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Abstract

The recently proposed Thermodynamic Varia-
tional Objective (TVO) leverages thermodynamic
integration to provide a family of variational infer-
ence objectives, which both tighten and general-
ize the ubiquitous Evidence Lower Bound (ELBO).
However, the tightness of TVO bounds was not
previously known, an expensive grid search was
used to choose a “schedule” of intermediate distri-
butions, and model learning suffered with ostensi-
bly tighter bounds. In this work, we propose an
exponential family interpretation of the geomet-
ric mixture curve underlying the TVO and various
path sampling methods, which allows us to charac-
terize the gap in TVO likelihood bounds as a sum
of KL divergences. We propose to choose interme-
diate distributions using equal spacing in the mo-
ment parameters of our exponential family, which
matches grid search performance and allows the
schedule to adaptively update over the course of
training. Finally, we derive a doubly reparame-
terized gradient estimator which improves model
learning and allows the TVO to benefit from more
refined bounds. To further contextualize our con-
tributions, we provide a unified framework for
understanding thermodynamic integration and the
TVO using Taylor series remainders.

1. Introduction

Modern variational inference (VI) techniques are able to
jointly perform maximum likelihood parameter estimation
and approximate posterior inference using stochastic gradi-
ent ascent (Kingma & Welling, 2013; Rezende et al., 2014).
Commonly, this is done by optimizing a tractable bound to
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Figure 1. The original TVO paper recommended using two partition
points, with a single intermediate 31 in addition to the ELBO at
Bo = 0. We report test log pe(x) values from training a separate
VAE at each (31, but this grid search is prohibitively expensive in
practice. Our moment-spacing schedule is an adaptive method
for choosing 3 points, which yields near-optimal performance on
Omniglot and provides notable improvement over the ELBO.

the marginal log likelihood log ps(x) = log [ pg(x,z) dz,
obtained by introducing a divergence D[q,(z | x)||po(z | %))
between the variational distribution g4(z | x) and true poste-
rior pp(z | x) (Blei et al., 2017; Li & Turner, 2016; Dieng
et al., 2017; Domke & Sheldon, 2018; Wang et al., 2018).

The recent Thermodynamic Variational Objective (TVO)
(Masrani et al., 2019) reframes likelihood estimation in
terms of numerical integration along a geometric mixture
path connecting ¢,(z | x) and pg(z | x). This perspective
yields a natural family of lower and upper bounds via Rie-
mann sum approximations, with the ELBO appearing as
a single-term lower bound and wake-sleep (WS) ¢ update
corresponding to the simplest upper bound. The TVO gener-
alizes these objectives by using a K -term Riemann sum to
obtain tighter bounds on marginal likelihood. We refer to the
discrete partition {3 }5_, used to construct this estimator
as an ‘integration schedule.’

However, the gaps associated with these intermediate
bounds was not previously known, an important roadblock
to understanding the objective. Further, the TVO was lim-
ited by a grid search procedure for choosing the integration
schedule. While TVO bounds should become tighter with
more refined partitions, Masrani et al. (2019) actually ob-
serve deteriorating performance in practice with high K.
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Our central contribution is an exponential family interpreta-
tion of the geometric mixture curve underlying the TVO and
various path sampling methods (Gelman & Meng, 1998;
Neal, 2001). Using the Bregman divergences associated
with this family, we characterize the gaps in the TVO upper
and lower bounds as the sum of KL divergences along a
given path, resolving this open question about the TVO.

Further, we propose to choose intermediate distributions in
the TVO based on the ‘moment-averaged’ path of Grosse
et al. (2013), which arises naturally from the dual parameter-
ization of our exponential family. This scheduling scheme
was originally proposed in the context of annealed impor-
tance sampling (AIS), where additional sampling procedures
may be required to even approximate it. We provide an effi-
cient implementation for the TVO setting, which allows the
choice of 3 to adapt to the shape of the integrand and degree
of posterior mismatch throughout training.

In Figure 1, we observe that this flexible schedule yields
near-optimal performance compared to grid search for a
single intermediate distribution, so that the TVO can signifi-
cantly improve upon the ELBO for minimal additional cost.
However, our moments scheduler can still suffer the previ-
ously observed performance degradation as the number of
intermediate distributions increases. As a final contribution,
we propose a doubly reparameterized gradient estimator for
the TVO, which we show can avoid this undesirable behavior
and improve overall performance in continuous models.

Our exponential family analysis may be of wider interest
given the prevalence of Markov Chain Monte Carlo (MCMC)
techniques utilizing geometric mixture paths (Neal, 1996;
2001; Grosse et al., 2016; Syed et al., 2019; Huang et al.,
2020). To this end, we also present a framework for under-
standing thermodynamic integration (TI) (Ogata, 1989) and
the TVO using Taylor series remainders, which clarifies that
the TVO is a first-order objective and provides geometric in-
tuition for several results from Grosse et al. (2013). We hope
these connections can help open new avenues for analysis
at the intersection of MCMC, VI, and statistical physics.

