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Abstract
Bayesian reward learning from demonstrations
enables rigorous safety and uncertainty analysis
when performing imitation learning. However,
Bayesian reward learning methods are typically
computationally intractable for complex control
problems. We propose Bayesian Reward Ex-
trapolation (Bayesian REX), a highly efficient
Bayesian reward learning algorithm that scales
to high-dimensional imitation learning problems
by pre-training a low-dimensional feature encod-
ing via self-supervised tasks and then leveraging
preferences over demonstrations to perform fast
Bayesian inference. Bayesian REX can learn to
play Atari games from demonstrations, without
access to the game score and can generate 100,000
samples from the posterior over reward functions
in only 5 minutes on a personal laptop. Bayesian
REX also results in imitation learning perfor-
mance that is competitive with or better than state-
of-the-art methods that only learn point estimates
of the reward function. Finally, Bayesian REX en-
ables efficient high-confidence policy evaluation
without having access to samples of the reward
function. These high-confidence performance
bounds can be used to rank the performance and
risk of a variety of evaluation policies and provide
a way to detect reward hacking behaviors.

1. Introduction
It is important that robots and other autonomous agents can
safely learn from and adapt to a variety of human prefer-
ences and goals. One common way to learn preferences
and goals is via imitation learning, in which an autonomous
agent learns how to perform a task by observing demonstra-
tions of the task (Argall et al., 2009). When learning from
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demonstrations, it is important for an agent to be able to
provide high-confidence bounds on its performance with re-
spect to the demonstrator; however, while there exists much
work on high-confidence off-policy evaluation in the rein-
forcement learning (RL) setting, there has been much less
work on high-confidence policy evaluation in the imitation
learning setting, where the reward samples are unavailable.

Prior work on high-confidence policy evaluation for im-
itation learning has used Bayesian inverse reinforcement
learning (IRL) (Ramachandran & Amir, 2007) to allow an
agent to reason about reward uncertainty and policy gen-
eralization error (Brown et al., 2018). However, Bayesian
IRL is typically intractable for complex problems due to the
need to repeatedly solve an MDP in the inner loop, resulting
in high computational cost as well as high sample cost if a
model is not available. This precludes robust safety and un-
certainty analysis for imitation learning in high-dimensional
problems or in problems in which a model of the MDP is
unavailable. We seek to remedy this problem by propos-
ing and evaluating a method for safe and efficient Bayesian
reward learning via preferences over demonstrations. Pref-
erences over trajectories are intuitive for humans to provide
(Akrour et al., 2011; Wilson et al., 2012; Sadigh et al., 2017;
Christiano et al., 2017; Palan et al., 2019) and enable better-
than-demonstrator performance (Brown et al., 2019b;a). To
the best of our knowledge, we are the first to show that
preferences over demonstrations enable both fast Bayesian
reward learning in high-dimensional, visual control tasks as
well as efficient high-confidence performance bounds.

We first formalize the problem of high-confidence policy
evaluation (Thomas et al., 2015) for imitation learning. We
then propose a novel algorithm, Bayesian Reward Extrapola-
tion (Bayesian REX), that uses a pairwise ranking likelihood
to significantly increase the efficiency of generating samples
from the posterior distribution over reward functions. We
demonstrate that Bayesian REX can leverage neural network
function approximation to learn useful reward features via
self-supervised learning in order to efficiently perform deep
Bayesian reward inference from visual demonstrations. Fi-
nally, we demonstrate that samples obtained from Bayesian
REX can be used to solve the high-confidence policy evalua-
tion problem for imitation learning. We evaluate our method
on imitation learning for Atari games and demonstrate that
we can efficiently compute high-confidence bounds on pol-



Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

icy performance, without access to samples of the reward
function. We use these high-confidence performance bounds
to rank different evaluation policies according to their risk
and expected return under the posterior distribution over
the unknown ground-truth reward function. Finally, we pro-
vide evidence that bounds on uncertainty and risk provide a
useful tool for detecting reward hacking/gaming (Amodei
et al., 2016), a common problem in reward inference from
demonstrations (Ibarz et al., 2018) as well as reinforcement
learning (Ng et al., 1999; Leike et al., 2017).

2. Related work
2.1. Imitation Learning

Imitation learning is the problem of learning a policy from
demonstrations and can roughly be divided into techniques
that use behavioral cloning and techniques that use in-
verse reinforcement learning. Behavioral cloning methods
(Pomerleau, 1991; Torabi et al., 2018) seek to solve the imi-
tation learning problem via supervised learning, in which
the goal is to learn a mapping from states to actions that
mimics the demonstrator. While computationally efficient,
these methods suffer from compounding errors (Ross et al.,
2011). Methods such as DAgger (Ross et al., 2011) and
DART (Laskey et al., 2017) avoid this problem by repeat-
edly collecting additional state-action pairs from an expert.

Inverse reinforcement learning (IRL) methods seek to solve
the imitation learning problem by estimating the reward
function that the demonstrator is optimizing (Ng & Russell,
2000). Classical approaches repeatedly alternate between a
reward estimation step and a full policy optimization step
(Abbeel & Ng, 2004; Ziebart et al., 2008; Ramachandran
& Amir, 2007). Bayesian IRL (Ramachandran & Amir,
2007) samples from the posterior distribution over reward
functions, whereas other methods seek a single reward func-
tion that induces the demonstrator’s feature expectations
(Abbeel & Ng, 2004), often while also seeking to maximize
the entropy of the resulting policy (Ziebart et al., 2008).

