TASKNORM: Rethinking Batch Normalization for Meta-Learning

A. Additional Normalization Layers

Here we discuss various additional NLs that are relevant to
meta-learning.

A.1. Batch Renormalization (BRN)

Batch renormalization (BRN; Ioffe, 2017) is intended to
mitigate the issue of non-identically distributed and/or small
batches while retaining the training efficiency and stability
of CBN. In BRN, the CBN algorithm is augmented with an
affine transform with batch-derived parameters which cor-
rect for the batch statistics being different from the overall
population. The normalized activations of a BRN layer are
computed as follows:
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Here st op_grad(-) denotes a gradient blocking operation,
and clip,p) denotes an operation returning a value in
the range [a, b]. Like CBN, BRN is not well suited to the
meta-learning scenario as it does not map directly to the
hierarchical form of meta-learning models. In Section 5, we
show that using BRN can improve predictive performance
compared to CBN, but still performs significantly worse
than competitive approaches. Table 1 shows that batch
renormalization performs poorly when using MAML.

A.2. Group Normalization (GN)

A key insight of Wu & He (2018) is that CBN performance
suffers with small batch sizes. The goal of Group Normal-
ization (GN; Wu & He, 2018) is thus to address the problem
of normalization of small batch sizes, which, among other
matters, is crucial for training large models in a data-parallel
fashion. This is achieved by dividing the image channels
into a number of groups G and subsequently computing the
moments for each group. GN is equivalent to LN when there
is only a single group (G = 1) and equivalent to IN when
the number of groups is equal to the number of channels in
the layer (G = C).

A.3. Other NLs

There exist additional NLs including Weight Normaliza-
tion (Salimans & Kingma, 2016), Cosine Normalization

(Luo et al., 2018), Filter Response Normalization (Singh &
Krishnan, 2019), among many others.

Weight normalization reparameterizes weight vectors in a
neural network to improve the conditioning for optimization.
Weight normalization is non-transductive, but we don’t con-
sider this approach further in this work as we focus on NLs
that modify activations as opposed to weights.

Filter Response Normalization (FRN) is another non-
transductive NL that performs well for all batch sizes. How-
ever we did not include it in our evaluation as FRN also
encompasses the activation function as an essential part of
normalization making it difficult to be a drop in replacement
for CBN in pre-trained networks as is the case for some of
our experiments.

Cosine normalization replaces the dot-product calculation
in neural networks with cosine similarity for improved per-
formance. We did not consider this method further in our
work as it is not a simple drop-in replacement for CBN in
pre-existing networks such as the ResNet-18 we use in our
experiments.

B. Experimental Details

In this section, we provide the experimental details re-
quired to reproduce our experiments. The experiments using
MAML (Finn et al., 2017) were implemented in TensorFlow
(Abadi et al., 2015), the Prototypical Networks experiments
were implemented in Pytorch (Paszke et al., 2019), and the
experiments using CNAPS (Requeima et al., 2019a) were
implemented using a combination of TensorFlow (Abadi
et al., 2015) and Pytorch. All experiments were executed on
NVIDIA Tesla P100-16GB GPUs.

B.1. MAML Experiments

We evaluate MAML using a range of normalization layers
on:

1. Omniglot (Lake et al., 2011): a few-shot learning
dataset consisting of 1623 handwritten characters (each
with 20 instances) derived from 50 alphabets.

2. minilmageNet (Vinyals et al., 2016): a dataset of
60,000 color images that is sub-divided into 100
classes, each with 600 instances.

For all the MAML experiments, we used the codebase pro-
vided by the MAML authors (Finn, 2017) with only small
modifications to enable additional normalization techniques.
Note that we used the first-order approximation version
of MAML for all experiments. MAML was invoked with
the command lines as specified in the main.py file in
the MAML codebase. No hyper-parameter tuning was per-
formed and we took the results from a single run. All models
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were trained for 60,000 iterations and then tested. No early
stopping was used. We did not select the model based on val-
idation accuracy or other criteria. The MAML code employs
ten gradient steps at test time and computes classification
accuracy after each step. We report the maximum accuracy
across those ten steps. To generate the plot in Figure 4a, we
use the same command line as Omniglot-5-1, but vary the
update batch size from one to ten.

