APPENDIX
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Daniel S. Brown !

A. Source Code and Videos

See the project webpage https://sites.google.
com/view/bayesianrex/.

B. MCMC Details

We represent IR as a linear combination of pre-trained
features:
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1,...,m and the likelihood becomes
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We use S = 1 and enforce constraints on the weight vec-
tors by normalizing the output of the weight vector pro-
posal such that |w|l2 = 1 and use a Gaussian proposal
function centered on w with standard deviation o. Thus,
given the current sample w;, the proposal is defined as
wi41 = normalize(N(wy, o)), in which normalize
divides by the L2 norm of the sample to project back to the
surface of the L2-unit ball.

For all experiments, except Seaquest, we used a default step
size of 0.005. For Seaquest increased the step size to 0.05.
We run 200,000 steps of MCMC and use a burn-in of 5000
and skip every 20th sample to reduce auto-correlation. We
initialize the MCMC chain with a randomly chosen vec-
tor on the L2-unit ball. Because the inverse reinforcement
learning is ill-posed there are an infinite number of reward
functions that could match any set of demonstrations. Prior
work by Finn et al. (2016) demonstrates that strong regu-
larization is needed when learning cost functions via deep
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neural networks. To ensure that the rewards learned allow
good policy optimization when fed into an RL algorithm we
used a non-negative return prior on the return of the lowest
ranked demonstration. The prior takes the following form:

: wT¢T
log P(w) = {0 e <0

—oo otherwise
This forces MCMC to not only find reward function weights
that match the rankings, but to also find weights such that
the return of the worse demonstration is non-negative. If
the return of the worse demonstration was negative during
proposal generation, then we assigned it a prior probability
of —oo. Because the ranking likelihood is invariant to affine
transformations of the rewards, this prior simply shifts the
range of learned returns and does not affect the log likeli-

hood ratios.

C. Bayesian IRL vs. Bayesian REX

Bayesian IRL does not scale to high-dimensional tasks due
to the requirement of repeatedly solving for an MDP in the
inner loop. In this section we focus on low-dimensional
problems where it is tractable to repeatedly solve an
MDP. We compare the performance of Bayesian IRL with
Bayesian REX when performing reward inference. Because
both algorithms make very different assumptions, we com-
pare their performance across three different tasks. The first
task attempts to give both algorithms the demonstrations
they were designed for. The second evaluation focuses on
the case where all demonstrations are optimal and is de-
signed to put Bayesian IRL at a disadvantage. The third
evaluation focuses on the case where all demonstrations are
optimal and is designed to put Bayesian REX at a disadvan-
tage. Note that we focus on sample efficiency rather than
computational efficiency as Bayesian IRL is significantly
slower than Bayesian REX as it requires repeatedly solving
an MDP, whereas Bayesian REX requires no access to an
MDP during reward inference.

All experiments were performed using 6x6 gridworlds with
4 binary features placed randomly in the environment. The
ground-truth reward functions are sampled uniformly from
the L1-ball (Brown & Niekum, 2018). The agent can move
in the four cardinal directions and stays in place if it attempts
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Algorithm 1 Bayesian REX: Bayesian Reward Extrapola-
tion

1: Input: demonstrations D, pairwise preferences P,
MCMC proposal width o, number of proposals to gen-
erate N, deep network architecture Ry, and prior P(w).

2: pre-train Ry using auxiliary tasks (see Section 5.2).
3: Freeze all but last layer, w, of Ry.

4: ¢(s) := activations of the penultimate layer of Ry.
5: Precompute and cache ®, =) __¢(s) forall 7 € D.
6: Initialize w randomly.

7: Chain[0] < w

8: Compute P(P, D|w)P(w) using Equation (2)

9: fori < 1to N do
10 W < normalize(N(w,0))
11:  Compute P(P, D|w)P(w) using Equation (2)
12: w4 Uniform(0,1)

. P(P,D|w)P(w)

13: ifu< P(P, D|w)P(w) then
14: Chain[i] + w

15: W4~ W
16:  else
17: Chain[i] < w
18:  endif
19: end for

20: return Chain

to move off the grid. Transitions are deterministic, v = 0.9,
and there are no terminal states. We perform evaluations
over 100 random gridworlds for varying numbers of demon-
strations. Each demonstration is truncated to a horizon of
20. We use 8 = 50 for both Bayesian IRL and Bayesian
REX and we remove duplicates from demonstrations. After
performing MCMC we used a 10% burn-in period for both
algorithms and only used every Sth sample after the burn-in
when computing the mean reward under the posterior. We
then optimized a policy under the mean reward from the
Bayesian IRL posterior and under the mean reward from
the Bayesian REX posterior. We then compare the average
policy loss for each algorithm when compared with optimal
performance under the ground-truth reward function.

C.1. Ranked Suboptimal vs. Optimal Demonstrations

We first compare Bayesian IRL when it is given optimal
demonstrations with Bayesian REX when it receives subop-
timal demonstrations. We give each algorithm the demon-
strations best suited for its assumptions while keeping the
number of demonstrations equal and using the same starting
states for each algorithm. To generate suboptimal demon-
strations we simply use random rollouts and then rank them
according to the ground-truth reward function.