2. Background
2.1. Thermodynamic Integration

Thermodynamic integration (TI) is a technique from statisti-
cal physics, which frames estimating ratios of partition func-
tions as a one-dimensional integration problem. Commonly,
this integral is taken over 3 € [0, 1], which parameterizes a
path of geometric mixtures between a base distribution g,
and a target distribution 7, (Gelman & Meng, 1998)

) m @)
D= dm sz, O

The insight of TI is to recognize that, while the log par-
tition function is intractable, its derivative can be written
as an expectation that may be estimated using sampling or
simulation techniques (Neal, 2001; Habeck, 2017)

Wl(Z)] .

71'0(Z)

Vslog Zg = Eq, [log 2)
In Sec. 3, we will see that this identity arises from an inter-
pretation of the geometric mixture curve (1) as an exponen-
tial family. Applying this within the fundamental theorem
of calculus,

1
log Z1 —log Zy = / Vglog Zg dp 3)
0
- 1 7T1(Z)
_/O Ers [log wo(z)} dg. 4

While (3) holds for any choice of path parameterized by (3,
we can construct efficient estimators of the integrand in (4)
and estimate the partition function ratio log Z; /Z; using
numerical integration techniques.

2.2. The Thermodynamic Variational Objective

The TVO (Masrani et al., 2019) uses TI in the context of vari-
ational inference to provide natural upper and lower bounds
on the log evidence, which can then be used as objectives for
training latent variable models. In particular, the geometric
mixture path interpolates between the approximate posterior
¢4(z | x) and the joint generative model pg(x, z)

ﬁﬁ(z |x) = frﬂ(xa z) — q¢(z | X)l BPQ(Xv Z)ﬁ . (5)
[ 7s(x,2)dz Zp(x)

As distributions over z, we can identify the endpoints

as mo(z|x) = ¢y(z|x) and m(z|x) = py(z|x), with

corresponding normalizing constants Zy = 1 and Z; =

[ po(x,2) dz = po(x).

Applying TI (3) for this set of log partition functions, Mas-
rani et al. (2019) express the generative model likelihood
using a one-dimensional integral over the unit interval

1
log pp(x) :/ Er, [log
0

The left and right endpoints of this integrand correspond to
familiar lower and upper bounds on log pg (x). The evidence
lower bound (ELBO) occurs at 8 = 0, while the analogous
evidence upper bound (EUBO) at 3 = 1 uses the ‘reverse’
KL divergence and appears in various wake-sleep objectives
(ws) (Hinton et al., 1995; Bornschein & Bengio, 2014)

po(X,2)
q4(z X)] af- ©

ELBO(0, ¢, x) = log pg(x) — Di1[qe||ps) (7)
EUBO(0, ¢,x) = logpa(x) + Drrlpellge].  (8)
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Figure 2. The TVO is a K-term Riemann sum approximation of log pg(x), which can be expressed as a scalar integral over the unit
interval in (6) and on the right. The ELBO is a single-term left Riemann approximation of the same integral using the point 8 = 0 with
o = ¢¢(2z | x). Note that the integrand is negative in practice, but shown as positive for interpretability.

To arrive at the TVO, a discrete partition schedule is chosen
Pﬂ = {6/6}?:0 with g = 0, Bk = 1, and Agk = 6L —
Br—1. The integral in (6) is then approximated using a left
or right Riemann sum. Since Masrani et al. (2019) show
the integrand is increasing, these approximations yield valid
lower and upper bounds on the marginal likelihood

K
pQ(X,Z):|
0.0, %)= Ao Bmy_, |log TS @
TVO]_( ¢ X) k; B Br—1 |:Og qu(Z‘X) ( )
K po(x,2)
) _ Ag E,.. |log P8%2Z) 10
TVOy (6, ¢,%) ; Pr =mey, [Og C]¢(Z|X)} 1o

with
TVOL (0, ¢,x) < logpg(x) < TVOy (0, ¢, x). (11

The first term of TVO (6, ¢, x) corresponds to the ELBO,
while the last term of TvOy (6, ¢,x) corresponds to the
EUBO. Thus, the TVO generalizes both objectives, with
additional partitions leading to tighter bounds on likelihood
as visualized in Fig. 2.