Most deep learning approaches for IRL use maximum en-
tropy policy optimization and divergence minimization be-
tween marginal state-action distributions (Ho & Ermon,
2016; Fu et al., 2017; Ghasemipour et al., 2019) and are re-
lated to Generative Adversarial Networks (Finn et al., 2016).
These methods scale to complex control problems by iterat-
ing between reward learning and policy learning steps. Al-
ternatively, Brown et al. (2019b) use ranked demonstrations
to learn a reward function via supervised learning without re-
quiring an MDP solver or any inference time data collection.
The learned reward function can then be used to optimize
a potentially better-than-demonstrator policy. Brown et al.
(2019a) automatically generate preferences over demonstra-
tions via noise injection, allowing better-than-demonstrator

performance even in the absence of explicit preference la-
bels. However, despite their successes, deep learning ap-
proaches to IRL typically only return a point estimate of
the reward function, precluding uncertainty and robustness
analysis.

2.2. Safe Imitation Learning

While there has been much interest in imitation learning,
less attention has been given to problems related to safety.
SafeDAgger (Zhang & Cho, 2017) and EnsembleDAgger
(Menda et al., 2019) are extensions of DAgger that give
control to the demonstrator in states where the imitation
learning policy is predicted to have a large action difference
from the demonstrator. Other approaches to safe imitation
learning seek to match the tail risk of the expert as well as
find a policy that is indistinguishable from the demonstra-
tions (Majumdar et al., 2017; Lacotte et al., 2019).

Brown & Niekum (2018) propose a Bayesian sampling
approach to provide explicit high-confidence performance
bounds in the imitation learning setting, but require an MDP
solver in the inner-loop. Their method uses samples from the
posterior distribution P (R|D) to compute sample efficient
probabilistic upper bounds on the policy loss of any evalu-
ation policy. Other work considers robust policy optimiza-
tion over a distribution of reward functions conditioned on
demonstrations or a partially specified reward function, but
these methods require an MDP solver in the inner loop, lim-
iting their scalability (Hadfield-Menell et al., 2017; Brown
et al., 2018; Huang et al., 2018). We extend and generalize
the work of Brown & Niekum (2018) by demonstrating,
for the first time, that high-confidence performance bounds
can be efficiently obtained when performing imitation learn-
ing from high-dimensional visual demonstrations without
requiring an MDP solver or model during reward inference.

2.3. Value Alignment and Active Preference Learning

Safe imitation learning is closely related to the problem of
value alignment, which seeks to design methods that prevent
AI systems from acting in ways that violate human values
(Hadfield-Menell et al., 2016; Fisac et al., 2020). Research
has shown that difficulties arise when an agent seeks to align
its value with a human who is not perfectly rational (Milli
et al., 2017) and there are fundamental impossibility results
regarding value alignment unless the objective is represented
as a set of partially ordered preferences (Eckersley, 2018).

Prior work has used active queries to perform Bayesian re-
ward inference on low-dimensional, hand-crafted reward
features (Sadigh et al., 2017; Brown et al., 2018; Bıyık
et al., 2019). Christiano et al. (2017) and Ibarz et al. (2018)
use deep networks to scale active preference learning to
high-dimensional tasks, but require large numbers of ac-
tive queries during policy optimization and do not perform
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Bayesian reward inference. Our work complements and
extends prior work by: (1) removing the requirement for ac-
tive queries during reward inference or policy optimization,
(2) showing that preferences over demonstrations enable
efficient Bayesian reward inference in high-dimensional vi-
sual control tasks, and (3) providing an efficient method for
computing high-confidence bounds on the performance of
any evaluation policy in the imitation learning setting.

2.4. Safe Reinforcement Learning

Research on safe reinforcement learning (RL) usually fo-
cuses on safe exploration strategies or optimization objec-
tives other than expected return (Garcıa & Fernández, 2015).
Recently, objectives based on measures of risk such as value
at risk (VaR) and conditional VaR have been shown to pro-
vide tractable and useful risk-sensitive measures of perfor-
mance for MDPs (Tamar et al., 2015; Chow et al., 2015).
Other work focuses on finding robust solutions to MDPs
(Ghavamzadeh et al., 2016; Petrik & Russell, 2019), us-
ing model-based RL to safely improve upon suboptimal
demonstrations (Thananjeyan et al., 2019), and obtaining
high-confidence off-policy bounds on the performance of an
evaluation policy (Thomas et al., 2015; Hanna et al., 2019).
Our work provides an efficient solution to the problem of
high-confidence policy evaluation in the imitation learning
setting, in which samples of rewards are not observed and
the demonstrator’s policy is unknown.

2.5. Bayesian Neural Networks

Bayesian neural networks typically either perform Markov
Chain Monte Carlo (MCMC) sampling (MacKay, 1992),
variational inference (Sun et al., 2019; Khan et al., 2018), or
use hybrid methods such as particle-based inference (Liu &
Wang, 2016) to approximate the posterior distribution over
neural network weights. Alternative approaches such as
ensembles (Lakshminarayanan et al., 2017) or approxima-
tions such as Bayesian dropout (Gal & Ghahramani, 2016;
Kendall & Gal, 2017) have also been used to obtain a distri-
bution on the outputs of a neural network in order to provide
uncertainty quantification (Maddox et al., 2019). We are not
only interested in the uncertainty of the output of the reward
function, but also in the uncertainty over the performance
of a policy when evaluated under an uncertain reward func-
tion. Thus, we face the difficult problem of measuring the
uncertainty in the evaluation of a policy, which depends on
the stochasticity of the policy and the environment, as well
as the uncertainty over the unobserved reward function.