Table 1 shows that, given a sufficient number of suboptimal
ranked demonstrations (> 5), Bayesian REX performs on

Table 1. Ranked Suboptimal vs. Optimal Demos: Average policy
loss over 100 random 6x6 grid worlds with 4 binary features.

2 5 10 20 30

0.044 0.033 0.020 0.009 0.006
1.779 0421 0.019 0.006 0.006

B-IRL
B-REX

Table 2. Ranked Suboptimal Demos: Average policy loss for
Bayesian IRL versus Bayesian REX over 100 random 6x6 grid
worlds with 4 binary features.

2 5 10 20 30

3512 3319 2791 3.078 3.158
1.796 0.393 0.026 0.006 0.006

B-IRL
B-REX

par or slightly better than Bayesian IRL when given the same
number of optimal demonstrations starting from the same
states as the suboptimal demonstrations. This result shows
that not only is Bayesian REX much more computationally
efficient, but it also has sample efficiency comparable to
Bayesian IRL as long as there are a sufficient number of
ranked demonstrations. Note that 2 ranked demonstrations
induces only a single constraint on the reward function so it
is not surprising that it performs much worse than running
full Bayesian IRL with all the counterfactuals afforded by
running an MDP solver in the inner-loop.

C.2. Only Ranked Suboptimal Demonstrations

For the next experiment we consider what happens when
Bayesian IRL recieves suboptimal ranked demonstrations.
Table 2 shows that B-REX always significantly outperforms
Bayesian IRL when both algorithms receive suboptimal
ranked demonstrations. To achieve a fairer comparison, we
also compared Bayesian REX with a Bayesian IRL algo-
rithm designed to learn from both good and bad demon-
strations (Cui & Niekum, 2018). We labeled the top 2%
ranked demonstrations as good and bottom % ranked as
bad. Table 3 shows that leveraging the ranking significantly
improves the performance of Bayesian IRL, but Bayesian
REX still performed significantly better across all z.

C.3. Only Optimal Demonstrations

Finally, we compared Bayesian REX with Bayesian IRL
when both algorithms are given optimal demonstrations. As
an attempt to use Bayesian REX with only optimal demon-
strations, we followed prior work (Brown et al., 2019a) and
auto-generated pairwise preferences using uniform random
rollouts that are labeled as less preferred than the demon-
strations. Table 4 shows that Bayesian IRL outperforms
Bayesian REX. This demonstrates the value of giving a
variety of ranked trajectories to Bayesian REX. For small
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Table 3. Ranked Suboptimal Demos: Average policy loss for
Bayesian REX and Bayesian IRL using the method proposed by
(Cui & Niekum, 2018)* which makes use of good and bad demon-
strations. We used the top % of the ranked demos as good and
bottom 2% as bad. Results are averaged over 100 random 6x6 grid
worlds with 4 binary features.

Table 5. Self-supervised learning objectives used to pre-train ¢(s).

fin(d(st), d(st41)) — ar
frp(P(se), ar) = 5141
Jrp(P(5¢), d(5¢42) — @
fa(o(se)) = st

Inverse Dynamics
Forward Dynamics
Temporal Distance
Variational Autoencoder

Top/bottom percent of 20 ranked demos

x=5% x=10% x=25% x=50%
B-IRL(z)* 1283 0.956 1.065 2.096
B-REX 0.006

Table 4. Ranked Suboptimal Demos: Average policy loss for
Bayesian IRL versus Bayesian REX over 100 random 6x6 grid
worlds with 4 binary features.

2 5 10 20 30

B-IRL 0.045 0.034 0.018 0.009 0.006
B-REX 0.051 0.045 0.040 0.034 0.034

numbers of optimal demonstrations ( < 5) we found that
Bayesian REX leveraged the self-supervised rankings to
only perform slightly worse than full Bayesian IRL. This
result is encouraging since it is possible that a more sophis-
ticated method for auto-generating suboptimal demonstra-
tions and rankings could be used to further improve the
performance of Bayesian REX even when demonstrations
are not ranked (Brown et al., 2019a).

C.4. Summary

The results above demonstrate that if a very small number of
unlabeled near-optimal demonstrations are available, then
classical Bayesian IRL is the natural choice for performing
reward inference. However, if any of these assumptions are
not true, then Bayesian REX is a competitive and often su-
perior alternative for performing Bayesian reward inference.
Also implicit in the above results is the assumption that
a highly tractable MDP solver is available for performing
Bayesian IRL. If this is not the case, then Bayesian IRL
is infeasible and Bayesian REX is the natural choice for
Bayesian reward inference.

D. Pre-training Latent Reward Features

We experimented with several pretraining methods. One
method is to train Ry using the pairwise ranking loss

eBRo(7))
eﬂRG(Ti) + e:BRG(Tj) ’

P(D,P|Ry)= ]]
(i,7)€P

4)

and then freeze all but the last layer of weights; however,
the learned embedding may overfit to the limited number of

preferences over demonstrations and fail to capture features
relevant to the ground-truth reward function. Thus, we
supplement the pairwise ranking objective with auxiliary
objectives that can be optimized in a self-supervised fashion
using data from the demonstrations.