B.2. CNAPs Experiments

We evaluate CNAPS using a range of normalization lay-
ers on a demanding few-shot classification challenge called
Meta-Dataset (Triantafillou et al., 2020). Meta-Dataset is
composed of ten (eight train, two test) image classification
datasets. We augment Meta-Dataset with three additional
held-out datasets: MNIST (LeCun et al., 2010), CIFAR10
(Krizhevsky & Hinton, 2009), and CIFAR100 (Krizhevsky
& Hinton, 2009). The challenge constructs few-shot learn-
ing tasks by drawing from the following distribution. First,
one of the datasets is sampled uniformly; second, the “way”
and “shot” are sampled randomly according to a fixed pro-
cedure; third, the classes and context / target instances are
sampled. Where a hierarchical structure exists in the data
(ILSVRC or OMNIGLOT), task-sampling respects the hier-
archy. In the meta-test phase, the identity of the original
dataset is not revealed and the tasks must be treated inde-
pendently (i.e. no information can be transferred between
them). Notably, the meta-training set comprises a disjoint
and dissimilar set of classes from those used for meta-test.
Full details are available in Triantafillou et al. (2020).

For all the CNAPS experiments, we use the code provided
by the the CNAPS authors (Requeima et al., 2019b) with
only small modifications to enable additional normalization
techniques. We follow an identical dataset configuration and
training process as prescribed in Requeima et al. (2019b). To
generate results in Table 2, we used the following CNAPS
options: FiLM feature adaptation, a learning rate of 0.001,
and TBN, CBN, BRN, and RN used 70,000 training itera-
tions, IN used 200,000 iterations, LN used 110,000 itera-
tions, and TASKNORM used 60,000 iterations. The CNAPS
code generates two models: fully trained and best validation.
We report the better of the two. We performed no hyper-
parameter tuning and report the test results from the first
run. Note that CBN, TBN, and RN share the same trained
model. They differ only in how meta-testing is done.

B.3. Prototypical Networks Experiments

We evaluate the Prototypical Networks (Snell et al., 2017)
algorithm with a range of NLs using the same Omniglot,
minilmageNet, and Meta-Dataset benchmarks.

For Omniglot, we used the codebase created by the Pro-
totypical Networks authors (Snell, 2017). For minilma-

geNet, we used the a different codebase ((Chen, 2018)) as
the first codebase did not support minilmageNet. Only small
modifications were made to the two codebases to enable
additional NLs. For Omniglot and minilmageNet, we set
hyper-parameters as prescribed in (Snell et al., 2017). Early
stopping was employed and the model that produced the
best validation was used for testing.

For Meta-Dataset, we use the code provided by the the
CNAPS authors (Requeima et al., 2019b) with only small
modifications to enable additional normalization techniques
and a new classifier adaptation layer to generate the linear
classifier weights per equation (8) in (Snell et al., 2017).
We follow an identical dataset configuration and training
process as prescribed in Requeima et al. (2019b). To gen-
erate results in Table 3, we used the following CNAPS
options: no feature adaptation, a learning rate of 0.001,
60,000 training iterations for all NLs, and the pretrained
feature extractor weights were not frozen and allowed to
update during meta-training.

C. Additional Classification Results

Table C.1 shows the classification accuracy results for the
ProtoNets algorithm on the Omniglot and minilmageNet
datasets. Figure C.la and Figure C.1b show the training
curves for the ProtoNets algorithm on Omniglot and Meta-
Dataset, respectively.

D. Additional Transduction Tests

A non-transductive meta-learning system makes predictions
for a single test set label conditioned only on a single input
and the context set. A transductive meta-learning system
also conditions on additional samples from the test set.

Table D.2 demonstrates failure modes for transductive learn-
ing. In addition to reporting the classification accuracy re-
sults when the target set is evaluated all at once (first column
of results for each NL), we report the classification accuracy
when meta-testing is performed one target-set example at
a time (second column of results for each NL), and one
target-set class at a time (third column of results for each
NL). Table D.2 demonstrates that classification accuracy
drops dramatically for TBN when testing is performed one
example or one class at a time.

Importantly, in the case of TASKNORM-I (or any non-
transductive NL —i.e. all of NLs evaluated in this work apart
from TBN), the evaluation results are identical whether they
are meta-tested on the entire target set at once, one example
at a time, or one class at a time. This shows that transductive
learning is sensitive to the distribution over the target set
used during meta-training, demonstrating that transductive
learning is less generally applicable than non-transductive
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Table C.1. Accuracy results for different few-shot settings on Omniglot and minilmageNet using the Prototypical Networks algorithm. All
figures are percentages and the =+ sign indicates the 95% confidence interval. Bold indicates the highest scores. The numbers after the
configuration name indicate the way and shots, respectively. The vertical lines in the TBN column indicate that this method is transductive.

