of the total time at n = 100 data points and no more than 0.8% of the total time at
n = 300 data points. This cost is negligible, even in this worst case.

J. Characterisation of Diagonal Projected Noise

Prop. 6 says that the projected noise is diagonal if and only if H is of the form H = Σ
1

2US
1

2 with U a matrix with
orthonormal columns and S > 0 diagonal. This condition is awkward, as it couples H and Σ. Fortunately, Prop. 6 also



shows that we may drop H’s dependency on Σ if and only if every column of U is an eigenvector of Σ.

Prop. 6. The projected noise ΣT is diagonal if and only if H is of the form H = Σ
1

2US
1

2 with U a matrix with orthonormal
columns and S > 0 diagonal. Suppose that this is the case, and fix such a U . Then H is of the form H = UD

1

2 with D > 0
diagonal if and only if every column of U is an eigenvector of Σ.

Proof. The projected noise is diagonal if and only if HTΣ−1H = S for some S > 0 diagonal. This condition is equivalent
to

S− 1

2HTΣ− 1

2Σ− 1

2HS− 1

2 = Im,

which, in turn, holds if and only if Σ− 1

2HS− 1

2 = U is a matrix with orthonormal columns. Thus, the projected noise is
diagonal if and only if H is of the form H = Σ

1

2US
1

2 with U a matrix with orthonormal columns and S > 0 diagonal.

For the second statement, note that every column of U is an eigenvector of Σ if and only if it is an eigenvector of Σ
1

2 .
Suppose that H is of the form H = UD

1

2 with D > 0 diagonal. Then

Σ
1

2U = Σ
1

2US
1

2S− 1

2 = HS− 1

2 = UD
1

2S− 1

2 ,

so every column of U is an eigenvector of Σ
1

2 . Conversely, suppose that every column of U is an eigenvector of Σ
1

2 with
eigenvalues stacked into a diagonal matrix D > 0. Then

H = Σ
1

2US
1

2 = UDS
1

2 ,

which is of the desired form.

K. Kullback–Leibler Divergence Between an ILMM and OILMM

Prop. 7. Consider two ILMMs with equal Σ = σ2Ip, equal K(t, t′), but different bases H and Ĥ . Let t1, . . . , tn ∈ T and
denote xi = x(ti) and yi = y(ti). It then holds that

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = DKL(p̂(y1:n, x1:n) ‖ p(y1:n, x1:n)) = n
1

2σ2
‖H − Ĥ‖2F

and

inf
Ĥ : OILMM

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) ≤ n
E[‖f(t)‖2]

σ2
max

i
(1− Vii) ≤ n

E[‖f(t)‖2]

2σ2
‖Im − V ‖2F

where Ĥ ranges over matrices of the form US
1

2 with U a matrix with orthonormal columns and S
1

2 > 0 diagonal, V is the
orthogonal matrix collecting the right singular vectors of H , and E[‖f(t)‖2] denotes the variance of the observations under
the first ILMM before adding noise.

Proof. Start out by expanding the Kullback–Leibler divergence and noting that p(x1:n) = p̂(x1:n):

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = −Ep(y1:n,x1:n) log
p̂(y1:n |x1:n)✘✘

✘✘p̂(x1:n)

p(y1:n |x1:n)✘✘
✘✘p(x1:n)

= −
n
∑

i=1

Ep(yi,xi)[log p̂(yi |xi)− log p(yi |xi)]

= −
n
∑

i=1

Ep(yi,xi)[logN (yi | Ĥxi, σ
2Ip)− logN (yi |Hxi, σ

2Ip)].

Here

Ep(yi,xi)[logN (yi | Ĥxi, σ
2Ip)] = −

p

2
log 2πσ2 −

1

2σ2
Ep(yi,xi)[‖yi − Ĥxi‖

2]

where

Ep(yi,xi)[‖yi − Ĥxi‖
2] = Ep(yi,xi) tr[yiy

T

i − 2yix
T

i Ĥ
T + xix

T

i ĤĤT]

= tr[HHT + σ2I − 2HĤT + ĤĤT]

= pσ2 + tr[(H − Ĥ)(H − Ĥ)T]

= pσ2 + ‖H − Ĥ‖2F .