We use the following self-supervised tasks to pre-train Ry:
(1) Learn an inverse dynamics model that uses embeddings
@(s¢) and ¢(s¢41) to predict the corresponding action a;
(Torabi et al., 2018; Hanna & Stone, 2017), (2) Learn a
forward dynamics model that predicts s;11 from ¢(s;) and
at (Oh et al., 2015; Thananjeyan et al., 2019), (3) Learn an
embedding ¢(s) that predicts the temporal distance between
two randomly chosen states from the same demonstration
(Aytar et al., 2018), and (4) Train a variational pixel-to-pixel
autoencoder in which ¢(s) is the learned latent encoding
(Makhzani & Frey, 2017; Doersch, 2016). Table 5 summa-
rizes the auxiliary tasks used to train ¢(s).

There are many possibilities for pre-training ¢(s); however,
we found that each objective described above encourages
the embedding to encode different features. For example,
an accurate inverse dynamics model can be learned by only
attending to the movement of the agent. Learning forward
dynamics supplements this by requiring ¢(s) to encode
information about short-term changes to the environment.
Learning to predict the temporal distance between states in a
trajectory forces ¢(s) to encode long-term progress. Finally,
the autoencoder loss acts as a regularizer to the other losses
as it seeks to embed all aspects of the state.

In the Atari domain, input to the network is given visually
as grayscale frames resized to 84 x 84. To provide tem-
poral information, four sequential frames are stacked one
on top of another to create a framestack which provides a
brief snapshot of activity. The network architecture takes
a framestack, applies four convolutional layers following a
similar architecture to Christiano et al. (2017) and Brown
et al. (2019b), with leaky ReLLU units as non-linearities fol-
lowing each convolution layer. The convolutions follow the
following structure:

# Filter size ~ Image size Stride
Input - 84 x 84 x 4 -

1 Tx7 26 x 26 x 16 3

2 5xH 11 x 11 x 32 2

3 5xH 9x9x32 1

4 3x3 7Tx7x16 1
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Figure 1. Diagram of the network architecture used when training feature encoding ¢(s) with self-supervised and T-REX losses. Yellow
denotes actions, blue denotes feature encodings sampled from elsewhere in a demonstration trajectory, and green denotes random samples

for the variational autoencoder.

The convolved image is then flattened. Two sequential
fully connected layers, with leaky ReLU applied to the first
layer, transform the flattened image into the encoding, ¢(s)
where s is the initial framestack. The width of these layers
depends on the size of the feature encoding chosen. In our
experiments with a latent dimension of 64, the first layer
transforms from size 784 to 128 and the second from 128 to
64.

See Figure 1 for a complete diagram of this process.

Architectural information for each auxiliary task is given
below.

1. The variational autoencoder (VAE) tries to reconstruct
the original framestack from the feature encoding using
transposed convolutions. Mirroring the structure of the
initial convolutions, two fully connected layers precede
four transposed convolution layers. These first two
layers transform the 64-dimensional feature encoding
from 64 to 128, and from 128 to 1568. The following
four layers’ structures are summarized below:

# Filter size ~ Image size  Stride
Input - 28 x 28 x 2 -

1 3z3 30 x 30 x 4 1

2 626 35 x 35 x 16 1

3 Tx7 75 x 75 x 16 2

4 10210 84 x 84 x 4 1

A cross-entropy loss is applied between the recon-
structed image and the original, as well as a term added
to penalize the KL divergence of the distribution from
the unit normal.

A temporal difference estimator, which takes two ran-
dom feature encodings from the same demonstration
and predicts the number of timesteps in between. Itis a
single fully-connected layer, transforming the concate-
nated feature encodings into a scalar time difference.
A mean-squared error loss is applied between the real
difference and predicted.

. An inverse dynamics model, which takes two sequen-

tial feature encodings and predicts the action taken
in between. It is again a single fully-connected layer,
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trained as a classification problem with a binary cross-
entropy loss over the discrete action set.

4. A forward dynamics model, which takes a concate-
nated feature encoding and action and predicts the next
feature encoding with a single fully-connected layer.
This is repeated 5 times, which increases the difference
between the initial and final encoding. It is trained
using a mean-squared error between the predicted and
real feature encoding.

5. A T-REX loss, which samples feature encodings from
two different demonstrations and tries to predict which
one of them has preference over the other. This is done
with a single fully-connected layer that transforms an
encoding into scalar reward, and is then trained as
a classification problem with a binary cross-entropy
loss. A 1 is assigned to the demonstration sample with
higher preference and a 0 to the demonstration sample
with lower preference.

In order to encourage a feature encoding that has informa-
tion easily interpretable via linear combinations, the tem-
poral difference, T-REX, inverse dynamics, and forward
dynamics tasks consist of only a single layer atop the fea-
ture encoding space rather than multiple layers.

To compute the final loss on which to do the backwards pass,
all of the losses described above are summed with weights
determined empirically to balance out their values.