3. Preliminaries
We model the environment as a Markov Decision Process
(MDP) consisting of states S, actions A, transition dynam-
ics T : S × A × S → [0, 1], reward function R : S → R,

initial state distribution S0, and discount factor γ. Our
approach extends naturally to rewards defined as R(s, a)
or R(s, a, s′); however, state-based rewards have some ad-
vantages. Fu et al. (2017) prove that a state-only reward
function is a necessary and sufficient condition for a reward
function that is disentangled from dynamics. Learning a
state-based reward also allows the learned reward to be used
as a potential function for reward shaping (Ng et al., 1999),
if a sparse ground-truth reward function is available.

A policy π is a mapping from states to a probability distribu-
tion over actions. We denote the value of a policy π under
reward function R as V πR = Eπ[

∑∞
t=0 γ

tR(st)|s0 ∼ S0]
and denote the value of executing policy π starting at state
s ∈ S as V πR (s) = Eπ[

∑∞
t=0 γ

tR(st)|s0 = s]. Given a
reward function R, the Q-value of a state-action pair (s, a)
is QπR(s, a) = Eπ[

∑∞
t=0 γ

tR(st)|s0 = s, a0 = a]. We also
denote V ∗R = maxπ V

π
R and Q∗R(s, a) = maxπ Q

π
R(s, a).

Bayesian inverse reinforcement learning (IRL) (Ramachan-
dran & Amir, 2007) models the environment as an MDP\R
in which the reward function is unavailable. Bayesian IRL
seeks to infer the latent reward function of a Boltzman-
rational demonstrator that executes the following policy

πβR(a|s) =
eβQ

∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

, (1)

in which R is the true reward function of the demonstrator,
and β ∈ [0,∞) represents the confidence that the demon-
strator is acting optimally. Under the assumption of Boltz-
man rationality, the likelihood of a set of demonstrated
state-action pairs, D = {(s, a) : (s, a) ∼ πD}, given a
specific reward function hypothesis R, can be written as

P (D|R) =
∏

(s,a)∈D

πβR(a|s) =
∏

(s,a)∈D

eβQ
∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

.

(2)

Bayesian IRL generates samples from the posterior distri-
bution P (R|D) ∼ P (D|R)P (R) via Markov Chain Monte
Carlo (MCMC) sampling, but this requires solving for Q∗R′
to compute the likelihood of each new proposal R′. Thus,
Bayesian IRL methods are only used for low-dimensional
problems with reward functions that are often linear combi-
nations of a small number of hand-crafted features (Bobu
et al., 2018; Bıyık et al., 2019). One of our contributions
is an efficient Bayesian reward inference algorithm that
leverages preferences over demonstrations in order to signif-
icantly improve the efficiency of Bayesian reward inference.

4. High Confidence Policy Evaluation for
Imitation Learning

Before detailing our approach, we first formalize the prob-
lem of high-confidence policy evaluation for imitation learn-
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ing. We assume access to an MDP\R, an evaluation policy
πeval, a set of demonstrations, D = {τ1, . . . , τm}, in which
τi is either a complete or partial trajectory comprised of
states or state-action pairs, a confidence level δ, and perfor-
mance statistic g : Π × R → R, in which R denotes the
space of reward functions and Π is the space of all policies.

The High-Confidence Policy Evaluation problem for Imita-
tion Learning (HCPE-IL) is to find a high-confidence lower
bound ĝ : Π×D → R such that

Pr(g(πeval, R
∗) ≥ ĝ(πeval, D)) ≥ 1− δ, (3)

in whichR∗ denotes the demonstrator’s true reward function
and D denotes the space of all possible demonstration sets.
HCPE-IL takes as input an evaluation policy πeval, a set
of demonstrations D, and a performance statistic, g, which
evaluates a policy under a reward function. The goal of
HCPE-IL is to return a high-confidence lower bound ĝ on
the performance statistic g(πeval, R

∗).

5. Deep Bayesian Reward Extrapolation
We now describe our main contribution: a method for scal-
ing Bayesian reward inference to high-dimensional visual
control tasks as a way to efficiently solve the HCPE-IL
problem for complex imitation learning tasks. Our first
insight is that the main bottleneck for standard Bayesian
IRL (Ramachandran & Amir, 2007) is computing the like-
lihood function in Equation (2) which requires optimal Q-
values. Thus, to make Bayesian reward inference scale to
high-dimensional visual domains, it is necessary to either
efficiently approximate optimal Q-values or to formulate
a new likelihood. Value-based reinforcement learning fo-
cuses on efficiently learning optimal Q-values; however, for
complex visual control tasks, RL algorithms can take sev-
eral hours or even days to train (Mnih et al., 2015; Hessel
et al., 2018). This makes MCMC, which requires evaluat-
ing large numbers of likelihood ratios, infeasible given the
current state-of-the-art in value-based RL. Methods such
as transfer learning have great potential to reduce the time
needed to calculate Q∗R for a new proposed reward function
R; however, transfer learning is not guaranteed to speed up
reinforcement learning (Taylor & Stone, 2009). Thus, we
choose to focus on reformulating the likelihood function as
a way to speed up Bayesian reward inference.