Configuration TBN CBN BRN LN IN RN MetaBN  TaskNorm-L  TaskNorm-I
Omniglot-5-1 98.4+0.2 | 98.5+0.2 98.5+£0.2 98.7+0.2 93.7£04 98.0+£0.2 98.4+0.2 98.61+0.2 98.41+0.2
Omniglot-5-5 99.6+0.1 | 99.6+0.1 99.6+0.1 99.7+0.1 98.8+£0.1 99.6+0.1 99.6+0.1 99.6+0.1 99.6+0.1
Omniglot-20-1 94.5+£0.2 | 945402 94.6£0.2 94.9+0.2 83.5+£0.3 94.1+£0.2 94.5+0.2 95.0+0.2 93.44+0.2
Omniglot-20-5 98.6+0.1 | 98.6+0.1 98.6:£0.1 98.7+0.1 96.3+0.1 98.6+0.1 98.6:+0.1 98.7+0.1 98.6+0.1
minilmageNet-5-1 | 45.9+0.6 | 47.8+£0.6 46.3+0.6 47.5+0.6 30.4+0.5 39.7+0.5 42.6+0.6 47.54+0.6 43.24+0.6
minilmageNet-5-5 | 65.5+£0.5 | 66.7£0.5 64.7+0.5 66.3+0.5 488+0.5 63.1£0.5 64.6+0.5 65.3+0.5 63.9+0.5
Average Rank 4.58 3.25 433 2.75 9.00 6.67 5.25 3.08 6.08
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Figure C.1. (a) Plot of validation accuracy versus training iteration using ProtoNets for Omniglot 20-way, 1-shot corresponding to the
results in Table C.1. (b) Training Loss versus iteration corresponding to the results using the ProtoNets algorithm on META-DATASET in
Table 3. Note that TBN, CBN, and RN all share the same meta-training step.

learning. In particular, transductive learners may fail to
make good predictions if target sets contains a different
class balance than what was observed during meta-training,
or if they are required to make predictions for one example
at a time (e.g. in streaming applications).

E. Ablation Study: Choosing the best
parameterization for o

There are a number of possibilities for the parameterization
of the TASKNORM blending parameter cv. We consider four
different configurations for each NL:

1. «ais learned separately for each channel (i.e. channel
specific) as an independent parameter.

2. «is learned shared across all channels as an indepen-
dent parameter.

3. «ais learned separately for each channel (i.e. channel

specific) as a function of context set size (i.e. a =
SIGMOID(SCALE|DT| 4+ OFFSET)).

4. « is learned shared across all channels as a function
of context set size (i.e. & = SIGMOID(SCALE|D"| +
OFFSET)).

Accuracy Table E.3 and Table E.4 show classification
accuracy for the various parameterizations for MAML and
the CNAPS algorithms, respectively using the TASKNORM-
INL.

When using the MAML algorithm, there are only two op-
tions to evaluate as the context size is fixed for each con-
figuration of dataset, shot, and way and thus we need only
evaluate the independent options (1 and 2 above). Table E.3
indicates that the classification accuracy for the channel spe-
cific and shared parameterizations are nearly identical, but
the shared parameterization is better in the Omniglot-5-1
benchmark and hence has the best ranking overall.
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Table D.2. Few-shot classification results for TBN and TASKNORM-I on META-DATASET using the CNAPS algorithm. For each NL, the
first column of results "All" reports accuracy when meta-testing is performed on the entire target set at once. The second column of results
"Example" reports accuracy when meta-testing is performed one example at a time. The third column of results "Class" reports accuracy
when meta-testing is performed one class at a time. All figures are percentages and the 4= sign indicates the 95% confidence interval over
tasks. Meta-training is performed on datasets above the dashed line, while datasets below the dashed line are entirely held out.

TBN TASKNORM-I

Dataset All Example Class All Example Class

ILSVRC 50.2£1.0 9.5+£03 11.8+£04 | 504+1.1 504+£1.1 50.4=£1.1
Omniglot 91.4+05 75404  9.6+04 | 91.3+0.6 91.3+0.6 91.3+0.6
Aiircraft 81.6+0.6 11.8+0.4 14.4+04 | 83.84:0.6 83.8+:0.6 83.8+0.6
Birds 745+£0.8 7.6+£0.4  8.4+04 | 744+09 744+09 74.4+£09
Textures 59.7£0.7 17.0+£0.2 18.1£04 | 61.1+£0.7 61.1£0.7 61.1£0.7
Quick Draw  70.8£0.8  5.6+04  88+04 | 74.7£0.7 74.7£0.7 74.74+0.7
Fungi 46.0£1.0 5.0+£03  6.5£04 | 50.6£1.1 50.6£1.1 50.6%1.1
VGG Flower  86.6+£0.5 11.2+04 12.6+04 | 87.8+0.5 87.8+0.5 87.8+0.5

* Traffic Signs 66.6+£0.9  6.0£0.3 ~ 8.1+04 | 64.8+£0.8 64.8+0.8 64.8+0.8

MSCOCO 413+1.0 6.1£03 79404 | 422410 422£1.0 422+1.0
MNIST 92.1+04 14.4+£03 193+04 | 91.3+0.4 91.3+0.4 91.3+04
CIFAR10 70.1+£0.8  14.4+£0.3 16.4£0.4 | 70.0£0.8 70.0+0.8 70.0+0.8
CIFAR100 55.6£1.0 56403  7.7+£04 | 54.6+1.0 54.6+1.0 54.6+1.0

Table E.3. Few-shot classification results for two o parameteriza-
tions on Omniglot and minilmageNet using the MAML algorithm.
All figures are percentages and the =+ sign indicates the 95% confi-
dence interval over tasks. Bold indicates the highest scores.