D.1. Training specifics

We used an NVIDIA TITAN V GPU for training the embed-
ding. We used the same 12 demonstrations used for MCMC
to train the self-supervised and ranking losses described
above. We sample 60,000 trajectory snippets pairs from the
demonstration pool, where each snippet is between 50 and
100 timesteps long. We use a learning rate of 0.001 and a
weight decay of 0.001. We make a single pass through all
of the training data using batch size of 1 resulting in 60,000
updates using the Adam (Kingma & Ba, 2014) optimizer.
For Enduro prior work (Brown et al., 2019b) showed that
full trajectories resulted in better performance than subsam-
pling trajectories. Thus, for Enduro we subsample 10,000
pairs of entire trajectories by randomly selecting a starting
time between 0 and 5 steps after the initial state and then
skipping every t frames where t is chosen uniformly from
the range [3, 7) and train with two passes through the train-
ing data. When performing subsampling for either snippets
or full trajectories, we subsample pairs of trajectories such
that one is from a worse ranked demonstration and one is
from a better ranked demonstration following the procedure
outlined in (Brown et al., 2019b).

E. Visualizations of Learned Features

Viewable here! is a video containing an Enduro demonstra-
tion trajectory, its decoding with respect to the pre-trained
autoencoder, and a plot of the dimensions in the latent encod-
ing over time. Observe how changes in the demonstration,
such as turning right or left or a shift, correspond to changes
in the plots of the feature embedding. We noticed that cer-
tain features increase when the agent passes other cars while
other features decrease when the agent gets passed by other
cars. This is evidence that the pretraining has learned fea-
tures that are relevant to the ground truth reward which gives
+1 every time the agent passes a car and -1 every time the
agent gets passed.

Viewable here? is a similar visualization of the latent space
for Space Invaders. Notice how it tends to focus on the
movement of enemy ships, useful for game progress in
things such as the temporal difference loss, but seems to
ignore the player’s ship despite its utility in inverse dynamics
loss. Likely the information exists in the encoding but is not
included in the output of the autoencoder.

Viewable here? is visualization of the latent space for Break-
out. Observe that breaking a brick often results in a small
spike in the latent encoding. Many dimensions, like the dark
green curve which begins at the lowest value, seem to invert
as game progress continues on, thus acting as a measure of
how much time has passed.

F. Imitation Learning Ablations for
Pre-training ¢(s)

Table 6 shows the results of pre-training reward features
only using different losses. We experimented with using
only the T-REX Ranking loss (Brown et al., 2019b), only
the self-supervised losses shown in Table 1 of the main
paper, and using both the T-REX ranking loss plus the self-
supervised loss function. We found that performance varried
over the different pre-training schemes, but that using Rank-
ing + Self-Supervised achieved high performance across
all games, clearly outperforming only using self-supervised
losses and achieving superior performance to only using the
ranking loss on 3 out of 5 games.

G. Suboptimal Demonstration Details

We used the same suboptimal demonstrations used by
Brown et al. (2019b) for comparison. These demonstrations

'https://www.youtube.com/watch?v=
DMf8kNHI9nVg

https://www.youtube.com/watch?v=
2uN5uD17H6M

3https://www.youtube.com/watch?v:
8zgbD1fZOHS
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Table 6. Comparison of different reward feature pre-training schemes. Ground-truth average returns for several Atari games when
optimizing the mean and MAP rewards found using Bayesian REX. Each algorithm is given the same 12 demonstrations with ground-truth
pairwise preferences. The average performance for each IRL algorithm is the average over 30 rollouts.

Ranking Loss Self-Supervised Ranking + Self-Supervised

Game Mean MAP Mean MAP Mean MAP
Beam Rider 3816.7 42757 1804 143.7 5870.3 5504.7
Breakout 3899 409.5 360.1 3674 393.1 390.7
Enduro 4727 4793 0.0 0.0 135.0 487.7
Seaquest 675.3 670.7 674.0 683.3 606.0 734.7
Space Invaders 1482.0 1395.5 391.2 396.2 961.3 1118.8

were obtained by running PPO on the ground truth reward
and checkpointing every 50 updates using OpenAl Base-
lines (Dhariwal et al., 2017). Brown et al. (2019b) make the
checkpoint files available, so to generate the demonstration
data we used their saved checkpoints and followed the in-
structions in their released code to generate the data for our
algorithm®*. We gave Bayesian REX these demonstrations
as well as ground-truth rankings using the game score; how-
ever, other than the rankings, Bayesian REX has no access
to the true reward samples. Following the recommendations
of Brown et al. (2019b), we mask the game score and other
parts of the game that are directly indicative of the game
score such as the number of enemy ships left, the number of
lives left, the level number, etc. See (Brown et al., 2019b)
for full details.