Therefore,

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = n
1

2σ2
‖H − Ĥ‖2F .

Let H = USV T be the SVD of H where U is a truncated orthogonal matrix with the same shape as H , S > 0 is a square
diagonal matrix, and V is a square orthogonal matrix. Note that UTU = Im, but UUT 6= Ip. Then, choosing Ĥ = US,

inf
Ĥ : OILMM

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) ≤ n
1

2σ2
‖U(SV T − S)‖2F = n

1

2σ2
‖SV T − S‖2F

since ‖UA‖2F = tr[ATUTUA] = tr[ATA] = ‖A‖2F . We now further simplify:

‖SV T − S‖2F = tr[(SV T − S)(SV T − S)T] = tr[SV TV S − SV TS − SV S + SS] = 2 tr[SS − SV S].

Hence, by definition of the trace and the fact that S is diagonal,

‖SV T − S‖2F = 2

m
∑

i=1

S2
ii(1− Vii) ≤ 2

(

m
∑

i=1

S2
ii

)

max
i

(1− Vii) = 2E[‖f‖2] max
i

(1− Vii),

since

E[‖f(t)‖2] = E tr[f(t)fT(t)] = tr[HHT] = tr[S2].

Therefore,

‖SV T − S‖2F ≤ 2E[‖f‖2] max
i

(1− Vii) ≤ 2E[‖f‖2]
m
∑

i=1

(1− Vii) = E[‖f‖2]‖Im − V ‖2F ,

where the equality follows from a similar calculation:

‖Im − V ‖2F = tr[Im − V T − V + V TV ] = 2 tr[Im − V ].

L. OILMM: Projection and Projected Noise

Prop. 8. Consider the OILMM (Mod. 2). Then the projection and projected noise are given by

T = S− 1

2UT and ΣT = σ2S−1 +D.

Proof. To begin with, note that

y ∼ GP(HK(t, t′)HT + δ[t− t′](σ2Ip +HDHT)

= H(K(t, t′) + δ[t− t′]D)HT + δ[t− t′]σ2Ip,

),

so we can assume that D = 0 by “absorbing it into K(t, t′)”. We then find that

HTΣ−1H = σ−2S,

so

ΣT = TΣT T = (HTΣ−1H)−1 = σ2S−1.

Moreover, then

T = (HTΣ−1H)−1HTΣ−1 = (σ2S−1)(σ−2S
1

2UT) = S− 1

2UT.

Finally, “pull D back out of K(t, t′)”, which we note is equivalent to adding it to ΣT by Prop. 1.



M. OILMM: Likelihood

Prop. 9. Consider the OILMM (Mod. 2). Let Y be an p× n matrix of observations for y. Then

log p(Y ) = −
n

2
log |S| −

n(p−m)

2
log 2πσ2 −

1

2σ2
‖(Ip −UUT)Y ‖2F +

m
∑

i=1

logN ((TY )i: | 0,Ki + (σ2/Sii +Dii)In)

where ‖ • ‖F denotes the Frobenius norm and Ki is the n× n kernel matrix for the ith latent process xi.

Proof. By Prop. 1 and Prop. 4, we have

log p(Y ) = −
n(p−m)

2
log 2π −

n

2
log

|Σ|

|ΣT |
−

1

2

n
∑

i=1

‖(Ip −HT )yi‖
2
Σ + log

∫

p(x)

n
∏

i=1

N (Tyi |xi,ΣT ) dx.

Using the same trick as in the proof of Prop. 8, assume that D = 0 by “absorbing it into K(t, t′)”. We then simplify the
terms one by one. First, we have that

log
|Σ|

|ΣT |
= log

|σ2Ip|

|σ2S−1|
= (p−m) log σ2 + log |S|.