Independent

Configuration Channel Specific Shared
Omniglot-5-1 90.7£1.0 94.4+0.8
Omniglot-5-5 98.34+0.2 98.610.2
Omniglot-20-1 90.6+0.5 90.0+£0.5
Omniglot-20-5 96.4+0.2 96.31+0.2
minilmageNet-5-1 42.6+1.8 42.4+1.7
minilmageNet-5-5 58.8+0.9 58.7+0.9
Average Rank 1.67 1.33

When using the CNAPS algorithm on the Meta-Dataset
benchmark, the best parameterization option in terms of
classification accuracy is « shared across channels as a func-
tion of context size. One justification for having « be a
function of context size can be seen in Figure 3b. Here
we plot the line SCALE|D"| + OFFSET on a linear scale
for a representative set of NLs in the ResNet-18 used in
the CNAPS algorithm. The algorithm has learned that the
SCALE parameter is non-zero and the OFFSET is almost
zero in all cases. If a constant o would lead to better accu-
racy, we would see the opposite (i.e the SCALE parameter
would be at or near zero and the OFFSET parameter being
some non-zero value). From Table E.4 we can also see that
accuracy is better when the parameterization is a shared «
opposed to having a channel-specific a.

Training Speed Figure E.2a and Figure E.2b show the
learning curves for the various parameterization options
using the MAML and the CNAPS algorithms, respectively
with a TASKNORM-I NL.

For the MAML algorithm the training efficiency of the
shared and channel specific parameterizations are almost
identical. For the CNAPS algorithm, Figure E.2b indicates
the training efficiency of the independent parameterization
is considerably worse than the functional one. The two
functional representations for the CNAPs algorithm have
almost identical training curves. Based on Figure E.2a
and Figure E.2b, we conclude that the training speed of
the functional parameterization is superior to that of the
independent parameterization and that there is little or no
difference in the training speeds between the functional,
shared parameterization and the functional, channel specific
parameterization.

In summary, the best parameterization for a when it is
learned shared across channels as a function of context set
size (option 4, above). We use this parameterization in all of
the CNAPS experiments in the main paper. For the MAML
experiments, the functional parameterization is meaningless
given that all the test configurations have a fixed context
size. In that case, we used the independent, shared across
channels parameterization for o for the experiments in the
main paper.
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Table E.4. Few-shot classification results for various o parameterizations on META-DATASET using the CNAPS algorithm. All figures are
percentages and the =+ sign indicates the 95% confidence interval over tasks. Bold indicates the highest scores. Meta-training performed
on datasets above the dashed line, while datasets below the dashed line are entirely held out.

Independent Functional
Dataset Channel Specific Shared Channel Specific Shared
ILSVRC 45.3+1.0 49.6+1.1 49.8+1.1 50.6+1.1
Omniglot 90.8+0.6 90.910.6 90.14+0.6 90.740.6
Aircraft 82.3£0.7 84.610.6 84.410.6 83.840.6
Birds 70.1£0.9 73.24+0.9 73.1+0.9 74.61+0.8
Textures 54.8+0.7 58.54+0.7 61.04+0.8 62.14+0.7
Quick Draw 73.04+0.8 73.91+0.7 74.240.7 74.81+0.7
Fungi 43.8+1.0 47.6+1.0 48.0+1.0 48.7+1.0
VGG Flower 85.9£0.6 86.3£0.5 86.5£0.7 89.610.6
© Traffic Signs ~ 62.6£0.8  62.64£0.8  60.1£0.8  67.0+£0.7

MSCOCO 38.3+1.1 40.9£1.0 40.2+1.0 43.4+1.0
MNIST 92.61+0.4 91.7+0.4 91.1+0.4 92.3+0.4
CIFAR10 65.7£0.9 67.7£0.8 67.3£0.9 69.3+£0.8
CIFAR100 48.1£1.2 52.1%1.1 53.3+1.0 54.6+1.1
Average Rank 35 2.5 2.5 1.5
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Figure E.2. (a) Plots of validation accuracy versus training iteration corresponding to the parameterization experiments using the MAML
algorithm in Table E.3. (b) Plot of training loss versus iteration corresponding to the parameterization experiments using the CNAPS
algorithm in Table E.4.