H. Reinforcement Learning Details

We used the OpenAl Baselines implementation of Proximal
Policy Optimization (PPO) (Schulman et al., 2017; Dhari-
wal et al., 2017). We used the default hyperparameters for
all games and all experiments. We run RL for 50 million
frames and then take the final checkpoint to perform eval-
uations. We adapted the OpenAl Baselines code so even
though the RL agent receives a standard preprocessed ob-
servation, it only receives samples of the reward learned via
Bayesian REX, rather than the ground-truth reward. T-REX
(Brown et al., 2019b) uses a sigmoid to normalize rewards
before passing them to the RL algorithm; however, we ob-
tained better performance for Bayesian REX by feeding
the unnormalized predicted reward Ry (s) into PPO for pol-
icy optimization. We follow the OpenAl baselines default
preprocessing for the framestacks that are fed into the RL
algorithm as observations. We also apply the default Ope-
nAl baselines wrappers the environments. We run PPO with
9 workers on an NVIDIA TITAN V GPU.

4Code from (Brown et al., 2019b) is available here https:
//github.com/hiwonjoon/ICML2019-TREX

I. High-Confidence Policy Performance
Bounds

In this section we describe the details of the policy perfor-
mance bounds.
I.1. Policy Evaluation Details

We estimated ®._, using C' Monte Carlo rollouts for
each evaluation policy. Thus, after generating C rollouts,

Ty, ..., Tc from ey, the feature expectations are computed
as
1 C
1) 30 S
1=1 s€T;

We used C' = 100 for all experiments.

1.2. Evaluation Policies

We evaluated several different evaluation policies. To see
if the learned reward function posterior can interpolate and
extrapolate we created four different evaluation policies: A,
B, C, and D. These policies were created by running RL via
PPO on the ground truth reward for the different Atari games.
We then checkpointed the policy and selected checkpoints
that would result in different levels of performance. For all
games except for Enduro these checkpoints correspond to
25, 325, 800, and 1450 update steps using OpenAl baselines.
For Enduro, PPO performance was stuck at O return until
much later in learning. To ensure diversity in the evaluation
policies, we chose to use evaluation policies corresponding
to 3125, 3425, 3900, and 4875 steps. We also evaluated
each game with a No-Op policy. These policies are often
adversarial for some games, such as Seaquest, Breakout,
and Beam Rider, since they allow the agent to live for a very
long time without actually playing the game—a potential
way to hack the learned reward since most learned rewards
for Atari will incentivize longer gameplay.

The results for Beam Rider and Breakout are shown in the
main paper. For completeness, we have included the high-
confidence policy evaluation results for the other games here
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Table 7. Policy evaluation statistics for Enduro over the return dis-
tribution from the learned posterior P(R|D, P) compared with the
ground truth returns using game scores. Policies A-D correspond
to checkpoints of an RL policy partially trained on the ground-truth
reward function and correspond to 25, 325, 800, and 1450 training
updates to PPO. No-Op that always plays the no-op action, result-
ing in high mean predicted performance but low 95%-confidence
return (0.05-VaR).

Predicted Ground Truth
Policy Mean 0.05-VaR  Avg. Length
A 324.7 48.2 7.3 33224
B 328.9 52.0 26.0 33224
C 424.5 135.8 145.0 3389.0
D 526.2 192.9 199.8 3888.2
Mean 1206.9 547.5 496.7 72494
MAP 3952 113.3 133.6  3355.7
No-Op 2459 -31.7 0.0 33220

in the Appendix. Table 7 shows the high-confidence policy
evaluation results for Enduro. Both the average returns over
the posterior as well as the the high-confidence performance
bounds (6 = 0.05) demonstrate accurate predictions relative
to the ground-truth performance. The No-Op policy results
in the racecar slowly moving along the track and losing
the race. This policy is accurately predicted as being much
worse than the other evaluation policies. We also evaluated
the Mean and MAP policies found by optimizing the Mean
reward and MAP reward from the posterior obtained using
Bayesian REX. We found that the learned posterior is able
to capture that the MAP policy is more than twice as good
as the evaluation policy D and that the Mean policy has per-
formance somewhere between the performance of policies
B and C. These results show that Bayesian REX has the
potential to predict better-than-demonstrator performance
(Brown et al., 2019a).

Table 8 shows the results for high-confidence policy evalu-
ation for Seaquest. The results show that high-confidence
performance bounds are able to accurately predict that eval-
uation policies A and B are worse than C and D. The ground
truth performance of policies C and D are too close and the
mean performance over the posterior and 0.05-VaR bound
on the posterior are not able to find any statistical difference
between them. Interestingly the no-op policy has very high
mean and 95%-confidence lower bound, despite not scoring
any points. However, as shown in the bottom half of Ta-
ble 8, adding one more ranked demonstration from a 3000
length segment of a no-op policy solves this problem. These
results motivate a natural human-in-the-loop approach for
safe imitation learning.