Second, note that Ip −HT = Ip − UUT, which we denote by PU⊥ and which is symmetric, so

‖(Ip −HT )yi‖
2
Σ = ‖PU⊥yi‖

2
Σ = 〈PU⊥yi,Σ

−1PU⊥yi〉 = σ−2〈PU⊥yi, PU⊥yi〉 = σ−2 tr[PU⊥PU⊥yiy
T

i ].

Then sum over i = 1, . . . , n to obtain

n
∑

i=1

‖(Ip −HT )yi‖
2
Σ = σ−2 tr[PU⊥PU⊥Y Y T] = σ−2‖PU⊥Y ‖2F .

Finally,

log

∫

p(x)

n
∏

i=1

N (Tyi |xi,ΣT ) dx =

m
∑

i=1

logN ((TY )i: | 0,Ki + (σ2/Sii +Dii)In)

follows from independence of the latent processes and remembering that we “absorbed D into K(t, t′)”.

Observe that

‖(Ip − UUT)Y ‖2F = ‖Y ‖2F − ‖UTY ‖2F ,

which is a computationally more efficient implementation.

N. OILMM: Decomposition of the Mean Squared Error

Prop. 10. Let H = US
1

2 with U a matrix with orthonormal columns and S
1

2 > 0 diagonal. Then

‖y −Hx‖2

MSE

= ‖PU⊥y‖2

data not
captured by basis

+

m
∑

i=1

variance of
ith latent process

Sii ((Ty)i − xi)
2

MSE of
ith latent process

where T = S− 1

2UT and PU⊥ is the orthogonal projection onto the orthogonal complement of col(U).



Proof. By expanding and using orthogonality of U ,

‖y −Hx‖2 = ‖y‖2 − 2〈y, US
1

2x〉+ ‖US
1

2x‖2

= ‖y‖2 − ‖UTy‖2 + ‖UTy‖2 − 2〈UTy, S
1

2x〉+ ‖S
1

2x‖2

= 〈y, (Ip − UUT)y〉+
m
∑

i=1

(〈ui, y〉
2 − 2〈ui, y〉S

1

2

iixi + (S
1

2

iixi)
2)

= 〈y, (Ip − UUT)y〉+
m
∑

i=1

Sii(S
−1
ii 〈ui, y〉

2 − 2S
− 1

2

ii 〈ui, y〉xi + x2
i )

= 〈y, (Ip − UUT)y〉+
m
∑

i=1

Sii((Ty)i − xi)
2,

where ui is the ith column of U . Note that PU = UUT is the orthogonal projection onto col(U), so I − UUT = PU⊥ is the
orthogonal projection onto the orthogonal complement of col(U). Therefore,

〈y, (Ip − UUT)y〉 = 〈y, PU⊥y〉 = 〈y, P 2
U⊥y〉 = 〈P T

U⊥y, PU⊥y〉 = 〈PU⊥y, PU⊥y〉 = ‖PU⊥y‖2.

O. OILMM: Missing Data

For a matrix or vector A, let Ao and Am denote the rows of A corresponding to respectively observed and missing values.

Prop. 11. Consider the OILMM (Mod. 2). For observed outputs yo, which are a subset of all outputs y, the projection and
projected noise are given by

To = S− 1

2U†
o and ΣTo = σ2S− 1

2 (UT

o Uo)
−1S− 1

2 +D

where U†
o is the pseudo-inverse of Uo.

Proof. Note that

yo ∼ GP(HoK(t, t′)HT

o + δ[t− t′](σ2Io +HoDHT

o )),

so yo is an ILMM with basis Ho and observation noise σ2I +HoDHT
o . The proof proceeds like that of Prop. 8, also using

trick of assuming that D = 0 by “absorbing it into K(t, t′)”. To begin with, we have

HTΣ−1H = σ−2S
1

2UT

o UoS
1

2 ,

so

ΣT = TΣT T = (HTΣ−1H)−1 = σ2S− 1

2 (UT

o Uo)
−1S− 1

2 .