An ideal likelihood function requires little computation and
minimal interaction with the environment. To accomplish
this, we leverage recent work on learning control policies
from preferences (Christiano et al., 2017; Palan et al., 2019;
Bıyık et al., 2019). Given ranked demonstrations, Brown
et al. (2019b) propose Trajectory-ranked Reward Extrap-
olation (T-REX): an efficient reward inference algorithm
that transforms reward function learning into classification
problem via a pairwise ranking loss. T-REX removes the

need to repeatedly sample from or partially solve an MDP in
the inner loop, allowing it to scale to visual imitation learn-
ing domains such as Atari and to extrapolate beyond the
performance of the best demonstration. However, T-REX
only solves for a point estimate of the reward function. We
now discuss how a similar approach based on a pairwise
preference likelihood allows for efficient sampling from the
posterior distribution over reward functions.

We assume access to a sequence of m trajectories, D =
{τ1, . . . , τm}, along with a set of pairwise preferences over
trajectories P = {(i, j) : τi ≺ τj}. Note that we do not
require a total-ordering over trajectories. These preferences
may come from a human demonstrator or could be auto-
matically generated by watching a learner improve at a task
(Jacq et al., 2019; Brown et al., 2019b) or via noise injec-
tion (Brown et al., 2019a). Given trajectory preferences,
we can formulate a pair-wise ranking likelihood to compute
the likelihood of a set of preferences over demonstrations
P , given a parameterized reward function hypothesis Rθ.
We use the standard Bradley-Terry model (Bradley & Terry,
1952) to obtain the following pairwise ranking likelihood
function, commonly used in learning to rank applications
such collaborative filtering (Volkovs & Zemel, 2014):

P (D,P | Rθ) =
∏

(i,j)∈P

eβRθ(τj)

eβRθ(τi) + eβRθ(τj)
, (4)

in which Rθ(τ) =
∑
s∈τ Rθ(s) is the predicted return

of trajectory τ under the reward function Rθ, and β is
the inverse temperature parameter that models the con-
fidence in the preference labels. We can then perform
Bayesian inference via MCMC to obtain samples from
P (Rθ | D,P) ∝ P (D,P | Rθ)P (Rθ). We call this ap-
proach Bayesian Reward Extrapolation or Bayesian REX.

Note that using the likelihood function defined in Equation
(4) does not require solving an MDP. In fact, it does not re-
quire any rollouts or access to the MDP. All that is required
is that we first calculate the return of each trajectory under
Rθ and compare the relative predicted returns to the prefer-
ence labels to determine the likelihood of the demonstrations
under the reward hypothesis Rθ. Thus, given preferences
over demonstrations, Bayesian REX is significantly more ef-
ficient than standard Bayesian IRL. In the following section,
we discuss further optimizations that improve the efficiency
of Bayesian REX and make it more amenable to our end
goal of high-confidence policy evaluation bounds.

5.1. Optimizations

In order to learn rich, complex reward functions, it is desir-
able to use a deep network to represent the reward function
Rθ. While MCMC remains the gold-standard for Bayesian
Neural Networks, it is often challenging to scale to deep net-
works. To make Bayesian REX more efficient and practical,
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Figure 1. Bayesian Reward Extrapolation uses ranked demonstrations to pre-train a low-dimensional state feature embedding φ(s) via
self-supervised losses. After pre-training, the latent embedding function φ(s) is frozen and the reward function is represented as a
linear combination of the learned features: R(s) = wTφ(s). MCMC proposal evaluations use a pairwise ranking likelihood that gives
the likelihood of the preferences P over demonstrations D, given a proposal w. By pre-computing the embeddings of the ranked
demonstrations, Φτi , MCMC sampling is highly efficient—it does not require access to an MDP solver or data collection during inference.

we propose to limit the proposal to only change the last layer
of weights in Rθ when generating MCMC proposals—we
will discuss pre-training the bottom layers of Rθ in the next
section. After pre-training, we freeze all but the last layer
of weights and use the activations of the penultimate layer
as the latent reward features φ(s) ∈ Rk. This allows the
reward at a state to be represented as a linear combination
of k features: Rθ(s) = wTφ(s). Similar to work by Pradier
et al. (2018), operating in a lower-dimensional latent space
makes full Bayesian inference tractable.

A second advantage of using a learned linear reward func-
tion is that it allows us to efficiently compute likelihood
ratios when performing MCMC. Consider the likelihood
function in Equation (4). If we do not represent Rθ as a
linear combination of pretrained features, and instead let any
parameter in Rθ change during each proposal, then for m
demonstrations of length T , computing P (D,P | Rθ) for a
new proposal Rθ requires O(mT ) forward passes through
the entire network to compute Rθ(τi). Thus, the complex-
ity of generating N samples from the posterior results is
O(mTN |Rθ|), where |Rθ| is the number of computations
required for a full forward pass through the entire network
Rθ. Given that we would like to use a deep network to
parameterize Rθ and generate thousands of samples from
the posterior distribution over Rθ, this many computations
will significantly slow down MCMC proposal evaluation.