Finally, Table 9 shows the results for high-confidence policy
evaluation for Space Invaders. The results show that us-

Table 8. Policy evaluation statistics for Seaquest over the return dis-
tribution from the learned posterior P(R|D, P) compared with the
ground truth returns using game scores. Policies A-D correspond
to checkpoints of an RL policy partially trained on the ground-truth
reward function and correspond to 25, 325, 800, and 1450 training
updates to PPO. No-Op always plays the no-op action, resulting
in high mean predicted performance but low 0.05-quantile return
(0.05-VaR). Results predict that No-Op is much better than it really
is. However, simply adding a single ranked rollout from the No-Op
policy and rerunning MCMC results in correct relative rankings
with respect to the No-Op policy

Predicted Ground Truth
Policy ¥ Mean 0.05-VaR Avg. Length
A 24.3 10.8 338.6 1077.8
B 53.6 24.1 827.2 2214.1
C 56.0 254 872.2 2248.5
D 55.8 25.3 887.6 2264.5
No-Op 2471.6 842.5 0.0 99994.0
Results after adding one ranked demo from No-Op
A 0.5 -0.5 338.6 1077.8
B 3.7 2.0 827.2 22141
C 3.8 2.1 872.2 2248.5
D 32 1.5 887.6 2264.5
No-Op -321.7 -578.2 0.0 99994.0

ing both the mean performance and 95%-confidence lower
bound are good indicators of ground truth performance for
the evaluation polices. The No-Op policy for Space Invaders
results in the agent getting hit by alien lasers early in the
game. The learned reward function posterior correctly as-
signs low average performance and indicates high risk with
a low 95%-confidence lower bound on the expected return
of the evaluation policy.

J. Different Evaluation Policies

To test Bayesian REX on different learned policies we took
a policy trained with RL on the ground truth reward function
for Beam Rider, the MAP policy learned via Bayesian REX
for Beam Rider, and a policy trained with an earlier version
of Bayesian REX (trained without all of the auxiliary losses)
that learned a novel reward hack where the policy repeatedly
presses left and then right, enabling the agent’s ship to stay
in between two of the firing lanes of the enemies. The
imitation learning reward hack allows the agent to live for a
very long time. We took a 2000 step prefix of each policy
and evaluated the expected and 5th perentile worst-case
predicted returns for each policy. We found that Bayesian
REX is able to accurately predict that the reward hacking
policy is worse than both the RL policy and the policy
optimizing the Bayesian REX reward. However, we found
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Table 9. Policy evaluation statistics for Space Invaders over the re-
turn distribution from the learned posterior P(R|D, P) compared
with the ground truth returns using game scores. Policies A-D
correspond to checkpoints of an RL policy partially trained on the
ground-truth reward function and correspond to 25, 325, 800, and
1450 training updates to PPO. The mean and MAP policies are
the results of PPO using the mean and MAP rewards, respectively.
No-Op that always plays the no-op action, resulting in high mean
predicted performance but low 0.05-quantile return (0.05-VaR).

Predicted Ground Truth
Policy Mean 0.05-VaR  Avg.  Length
A 45.1 20.6 195.3 550.1
B 108.9 48.7 436.0  725.7
C 148.7 63.6 5752 870.6
D 150.5 63.8 598.2  848.2
Mean 417.4 171.7 1143.7 1885.7
MAP  360.2 145.0 928.0 1629.5
NoOp 18.8 3.8 0.0 504.0

Table 10. Beamrider policy evaluation for an RL policy trained on
ground truth reward, an imitation learning policy, and a reward
hacking policy that exploits a game hack to live for a long time by
moving quickly back and forth.

Predicted Ground Truth

Policy @~ Mean 0.05-VaR  Avg.  Length
RL 36.7 19.5 21352 2000
B-REX  68.1 38.1 649.4 2000
Hacking  28.8 10.2 2.2 2000

that the Bayesian REX policy, while not performing as well
as the RL policy, was given higher expected return and a
higher lower bound on performance than the RL policy.
Results are shown in Table 10.

K. Human Demonstrations

To investigate whether Bayesian REX is able to correctly
rank human demonstrations, one of the authors provided
demonstrations of a variety of different behaviors and then
we took the latent embeddings of the demonstrations and
used the posterior distribution to find high-confidence per-
formance bounds for these different rollouts.

K.1. Beamrider

We generated four human demonstrations: (1) good, a good
demonstration that plays the game well, (2) bad, a bad
demonstration that seeks to play the game but does a poor
job, (3) pessimal, a demonstration that does not shoot ene-
mies and seeks enemy bullets, and (4) adversarial a demon-
stration that pretends to play the game by moving and shoot-

Table 11. Beam Rider evaluation of a variety of human demonstra-
tions.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length
good 124 5.8 1092  1000.0
bad 10.7 4.5 396  1000.0
pessimal 6.6 0.8 0 1000.0
adversarial 8.4 2.4 176 1000.0

Table 12. Space Invaders evaluation of a variety of human demon-
strations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length
good 198.3 89.2 515 12250
every other 56.2 25.9 315 728.0
hold ’n fire 443 18.6 210  638.0
shoot shelters  47.0 20.6 80 712.0
flee 45.1 19.8 0 722.0

hide 83.0 39.0 0 938.0
miss 66.0 29.9 0 867.0
pessimal 0.5 -13.2 0 266.0

ing as much as possibly but tries to avoid actually shooting
enemies. The results of high-confidence policy evaluation
are shown in Table 11. The high-confidence bounds and
average performance over the posterior correctly rank the
behaviors. This provides evidence that the learned linear re-
ward correctly rewards actually destroying aliens and avoid-
ing getting shot, rather than just flying around and shooting.