Moreover, then

T = (HTΣ−1H)−1HTΣ−1 = (σ2S− 1

2 (UT

o Uo)
−1S− 1

2 )(σ−2S
1

2UT

o ) = S− 1

2 (UT

o Uo)
−1UT

o = S− 1

2U †
o .

Finally, “pull D back out of K(t, t′)”, which, again, is equivalent to adding it to ΣT .

Rem. 1. When using To and ΣTo , in the likelihood computation in Prop. 9, from Prop. 4, it can be seen that two things
change: for every time point with missing data,

(1) HoTo = UoU
†
o , so UUT becomes UoU

†
o ; and

(2) 1
2 log |ΣTo | gives an extra term − 1

2 log |U
T
o Uo|.



O.1. Diagonal Approximation of Projected Noise

For a matrix A, let d[A] denote the diagonal matrix resulting from setting the off-diagonal entries of A to zero.

Prop. 12. For ΣTo from Prop. 11, we have

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤

Smax

Smin
max

y∈col(H):‖y‖=1
‖ym‖

2

where ‖ • ‖op denotes the operator norm, and Smin and Smax are the smallest and largest diagonal values of S.

Proof. Let ei be the ith unit vector. Denote A = (UT
o Uo)

−1, and let λmin and λmax be the minimum and maximum eigenvalue
of A. To begin with,

d[A]ii = 〈ei, Aei〉 ∈ [λmin, λmax].

Let x ∈ R
m be such that ‖x‖ = 1. Then

〈x, (A− d[A])x〉 = 〈x,Ax〉 − 〈x, d[A]x〉 ≤ λmax − λmin.

Similarly,
〈x, (A− d[A])x〉 ≥ −λmax + λmin.

Therefore,
|〈x, (A− d[A])x〉| ≤ λmax − λmin,

so
‖A− d[A]‖op ≤ λmax − λmin

Since S is diagonal, we have
ΣTo − d[ΣTo ] = σ2S− 1

2 (A− d[A])S− 1

2 .

Using the derived bound on the operator norm and submultiplicativity of the operator norm, it follows that

‖ΣTo − d[ΣTo ]‖op ≤ σ2S−1
min(λmax − λmin).

Moreover,

‖d[ΣTo ]‖op = σ2 max
i=1,...,m

(S−1
ii d[A]ii +Dii) ≥ σ2 max

i=1,...,m
S−1
ii d[A]ii ≥ σ2S−1

max max
i=1,...,m

d[A]ii ≥ σ2S−1
maxλmax.

Therefore,
‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤

Smax

Smin

(

1−
λmin

λmax

)

.

By definition of λmin and λmax and orthogonality of U , we have that

1

λmin
= max

x∈Rm:‖x‖=1
‖Uox‖

2 ≤ max
x∈Rm:‖x‖=1

‖Ux‖2 = 1 and
1

λmax
= min

x∈Rm:‖x‖=1
‖Uox‖

2.

Substitute these results into the bound:

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤

Smax

Smin

(

1− min
x∈Rm:‖x‖=1

‖Uox‖
2

)

=
Smax

Smin
max

x∈Rm:‖x‖=1
(1− ‖Uox‖

2).

By orthogonality of U , for x ∈ R
m such that ‖x‖ = 1, we have

1 = ‖x‖2 = ‖Ux‖2 = ‖Uox‖
2 + ‖Umx‖

2,

so 1− ‖Uox‖
2 = ‖Umx‖

2. Therefore,

max
x∈Rm:‖x‖=1

(1− ‖Uox‖
2) = max

x∈Rm:‖x‖=1
‖Umx‖

2 = max
x∈Rm:‖x‖=1

‖(Ux)m‖
2 = max

y∈col(U):‖y‖=1
‖ym‖

2

and we conclude by noting that col(U) = col(H).