If we represent Rθ as a linear combination of pre-trained
features, we can reduce this computational cost because

Rθ(τ) =
∑
s∈τ

wTφ(s) = wT
∑
s∈τ

φ(s) = wTΦτ . (5)

Thus, we can precompute and cache Φτi =
∑
s∈τi φ(s) for

i = 1, . . . ,m and rewrite the likelihood as

P (D,P | Rθ) =
∏

(i,j)∈P

eβw
TΦτj

eβw
TΦτj + eβw

TΦτi
. (6)

Note that demonstrations only need to be passed through
the reward network once to compute Φτi since the pre-
trained embedding remains constant during MCMC pro-
posal generation. This results in an initial O(mT ) passes
through all but the last layer of Rθ to obtain Φτi , for
i = 1, . . . ,m, and then only O(mk) multiplications per
proposal evaluation thereafter—each proposal requires that
we compute wTΦτi for i = 1, . . . ,m and Φτi ∈ Rk.
Thus, when using feature pre-training, the total complex-
ity is only O(mT |Rθ|+mkN) to generate N samples via
MCMC. This reduction in the complexity of MCMC from
O(mTN |Rθ|) to O(mT |Rθ|+mkN) results in significant
and practical computational savings because (1) we want to
makeN andRθ large and (2) the number of demonstrations,
m, and the size of the latent embedding, k, are typically
several orders of magnitude smaller than N and |Rθ|.

A third, and critical advantage of using a learned linear re-
ward function is that it makes solving the HCPE-IL problem
discussed in Section 4 tractable. Performing a single pol-
icy evaluation is a non-trivial task (Sutton et al., 2000) and
even in tabular settings has complexity O(|S|3) in which
|S| is the size of the state-space (Littman et al., 1995). Be-
cause we are in an imitation learning setting, we would like
to be able to efficiently evaluate any given policy across
the posterior distribution over reward functions found via
Bayesian REX. Given a posterior distribution over N re-
ward function hypotheses we would need to solve N policy
evaluations. However, note that given R(s) = wTφ(s), the
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value function of a policy can be written as

V πR = Eπ[

T∑
t=0

R(st)] = wTEπ[

T∑
t=0

φ(st)] = wTΦπ, (7)

in which we assume a finite horizon MDP with horizon T
and in which Φπ are the expected feature counts (Abbeel
& Ng, 2004; Barreto et al., 2017) of π. Thus, given any
evaluation policy πeval, we only need to solve one policy
evaluation problem to compute Φeval. We can then com-
pute the expected value of πeval over the entire posterior
distribution of reward functions via a single matrix vector
multiplicationWΦπeval

, whereW is anN -by-k matrix with
each row corresponding to a single reward function weight
hypothesis wT . This significantly reduces the complexity
of policy evaluation over the reward function posterior dis-
tribution from O(N |S|3) to O(|S|3 +Nk).

When we refer to Bayesian REX we will refer to the opti-
mized version described in this section (see the Appendix
for full implementation details and pseudo-code)1 . Run-
ning MCMC with 66 preference labels to generate 100,000
reward hypothesis for Atari imitation learning tasks takes
approximately 5 minutes on a Dell Inspiron 5577 personal
laptop with an Intel i7-7700 processor without using the
GPU. In comparison, using standard Bayesian IRL to gen-
erate one sample from the posterior takes 10+ hours of
training for a parallelized PPO reinforcement learning agent
(Dhariwal et al., 2017) on an NVIDIA TITAN V GPU.

5.2. Pre-training the Reward Function Network

The previous section presupposed access to a pretrained
latent embedding function φ : S → Rk. We now discuss our
pre-training process. Because we are interested in imitation
learning problems, we need to be able to train φ(s) from the
demonstrations without access to the ground-truth reward
function. One potential method is to train Rθ using the
pairwise ranking likelihood function in Equation (4) and
then freeze all but the last layer of weights; however, the
learned embedding may overfit to the limited number of
preferences over demonstrations and fail to capture features
relevant to the ground-truth reward function. Thus, we
supplement the pairwise ranking objective with auxiliary
objectives that can be optimized in a self-supervised fashion
using data from the demonstrations.

We use the following self-supervised tasks to pre-train Rθ:
(1) Learn an inverse dynamics model that uses embeddings
φ(st) and φ(st+1) to predict the corresponding action at
(Torabi et al., 2018; Hanna & Stone, 2017), (2) Learn a
forward dynamics model that predicts st+1 from φ(st) and
at (Oh et al., 2015; Thananjeyan et al., 2019), (3) Learn an

1Project page, code, and demonstration data are available at
https://sites.google.com/view/bayesianrex/

Table 1. Self-supervised learning objectives used to pre-train φ(s).

Inverse Dynamics fID(φ(st), φ(st+1))→ at
Forward Dynamics fFD(φ(st), at)→ st+1

Temporal Distance fTD(φ(st), φ(st+x)→ x
Variational Autoencoder fA(φ(st))→ st

embedding φ(s) that predicts the temporal distance between
two randomly chosen states from the same demonstration
(Aytar et al., 2018), and (4) Train a variational pixel-to-pixel
autoencoder in which φ(s) is the learned latent encoding
(Makhzani & Frey, 2017; Doersch, 2016). Table 1 summa-
rizes the self-supervised tasks used to train φ(s).