K.2. Space Invaders

For Space Invaders we demonstrated an even wider variety
of behaviors to see how Bayesian REX would rank their rel-
ative performance. We evaluated the following policies: (1)
good, a demonstration that attempts to play the game as well
as possible, (2) every other, a demonstration that only shoots
aliens in the 2nd and 4th columns, (3) flee, a demonstration
that did not shoot aliens, but tried to always be moving while
avoiding enemy lasers, (4) hide, a demonstration that does
not shoot and hides behind on of the barriers to avoid enemy
bullets, (5) pessimal, a policy that seeks enemy bullets while
not shooting, (6) shoot shelters, a demonstration that tries to
destroy its own shelters by shooting at them, (7) hold ’n fire,
a demonstration where the player rapidly fires but does not
move to avoid enemy lasers, and (8) miss, a demonstration
where the demonstrator tries to fire but not hit any aliens
while avoiding enemy lasers.

Table 12 shows the results of evaluating the different demon-
strations. The good demonstration is clearly the best per-
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Table 13. Space Invaders evaluation of a variety of human demon-
strations when considering only the first 6000 steps.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length
good 47.8 22.8 515  600.0
every other 34.6 15.0 315  600.0
hold ’n fire 40.9 17.1 210  600.0
shoot shelters  33.0 13.3 80 600.0
flee 31.3 11.9 0 600.0
hide 324 13.8 0 600.0
miss 30.0 11.3 0 600.0

forming demonstration in terms of mean performance and
95%-confidence lower bound on performance and the pessi-
mal policy is correctly given the lowest performance lower
bound. However, we found that the length of the demon-
stration appears to have a strong effect on the predicted
performance for Space Invaders. Demonstrations such as
hide and miss are able to live for a longer time than policies
that actually hit aliens. This results in them having higher
0.05-quantile worst-case predicted performance and higher
mean performance.

To study this further we looked at only the first 600 timesteps
of each policy, to remove any confounding by the length
of the trajectory. The results are shown in Table 13. With
a fixed length demonstration, Bayesian REX is able to cor-
rectly rank good, every other, and hold ’n fire as the best
demonstrations, despite evaluation policies that are decep-
five.

K.3. Enduro

For Enduro we tested four different human demonstrations:
(1) good a demonstration that seeks to play the game well,
(2) periodic a demonstration that alternates between speed-
ing up and passing cars and then slowing down and being
passed, (3) neutral a demonstration that stays right next to
the last car in the race and doesn’t try to pass or get passed,
and (4) ram a demonstration that tries to ram into as many
cars while going fast. Table 14 shows that Bayesian REX
is able to accurately predict the performance and risk of
each of these demonstrations and gives the highest (lowest
0.05-VaR) risk to the ram demonstration and the least risk
to the good demonstration.

L. Comparison with Other Methods for
Uncertainty Quantification

Bayesian REX is only one possible method for measure un-
certainty. Other popular methods for measuring epistemic
uncertainty include using bootstrapping to create an ensem-

Table 14. Enduro evaluation of a variety of human demonstrations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length
good 246.7 -113.2 177 3325.0
periodic  230.0 -130.4 44 3325.0
neutral  190.8 -160.6 0 3325.0
ram 148.4 -214.3 0 3325.0

ble of neural networks (Lakshminarayanan et al., 2017) and
using dropout as an approximation of MCMC sampling (Gal
& Ghahramani, 2016). In this section we compare our fully
Bayesian approach with these two approximations.

L.1. T-REX Ensemble

We used the same implementation used by Brown et al.
(2019b)°, but trained an ensemble of five T-REX networks
using the same training demonstrations but with randomized
seeds so each network is intitialized differently and has a
different training set of subsampled snippets from the full
length ranked trajectories. To estimate the uncertainty over
the return of a trajectory or policy we run the trajectory
through each network to get a return estimate or run multiple
rollouts of the policy through each member of the ensemble
to get a distribution over returns. We used 100 rollouts for
the evaluation policies.

L.2. MC Dropout

For the MC Dropout baseline we used the same base archi-
tecture as T-REX and Bayesian REX, except that we did not
add additional auxiliary losses, but simply trained the base
network to predict returns using dropout during training.
For each training pair of trajectories we randomly sample
a dropout mask on the last layer of weights. Because MC
dropout is supposed to approximate a large ensemble, we
kept the dropout mask consistent across each sampled pref-
erence pair such that the same portions of the network are
dropped out for each frame of each trajectory and for both
the more preferred and less preferred trajectories. Thus, for
each training sample, consisting of a more and less preferred
trajectory, we sample a random dropout mask and then ap-
ply this same mask across all states in both trajectories. To
keep things as similar to Bayesian REX as possible, we used
full trajectories with the same pairwise preferences used by
Bayesian REX.

To estimate the posterior distribution over returns for a trajec-
tory or policy we simply sampled 50 random masks on the
last layer of weights. Thus, this method corresponds to the
MC dropout equivalent of Bayesian REX where the latent

>https://github.com/hiwonjoon/icml2019-trex
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state encoding is trained end-to-end via dropout rather than
pre-trained and where the posterior distribution is estimated
via randomly dropping out weights on the corresponding lin-
ear reward function. We applied these 50 random dropouts
to each of 100 rollouts for each evaluation policy. We used
a dropout probability of 0.5.