Cor. 1. Suppose ‖U‖2∞ ≤ C/p for some C ≥ 1, and that s outputs are missing. Then

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤ C

Smax

Smin

ms

p
.

Proof. Let y ∈ col(H) be such that ‖y‖ = 1. Then y = Ux for some x ∈ R
m such that ‖x‖ = 1. Therefore,

‖ym‖
2 =

∑

i∈missing

(Ux)2i ≤
∑

i∈missing

‖Ui:‖
2‖x‖2 =

∑

i∈missing

‖Ui:‖
2 ≤

Cms

p
,

so the result follows from the previous proposition.

O.2. Variational Approach

Let Yo be the observed data. Complement Yo with missing data Ym such that Y = Yo ∪ Ym is complete. Then a way to deal
with missing data is to use variational inference. In particular, assume a Gaussian approximate posterior distribution q(Ym)
over Ym, and maximise the evidence lower bound (ELBO) L using gradient-based optimisation:

log p(Yo) ≥ Eq(Ym)[log p(Y )] +H[q(Ym)] = L[q(Ym)],

where the expectation can be approximated using the reparametrisation trick (Kingma & Welling, 2013), log p(Y ) can be
computed efficiently because Y is complete, and H[q(Ym)] denotes the entropy of q(Ym). This approach provides a tractable
solution when the missing data are not too numerous.

P. OILMM: Heterogeneous Observation Noise

Although the specification of the observation noise Σ = σ2Ip +HDHT in the OILMM does not allow for heterogeneous
observation noise, it is possible to set Σ = diag(σ2

1 , . . . , σ
2
p) and use Prop. 6 to include Σ in the parametrisation of H:

H = Σ
1

2US
1

2 . This parametrisation can be interpreted in two ways:

(i) The model has a whitening transform built in. In the projection T , the (noise in the) data will first by whitened by Σ− 1

2 .
Hence, this parametrisation can be used as a more principled substitute for the usual data normalisation where the
outputs are divided by their empirical standard deviation prior to feeding them to the model.

(ii) The basis is orthogonal with respect to a weighted Euclidean inner product: 〈hi, hj〉Σ =
∑p

k=1 hikhjk/σ
2
k = 0 for

i 6= j. Intuitively, this means that the basis is orthogonal in the usual sense after stretching the ith dimension by σ−1
i .

Although this construction provides additional flexiblity, it does require that D = 0 to avoid a circular dependency between
Σ and H .

Q. Computational Scaling Experiment (Sec. 4.1) Additional Details

Measurements were performed using a MacBook Pro with a 2.7 GHz Intel Core i7 processor and 16 GB RAM. Code
was implemented in Julia 1.0 (Bezanson et al., 2017) and memory and time were measured using the @allocated and
the @elapsed macros, respectively, with the measurements averaged over 10 samples run serially. This means memory
reported is the total memory allocated, not peak memory consumption.

R. Point Process Experiment (Sec. 4.2) Additional Details and Analysis

We consider a subset of the extensive rainforest data set credited to Hubbell et al. (2005); Condit (1998); Hubbell et al.
(1999). The data features a 1000 m × 500 m rainforest dynamics plot in Barro Colorado Island, Panama. In the survey area,
the locations of all Trichilia tuberculata (a tree species of the Mahogany family) have been measured (see Fig. 10).

We tackle this spatial point pattern with a log-Gaussian Cox process model, which is an inhomogeneous Poisson process
model for count data. The unknown intensity function Σ(x) is modelled with a Gaussian process such that f(x) = logΣ(x).
Locally-constant intensity in subregions are modelled by discretising the region into np bins (Møller et al., 1998). This
leads to a Poisson observation model for each bin. This model reaches posterior consistency in the limit of bin width going
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Figure 10. Observations of the rainforest tree locations (left), and posterior mean log-intensity for the log-Gaussian Cox process model
(right) with a grid of np = 20000 observation bins.
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Figure 11. (a): Log–joint probability per iteration. (b): Hyperparameters per iteration. Shows the length scale, process variance, and
nugget variance respectively.