There are many possibilities for pre-training φ(s). We used
the objectives described above to encourage the embedding
to encode different features. For example, an accurate in-
verse dynamics model can be learned by only attending to
the movement of the agent. Learning forward dynamics sup-
plements this by requiring φ(s) to encode information about
short-term changes to the environment. Learning to predict
the temporal distance between states in a trajectory forces
φ(s) to encode long-term progress. Finally, the autoencoder
loss acts as a regularizer to the other losses as it seeks to
embed all aspects of the state (see the Appendix for details).
The Bayesian REX pipeline for sampling from the reward
function posterior is shown in Figure 1.

5.3. HCPE-IL via Bayesian REX

We now discuss how to use Bayesian REX to find an ef-
ficient solution to the high-confidence policy evaluation
for imitation learning (HCPE-IL) problem (see Section 4).
Given samples from the distribution P (w | D,P), where
R(s) = wTφ(s), we compute the posterior distribution over
any performance statistic g(πeval, R

∗) as follows. For each
sampled weight vector w produced by Bayesian REX, we
compute g(πeval, w). This results in a sample from the pos-
terior distribution P (g(πeval, R) | D,P), i.e., the posterior
distribution over performance statistic g. We then compute
a (1− δ) confidence lower bound, ĝ(πeval, D), by finding
the δ-quantile of g(πeval, w) for w ∼ P (w | D,P).

While there are many potential performance statistics g, we
chose to focus on bounding the expected value of the eval-
uation policy, i.e., g(πeval, R

∗) = V πeval

R∗ = w∗TΦπeval
. To

compute a 1−δ confidence bound on V πeval

R∗ , we take advan-
tage of the learned linear reward representation to efficiently
calculate the posterior distribution over policy returns given
preferences and demonstrations. This distribution over re-
turns is calculated via a matrix vector product, WΦπeval

, in
which each row ofW is a sample, w, from the MCMC chain
and πeval is the evaluation policy. We then sort the resulting
vector and select the δ-quantile lowest value. This results in

https://sites.google.com/view/bayesianrex/
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a 1− δ confidence lower bound on V πeval

R∗ and corresponds
to the δ-Value at Risk (VaR) over V πeval

R ∼ P (R | D,P)
(Jorion, 1997; Brown & Niekum, 2018).

6. Experimental Results
6.1. Bayesian IRL vs. Bayesian REX

As noted previously, Bayesian IRL does not scale to high-
dimensional tasks due to the requirement of repeatedly
solving for an MDP in the inner loop. However, for
low-dimensional problems it is still interesting to compare
Bayesian IRL with Bayesian REX. We performed a large
number of experiments on a variety of randomly generated
gridworlds with low-dimensional reward features. We sum-
marize our results here for three different ablations and give
full results and implementation details in the appendix.

Ranked Suboptimal vs. Optimal Demos: Given a suffi-
cient number of suboptimal ranked demonstrations (> 5),
Bayesian REX performs on par and occasionally better
than Bayesian IRL when given the same number of optimal
demonstrations.

Only Ranked Suboptimal Demos Bayesian REX always
significantly outperforms Bayesian IRL when both algo-
rithms receive suboptimal ranked demonstrations. For fairer
comparison, we used a Bayesian IRL algorithm designed
to learn from both good and bad demonstrations (Cui &
Niekum, 2018). We labeled the top X% ranked demonstra-
tions as good and bottomX% ranked as bad. This improved
results for Bayesian IRL, but Bayesian REX still performed
significantly better across all X .

Only Optimal Demos: Given a sufficient number of opti-
mal demonstrations ( > 5), Bayesian IRL significantly out-
performs Bayesian REX. To use Bayesian REX with only
optimal demonstrations, we followed prior work (Brown
et al., 2019a) and auto-generated pairwise preferences using
uniform random rollouts that were labeled as less preferred
than the demonstrations. In general, this performed much
worse than Bayesian IRL, but for small numbers of demon-
strations ( ≤ 5) Bayesian REX leverages self-supervised
rankings to perform nearly as well as full Bayesian IRL.

These results demonstrate that if a very small number of
unlabeled near-optimal demonstrations are available, then
classical Bayesian IRL is the natural choice for performing
reward inference. However, if any of these assumptions are
not true, then Bayesian REX is a competitive and often su-
perior alternative for performing Bayesian reward inference
even in low-dimensional problems where an MDP solver is
tractable. If a highly efficient MDP solver is not available,
then Bayesian IRL is infeasible and Bayesian REX is the
natural choice for Bayesian reward inference.

6.2. Visual Imitation Learning via Bayesian REX

We next tested the imitation learning performance of
Bayesian REX for high-dimensional problems where classi-
cal Bayesian reward inferernce is infeasible. We pre-trained
a 64 dimensional latent state embedding φ(s) using the self-
supervised losses shown in Table 1 and the T-REX pairwise
preference loss. We found via ablation studies that combin-
ing the T-REX loss with the self-supervised losses resulted
in better performance than training only with the T-REX loss
or only with the self-supervised losses (see Appendix for
details). We then used Bayesian REX to generate 200,000
samples from the posterior P (R | D,P). To optimize a con-
trol policy, we used Proximal Policy Optimization (PPO)
(Schulman et al., 2017) with the MAP and mean reward
functions from the posterior (see Appendix for details).