Although we consider thermodynamic integration over
0 < B < 1 to approximate log py(x), note that this in-
tegral does not avoid the need for integration over z since
each intermediate distribution must be normalized. Masrani
et al. (2019) propose an efficient, self-normalized impor-
tance sampling (SNIS) scheme with proposal g, (z | x), so
that expectations at any intermediate 3 can be estimated by
simply reweighting a single set of importance samples

il wzﬁ p@(x7zi)
Er,[] = Z —+—[] where w; := ———=. (12)

i=1 Zf:l wd q(2i | x)
3. Exponential Family Interpretation

We propose a novel exponential family of distributions
which, by absorbing both py(x,z) and g4 (z|x) into the

sufficient statistic, corresponds to the geometric mixture
path defined in (5). We provide a formal definition in Sec.
3.1, before showing in Sec. 3.2 that several key quantities
in the TVO arise from familiar properties of exponential
families. In Sec. 4, we leverage the Bregman divergences
associated with our exponential family to naturally charac-
terize the gap in TVO bounds as a sum of KL divergences.

3.1. Definition

To match the TVO setting in (5), we consider an exponen-
tial family of distributions with natural parameter /3, base
measure ¢,(z | x), and sufficient statistics equal to the log
importance weights as in (9)-(10)

7w5(z|x) = mo(z|x)exp{ 8- T(x,2) — ¥(x;5)} (13)

yZ (X7 Z)

where T'(x,z) := log ————=
q9(2[x)

o (2] %) = gs(z [ x)

This induces a log-partition function v (x; 3), which nor-
malizes over z and corresponds to log Z3(x) in (5)

; = 10, Z | X)ex (0] M VA
(i) = 1og [ as(a ) expl F1os 242525 a,

= 1og/q¢(z|x)1_ﬁpg(x,z)ﬁ dz (14)

= log Z3(x). 15)

The log-partition function will play a key role in our analysis,
often written as ¢(3) to omit the dependence on x.

We emphasize that we have made no additional assumptions
on pg(x,z) or g4(z | x), and do not assume they come from
exponential families themselves. This ‘higher-order’ expo-
nential family thus maintains full generality and may be
constructed between arbitrary distributions.
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3.2. TVO using Exponential Families

We now show that a number of key quantities, which were
manually derived in the original TVO work, may be directly
obtained from our exponential family.

TI Integrates the Mean Parameters It is well known
that the log-partition function ¢ (3) is convex, with its first
(partial) derivative equal to the expectation of the sufficient
statistics under 7g (Wainwright & Jordan, 2008).

X,2)
(z]x)
This quantity is known as the mean parameter 1z, which
provides a dual coordinate system for indexing intermedi-
ate distributions (Wainwright & Jordan (2008) Sec. 3.5.2).
Comparing with (2) and (6), we observe that the ability to
trade derivatives of the log-partition function for expecta-
tions in TI arises from this property of exponential families.

ns = Va(8) = E[T(x,2)] = En, [mg Po(x } (16)

We may then interpret the TVO as integrating over the mean
parameters 1z = V g log Z3 of our path exponential family,
which can be seen by rewriting (3)

v =00 = [ s = / 'E., [log m}dﬁ.

TVO Likelihood Bounds The convexity of the log parti-
tion function arises from the fact that entries in its matrix
of second partial derivatives with respect to the natural pa-
rameters correspond to the (co)variance of the sufficient
statistics (Wainwright & Jordan, 2008). In our 1-d case, this
corresponds to the variance of the log importance weights

Po(%,2)
o(2]x)

We can see that the TVO integrand Vg (p) is increasing
from non-negativity of V2 w(ﬁ) > 0 Vf3, which ensures
that the left and right Rlemann sums will yield valid lower
and upper bounds on the marginal log likelihood.

V3(8) = Var[T(x,2)] = Vars, {log } (17)

ELBO on the Graph of 3 Inspecting Fig. 2, we see that
the gap in the TVO bounds corresponds to the amount by
which a Riemann approximation under- or over-estimates
the area under the curve (AUC). We can solidify this intution
for the case of the ELBO, a single-term approximation of
log pg(x) using 8 = 0 for the entire interval 51 — 3y = 1—0

GAP = [/1 Vﬁw(ﬂ)dﬁ} — (1= 0)Ey, [log M}
0 q¢(z ] %)
AUC WIDTH HEIGHT

0,¢,x)

= Dk1lgs(z[x)|ps(z|%)). (18)

= log pp(x) — ELBO(

In the next section, we generalize this reasoning to more
refined partitions, showing that the gap in arbitrary TVO
bounds corresponds to a sum of KL divergences between
adjacent 7, along a given path {8} 5 .

4. TVO Likelihood Bound Gaps

In previous work, it was shown only that TVOy (6, ¢, x)
minimizes a quantity that is non-negative and vanishes at
q4(z|x) = pp(z|x) (Masrani et al., 2019). Using the
Bregman divergences associated with our path exponential
family, we can now provide a unified characterization of the
gaps in TVO bounds.

4.1. Bregman Divergences

We begin with a brief review of the Bregman divergence,
which can be visualized on the graph of the TVO integrand
in Fig. 3 or the log partition function in Fig. 4.