to zero (Tokdar & Ghosh, 2007). The accuracy thus improves with tighter binning. We use a separable Matérn-5/2 GP prior
over f(x1, x2), and discretise the area into a n× p = 200×100 (each bin is 5m × 5m) grid with np = 20000 grid bins in
total, and treat the first dimension as time. The conditional probability of the complete binned data set given the latent GP is
therefore

p(Y | f) ≈
n
∏

i=1

p
∏

j=1

Poisson(Yij | ae
f(rij)),

where rij is the coordinate of the ijth bin, Yij is the number of data points in the ijth bin, Y is the n× p matrix of counts,
and a is the area of each bin.

We perform 105 iterations of block Gibbs sampling, each of which comprises 10 iterations Elliptical Slice Sampling
(Murray et al., 2010; Murray & Adams, 2010) for the Gaussian process given its hyperparameters, and a single iteration of
Metropolis Hastings (Hastings, 1970) with proposal distribution N (θ, 0.052) for the log of the hyperparameters given the
latent GP-distributed function. Each step of Elliptical Slice Sampling requires an additional sample from the GP prior at the
current hyperparameter values, while each step of Metropolis Hastings requires a log marginal likelihood evaluation. As
such approximately 106 samples from the prior were drawn, and 105 log marginal likelihood calculations undertaken. The
kernel is a product of two Matérn-5/2 kernels with a shared length scale. A single process variance is utilised, and a nugget
term is added. The log of each of the three hyperparameters was given a N (0, 1) prior. Fig. 11a shows the log joint of the
entire state after each iteration, while Fig. 11b shows the progress of each hyperparameter per iteration.

The times in Fig. 4 were obtained via BenchmarkTools.jl (Chen & Revels, 2016). The implementation of the standard
Kronecker product decomposition trick makes use of Kronecker.jl, and Julia’s (Bezanson et al., 2017) standard linear
algebra libraries, which make use of OpenBLAS and LAPACK to efficiently perform matrix-matrix products and compute



Table 5. Description of the data points associated with the timing experiment from Fig. 4

LML RNG
n Kronecker OILMM Kronecker OILMM

2000 2.45± 0.0193 0.403± 0.00414 2.45± 0.0278 0.478± 0.00376
1000 0.365± 0.00256 0.0712± 0.000369 0.364± 0.00451 0.0892± 0.000435
200 0.0111± 0.000301 0.00235± 2.53×10−5 0.0112± 9.89×10−5 0.00318± 1.2×10−5

100 0.00237± 8.66×10−6 0.000582± 6.55×10−7 0.00237± 3.1×10−5 0.000792± 8.69×10−7

40 0.00044± 4.35×10−7 0.000109± 2.22×10−7 0.000436± 3.19×10−7 0.000141± 2.0×10−7

20 9.15×10−5 ± 1.48×10−7 2.38×10−5 ± 2.1×10−7 9.06×10−5 ± 1.89×10−7 3.13×10−5 ± 1.72×10−7

10 1.84×10−5 ± 1.54×10−7 9.87×10−6 ± 1.08×10−7 1.84×10−5 ± 3.02×10−7 1.15×10−5 ± 1.17×10−7
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Figure 12. RMSE and PPLP achieved in the temperature extrapolation experiment.

eigendecompositions. The implementation of the state-space GP additionally makes use of StaticArrays.jl for
efficient stack-allocated matrices, and Stheno.jl for GP-related functionality. Timing experiments were conducted on a
single CPU core.

When computing the log marginal likelihood, the state-space implementation of the GP makes use of the infinite-horizon
trick introduced to the GP literature by Solin et al. (2018). However, this trick is only exploited here once the filtering
covariance has converged, which is determined by the point at which the Frobenius norm of the difference between the
filtering covariance at the tth and (t− 1)th iterations drops below 10−12. This produces log marginal likelihood evaluations
and samples from the prior that are exact for all practical purposes.