To test whether Bayesian REX scales to complex imitation
learning tasks we selected five Atari games from the Ar-
cade Learning Environment (Bellemare et al., 2013). We
do not give the RL agent access to the ground-truth reward
signal and mask the game scores and number of lives in
the demonstrations. Table 2 shows the imitation learning
performance of Bayesian REX. We also compare against
the results reported by (Brown et al., 2019b) for T-REX, and
GAIL (Ho & Ermon, 2016) and use the same 12 subopti-
mal demonstrations used by Brown et al. (2019b) to train
Bayesian REX (see Appendix for details).

Table 2 shows that Bayesian REX is able to utilize prefer-
ences over demonstrations to infer an accurate reward func-
tion that enables better-than-demonstrator performance. The
average ground-truth return for Bayesian REX surpasses the
performance of the best demonstration across all 5 games.
In comparison, GAIL seeks to match the demonstrator’s
state-action distributions which makes imitation learning
difficult when demonstrations are suboptimal and noisy. In
addition to providing uncertainty information, Bayesian
REX remains competitive with T-REX (which only finds a
maximum likelihood estimate of the reward function) and
achieves better performance on 3 out of 5 games.

6.3. High-Confidence Policy Performance Bounds

Next, we ran an experiment to validate whether the poste-
rior distribution generated by Bayesian REX can be used to
solve the HCPE-IL problem described in Section 4. We eval-
uated four different evaluation policies, A ≺ B ≺ C ≺ D,
created by partially training a PPO agent on the ground-
truth reward function and checkpointing the policy at vari-
ous stages of learning. We ran Bayesian REX to generate
200,000 samples from P (R | D,P). To address some of
the ill-posedness of IRL, we normalize the weights w such
that ‖w‖2 = 1. Given a fixed scale for the reward weights,
we can compare the relative performance of the different
evaluation policies when evaluated over the posterior.



Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 2. Ground-truth average scores when optimizing the mean and MAP rewards found using Bayesian REX. We also compare against
the performnace of T-REX (Brown et al., 2019b) and GAIL (Ho & Ermon, 2016). Bayesian REX and T-REX are each given 12
demonstrations with ground-truth pairwise preferences. GAIL cannot learn from preferences so it is given 10 demonstrations comparable
to the best demonstration given to the other algorithms. The average performance for each IRL algorithm is the average over 30 rollouts.

Ranked Demonstrations Bayesian REX Mean Bayesian REX MAP T-REX GAIL

Game Best Avg Avg (Std) Avg (Std) Avg Avg

Beam Rider 1332 686.0 5,504.7 (2121.2) 5,870.3 (1905.1) 3,335.7 355.5
Breakout 32 14.5 390.7 (48.8) 393.1 (63.7) 221.3 0.28
Enduro 84 39.8 487.7 (89.4) 135.0 (24.8) 586.8 0.28

Seaquest 600 373.3 734.7 (41.9) 606.0 (37.6) 747.3 0.0
Space Invaders 600 332.9 1,118.8 (483.1) 961.3 (392.3) 1,032.5 370.2

Table 3. Beam Rider policy evaluation bounds compared with
ground-truth game scores. Policies A-D correspond to evalua-
tion policies of varying quality obtained by checkpointing an RL
agent during training. The No-Op policy seeks to hack the learned
reward by always playing the no-op action, resulting in very long
trajectories with high mean predicted performance but a very neg-
ative 95%-confidence (0.05-VaR) lower bound on expected return.

Predicted Ground Truth Avg.
Policy Mean 0.05-VaR Score Length

A 17.1 7.9 480.6 1372.6
B 22.7 11.9 703.4 1,412.8
C 45.5 24.9 1828.5 2,389.9
D 57.6 31.5 2586.7 2,965.0

No-Op 102.5 -1557.1 0.0 99,994.0

The results for Beam Rider are shown in Table 3. We show
results for partially trained RL policies A–D. We found that
the ground-truth returns for the checkpoints were highly
correlated with the mean and 0.05-VaR (5th percentile policy
return) returns under the posterior. However, we also noticed
that the trajectory length was also highly correlated with the
ground-truth reward. If the reward function learned via IRL
gives a small positive reward at every time step, then long
polices that do the wrong thing may look good under the
posterior. To test this hypothesis we used a No-Op policy
that seeks to exploit the learned reward function by not
taking any actions. This allows the agent to live until the
Atari emulator times out after 99,994 steps.

Table 3 shows that while the No-Op policy has a high ex-
pected return over the chain, looking at the 0.05-VaR shows
that the No-Op policy has high risk under the distribution,
much lower than evaluation policy A. Our results demon-
strate that reasoning about probabilistic worst-case perfor-
mance may be one potential way to detect policies that
exhibit so-called reward hacking (Amodei et al., 2016) or
that have overfit to certain features in the demonstrations
that are correlated with the intent of the demonstrations,

Table 4. Breakout policy evaluation bounds compared with ground-
truth game scores. Top Half: No-Op never releases the ball, result-
ing in high mean predicted performance but a low 95%-confidence
bound (0.05-VaR). The MAP policy has even higher risk but also
high expected return. Bottom Half: After rerunning MCMC with
a ranked trajectory from both the MAP and No-Op policies, the
posterior distribution matches the true preferences.