Table 15 shows the results for running RL on the learned
reward functions. The results show that Bayesian REX
is superior or competitive with T-REX Ensemble and MC
Dropout across all games except Beam Rider, where MC
Dropout performs much better.

L.3. T-REX Ensemble High-Confidence Bounds

Tables 16-20 show the results for evaluating different eval-
uation policies via high-confidence performance bounds.
Table 16 shows that the ensemble has accurate expected
returns, but that the 95% confidence lower bounds are not in-
formative and do not represent risk as accurately as Bayesian
REX since policy D is viewed as much worse than policy A.
Note that we normalized the predicted scores by calculating
the average predicted return of each ensemble member for
rollouts from policy A and then using this as a baseline for
all other predictions of each ensemble member by subtract-
ing off the average predicted return for policy A from return
predictions of other policies. Tables 17 and 19 show that
the T-REX Ensemble can sometimes fail to produce mean-
ingful predictions for the expectation or the 95% worst-case
bounds. Table 18 and 20 show good predictions.

L.4. MC Dropout Results

Tables 21-25 show the results for high-confidence bounds
for MC Dropout. Tables 21 and 25 show that MC Dropout
is able to accurately predict high risk for the Beam Rider
and Space Invaders No-Op policies. However, table 22 23,
and 24 show that MC Dropout often fails to predict that the
No-Op policy has high risk. Recent work has shown that
MC Dropout is not a principled Bayesian approximation
since the distribution obtained from MC Dropout does not
concentrate in the limit as the number of data samples goes
to infinity and thus does not necessarily measure the kind
of epistemic risk we are interested in (Osband, 2016). Thus,
while MC Dropout does not perform full Bayesian infer-
ence like Bayesian REX, it appears to work sometimes in
practice. Future work should examine more sophisticated
applications of dropout to uncertainty estimation that seek
to solve the theoretical and practical problems with vanilla
MC Dropout (Hron et al., 2018).
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Table 20. Space Invaders T-REX ensemble.

Predicted Ground Truth Avg.
Policy @ Mean 0.05-VaR  Score Length
A 0.0 -136.8 159.4 550.1
B 257.3 -47.9 425.0 725.7
C 446.5 -6.0 553.1 870.6
D 443.3 9.0 591.5 848.2 Table 24. Seaquest MC Dropout.
Mean 1105.6 -392.4 1143.7 1885.7 -
MAP 9890  -3872 9280  1629.5 Policy Meaﬁredlg%%_VaR Scrg:e“d T”L‘g;gAtﬁg‘
No-Op -211.9 -311.9 0.0 504.0
A 98.9 49.5 321.0 1077.8
B 258.8 194.8 826.6 22141
C 271.7 213.2 863.4 2248.5
Table 21. Beam Rider MC Dropout. D 279.6 214.2 884.4 2264.5
Predicted Ground Truth Ave. Mean 375.6 272.8 721.8 2221.7
Policy Mean 005-VaR Score  Length MAP = 4263 - 3198 6074 22472
No-Op 16211.1  10478.5 0.0 99,994.0
A 20.9 -1.5 454.4 1372.6
B 27.9 2.3 774.8 1412.8
C 48.7 8.3 1791.8  2389.9

D 63.5 11.0 2664.5  2965.0
Mean 218.2 -89.2 5736.8 1380
MAP 2112 -148.7 5283.0 708

No-Op 1712  -3385.7 0.0 99,994.0

Table 22. Breakout MC Dropout.

Predicted Ground Truth Avg.
Policy @ Mean 0.05-VaR Score Length
A 10.8 5.2 1.8 202.7
B 33.1 17.7 16.1 608.4
C 43.5 24.1 24.8 849.3
D 56.0 28.5 42.7 1020.8 Table 25. Space Invaders MC Dropout.
Mean  822.9 77.3 388.9  13762.1 Predicted Ground Truth Avg.
MAP - 519.7 738 401.0 8780.0 Policy Mean 0.05-VaR  Score Length
No-Op 6050.7 39124 0.0 99,994.0
A 10.6 0.8 195.3 550.1
B 22.3 8.8 434.9 725.7
C 26.7 9.8 535.3 870.6
Table 23. Enduro MC Dropout. D 28.9 15.6 620.9 848.2

Mean 125.9 54.4 1143.7 848.2
MAP 110.6 52.5 928.0 1885.7
No-Op 84 -8.6 0.0 504.0

Predicted Ground Truth Avg.
Policy ~Mean 0.05-VaR Score Length

A 541.7 398.0 7.3 33224
B 543.6 401.0 26.4 33224
C 556.7 409.3 142.5 3389.0
D 663.3 422.3 200.3 3888.2
Mean 2473.0 1701.7  496.7 7249.4
MAP 10973 799.5 133.6 3355.7
No-Op 1084.1 849.8 0.0 3322.0