R.1. Performance versus Kronecker Trick

Fig. 4 demonstrates that, for the particular approach taken to inference in the Poisson process and, importantly, the
dimensions of the data, the Kronecker trick discussed by Saatçi (2012) takes slightly longer to compute log marginal
likelihoods and generate samples than does the OILMM implemented in the manner described above. It would of course be
unreasonable to assert that the OILMM dominates the Kronecker trick; rather, it seems appropriate to assert that they are
competitive with each other in the regime considered.

This is perhaps surprising as the performance of the Kronecker trick is determined almost entirely by a couple of computa-
tionally intensive operations, the eigendecomposition and matrix-matrix multiplies. Carefully optimised implementations of
these operations exist, and were used, to implement the Kronecker trick. Conversely, the OILMM implementation discussed
above comprises many small operations. While our implementation benefits from e.g. the StaticArrays.jl library,
which is suitable for operations on small matrices and vectors, it remains surprising that similar performance was found.

In general we anticipate the OILMM implemented in the described manner be significantly faster on data sets where n is
much larger than p, whilst the Kronecker trick will likely do better when n is similar to p.

S. Temperature Extrapolation Experiment (Sec. 4.3) Additional Results

Fig. 12 depicts the RMSE and PPLP achieved in the temperature extrapolation experiment (Sec. 4.3).



T. Large-Scale Climate Model Calibration Experiment (Sec. 4.6) Additional Details and

Analysis

We use the variational inducing point method by Titsias (2009), where the positions of the inducing points are initialised to
one every two months. All hyperparameters and the locations of the inducing points are optimised until convergence using
scipy’s implementation of the L-BFGS-B algorithm (Nocedal & Wright, 2006), which takes about 4 hours on a MacBook
Pro (2.7 GHz Intel Core i7 processor and 16 GB RAM). The learned length scales were 23.3◦ for latitude and 43.6◦ for
longitude.

Fig. 6a shows the empirical correlations and the correlations learned by the OILMM (derived from Ks). In order to get
insight into the learned correlations, we hierarchically cluster the models using farthest point linkage with 1− |corr.| as the
distance. Fig. 6b shows the resulting dendrogram, in which models are grouped by their similarity. For two models, the
further to the right the branch connecting them is, the less similar the models are.

In Figs. 6a and 6b, HadGEM2 is clearly singled out: it is one of the simplest models, not including several processes that can
be found in others, such as ocean & sea-ice, terrestrial carbon cycle, stratosphere, and ocean biogeochemistry (Bellouin et al.,
2011). Furthermore, if we inspect the names of the simulators in the groups in Fig. 6b, we observe that often simulators of
the same family are grouped together. We observe some interesting cases:

(i) Although IPSL-CM5A-LR and IPSL-CM5A-MR are close, IPSL-CM5B-LR is grouped far apart. It turns out that
IPSL-CM5A-LR and IPSL-CM5A-MR are different-resolution versions of the same model, while IPSL-CM5B-LR
employs a different atmospheric model.5

(ii) ACCESS1.0 and ACCESS1.3 have a similar name, but differ greatly in their implementation: ACCESS1.0 is the
basic model, while ACCESS1.3 is much more aspirational, including experimental atmospheric physics models and a
particular land surface model (Bi et al., 2013).

(iii) The distance between BCC_CSM1.1(m) and BCC_CSM1.1 can be explained by the more realistic surface air tempera-
ture predictions obtained by the former (Wu et al., 2014), which is exactly the quantity we study.

Finally, Fig. 6c shows predictions for four latent processes (is = 1, 2 with ir = 1, 2). The first spatial eigenvector (ir = 1)
is constant in space; combined with the strongest eigenvector of Ks (is = 1), we obtain a strong signal constituting seasonal
temperature changes.

5See https://portal.enes.org/models/earthsystem-models/ipsl/ipslesm.

https://portal.enes.org/models/earthsystem-models/ipsl/ipslesm