Risk profiles given initial preferences

Predicted Ground Truth Avg.
Policy Mean 0.05-VaR Score Length

A 1.5 0.5 1.9 202.7
B 6.3 3.7 15.8 608.4
C 10.6 5.8 27.7 849.3
D 13.9 6.2 41.2 1020.8

MAP 98.2 -370.2 401.0 8780.0
No-Op 41.2 1.0 0.0 7000.0

Risk profiles after rankings w.r.t. MAP and No-Op

A 0.7 0.3 1.9 202.7
B 8.7 5.5 15.8 608.4
C 18.3 12.1 27.7 849.3
D 26.3 17.1 41.2 1020.8

MAP 606.8 289.1 401.0 8780.0
No-Op -5.0 -13.5 0.0 7000.0

but do not lead to desired behavior, a common problem in
imitation learning (Ibarz et al., 2018; de Haan et al., 2019).

Table 4 contains policy evaluation results for the game
Breakout. The top half of the table shows the mean return
and 95%-confidence lower bound on the expected return un-
der the reward function posterior for four evaluation policies
as well as the MAP policy found via Bayesian IRL and a
No-Op policy that never chooses to release the ball. Both the
MAP and No-Op policies have high expected returns under
the reward function posterior, but also have high risk (low
0.05-VaR). The MAP policy has much higher risk than the
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Table 5. Beam Rider human demonstrations.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 12.4 5.8 1092 1000.0
bad 10.7 4.5 396 1000.0

pessimal 6.6 0.8 0 1000.0
adversarial 8.4 2.4 176 1000.0

No-Op policy, despite good true performance. One likely
reason is that, as shown in Table 2, the best demonstrations
given to Bayesian REX only achieved a game score of 32.
Thus, the MAP policy represents an out of distribution sam-
ple and thus has potentially high risk, since Bayesian REX
was not trained on policies that hit any of the top layers
of bricks. The ranked demonstrations do not give enough
evidence to eliminate the possibility that only lower layers
of bricks should be hit.

To test whether active learning can help, we incorporated
two active queries: a single rollout from the MAP policy
and a single rollout from the No-Op policy and ranked them
as better and worse, respectively, than the original set of 12
suboptimal demonstrations. As the bottom of Table 4 shows,
adding two more ranked demonstrations and re-running
Bayesian inference, results in a significant change in the
risk profiles of the MAP and No-Op policy—the No-Op
policy is now correctly predicted to have high risk and low
expected returns and the MAP policy now has a much higher
95%-confidence lower bound on performance.

6.4. Human Demonstrations

To investigate whether Bayesian REX is able to correctly
rank human demonstrations, we used Bayesian REX to
calculate high-confidence performance bounds for a variety
of human demonstrations (see the Appendix for full details
and additional results).

We generated four human demonstrations for Beam Rider:
(1) good, a good demonstration that plays the game well,
(2) bad, a bad demonstration that seeks to play the game but
does a poor job, (3) pessimal, a demonstration that does not
shoot enemies and seeks enemy bullets, and (4) adversarial
a demonstration that pretends to play the game by moving
and shooting but tries to avoid actually shooting enemies.
The resulting high-confidence policy evaluations are shown
in Table 5. The high-confidence bounds and average perfor-
mance over the posterior correctly rank the behaviors. This
provides evidence that the learned linear reward correctly
rewards actually destroying aliens and avoiding getting shot,
rather than just flying around and shooting.

Next we demonstrated four different behaviors when play-

Table 6. Enduro evaluation of a variety of human demonstrations.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 246.7 -113.2 177 3325.0
periodic 230.0 -130.4 44 3325.0
neutral 190.8 -160.6 0 3325.0

ram 148.4 -214.3 0 3325.0

ing Enduro: (1) good a demonstration that seeks to play
the game well, (2) periodic a demonstration that alternates
between speeding up and passing cars and then slowing
down and being passed, (3) neutral a demonstration that
stays right next to the last car in the race and doesn’t try to
pass or get passed, and (4) ram a demonstration that tries to
ram into as many cars while going fast. Table 6 shows that
Bayesian REX is able to accurately predict the performance
and risk of each of these demonstrations and gives the high-
est (lowest 0.05-VaR) risk to the ram demonstration and the
least risk to the good demonstration.

7. Conclusion
Bayesian reasoning is a powerful tool when dealing with
uncertainty and risk; however, existing Bayesian reward
learning algorithms often require solving an MDP in the
inner loop, rendering them intractable for complex prob-
lems in which solving an MDP may take several hours or
even days. In this paper we propose a novel deep learning
algorithm, Bayesian Reward Extrapolation (Bayesian REX),
that leverages preference labels over demonstrations to make
Bayesian reward inference tractable for high-dimensional
visual imitation learning tasks. Bayesian REX can sam-
ple tens of thousands of reward functions from the poste-
rior in a matter of minutes using a consumer laptop. We
tested our approach on five Atari imitation learning tasks
and showed that Bayesian REX achieves state-of-the-art
performance in 3 out of 5 games. Furthermore, Bayesian
REX enables efficient high-confidence performance bounds
for arbitrary evaluation policies. We demonstrated that these
high-confidence bounds allow an agent to accurately rank
different evaluation policies and provide a potential way to
detect reward hacking and value misalignment.

We note that our proposed safety bounds are only safe
with respect to the assumptions that we make: good fea-
ture pre-training, rapid MCMC mixing, and accurate pref-
erences over demonstrations. Future work includes using
exploratory trajectories for better pre-training of the latent
feature embeddings, developing methods to determine when
a relevant feature is missing from the learned latent space,
and using high-confidence performance bounds to perform
safe policy optimization in the imitation learning setting.
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