A Bregman divergence D, is defined with respect to a
convex function ¢ (Banerjee et al., 2005) which, in our
case, takes distributions indexed by natural parameters 3
and /3’ as its arguments

Dy[B: Bl =(B) — (¥(8") + (B — B)Vs(8')). (19)

First Order Taylor Approx

Geometrically, the Bregman divergence corresponds to the
gap in a first-order Taylor approximation of () around
the second argument (', as depicted in Fig. 4. Note that this
difference is guaranteed to be nonnegative, since we know
that the tangent will everywhere underestimate a convex
function (Boyd & Vandenberghe, 2004).

The Bregman divergence Dy, for the exponential family in
(13) is also equivalent to the KL divergence, with the order
of the arguments reversed (also see App. A). Applying (16)
and adding and subtracting a base measure term,

DylB: Bl =(B) —¢(B') — (B—B)Vs(8) (20)
—(f) =B B, [T]—E,, [logm] Q1)

— (B + 8 Eﬂ—ﬂ/ [T]+ Eﬂg/ [log 7o |
= E,Tﬁ, [logmg —logmg], (22)

where in the third line, we use the fact that E [log 5] =
E [logmo(z | x)+ B -T(x,2)] —1(x; ) from (13). We then
obtain our desired result, with

Dy[B: B’} = Drr|mg [Ims] . (23)
KL Divergence on the Graph of 75 We can also visual-
ize the Bregman divergence on the graph of the integrand

s = V9(B) in Fig. 3, which leads to a natural expression
for the gaps in TVO upper and lower bounds.
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Figure 3. The Bregman divergence D r.[mg, ,||ms,] can be visu-
alized as the area under the curve minus the left-Riemann sum via
(24). This term contributes to the gap in the likelihood bound TVO;..
We also derive an integral form for the KL divergence in App. C.2.
Note that both the integrand and () are negative in practice.

To begin, we consider a single subinterval [_1, 8] and
follow the same reasoning as for the ELBO in Sec. 3.2.
In particular, the area under the integrand in this region
is AUC = [1* Va(B)dB = $(Br) — ¥(Br1). with
the left-Riemann approximation corresponding to (3 —
Br—1)Vs(Bs). Taking the difference between these ex-
pressions, we obtain the definition of the Bregman diver-
gence in (19)

GAP = Y(By) — Y(Br-1) — (Br — Br—1) VY (Br-1)
AUC Term in TVOp, (0,¢,%)
= Dl/)[ﬁk : ﬂkfl] = D;L[Wﬁk—l ||7T51c]' (24

where arrows indicate whether the first argument of the
KL divergence is increasing or decreasing along the path.
For the gap in the right-Riemann upper bound, we follow
similar derivations with the order of the arguments reversed
in Sec. 4.3. This results in a gap of D, [73,||75,_, ], with
expectations 73, = Vg1(0) taken under 7g, .

4.2. TVO Lower Bound Gap

Extending the above reasoning to the entire unit interval,
we can consider any sorted partition Pg = {3}, with
Bo = 0 and Sk = 1. Summing (24) across intervals, note
that intermediate (/5% ) terms cancel in telescoping fashion

K
> Dy[Br ¢ Br-1] (25)
k=1

K
=y(1 )= > (B — Be-1) Vo (Br-1)
k=1

where the last term matches the TVOy, objective in (9).

0 Br—1 Bk

v

S+~

R .
log po(x) 4 DKL[Ter—lnﬂ-Bk_J

Figure 4. TVOL (6, ¢, x) may be viewed as constructing successive
first-order Taylor approximations to intermediate (8}, ), with the
accumulated error corresponding to the gap in the bound. The upper
bound takes KL divergences in the reverse direction, with the first
argument decreasing along the path.

Writing Dy, as a KL divergence as in (23) and recalling that
(1) —1(0) = log pp(x), we obtain

ZDKL T B — 1||7r5k] (26)
k=1

log p(x) — TVOL (0,

We therefore see that the gap in the TVO lower bound is the
sum of KL divergences between adjacent g, distributions.

Alternatively, we can view (25) as constructing successive
first-order Taylor approximations to intermediate ¢ (5 ) in
Fig. 4. The likelihood bound gap of Zle Dy B : Br—1]
measures the accumulated error along the path. While the
ELBO estimates ¢(1) = log pe(x) directly from 8 = 0,
more refined partitions can reduce the error and improve
our bounds. As K — oo, TVO[ (6, ¢, x) becomes tight as
our g, are infinitesimally close, and the Riemann integral
estimate would become exact given exact estimates of 7, .

4.3. TVO Upper Bound Gap

To characterize the gap in the upper bound, we first leverage
convex duality to obtain a Bregman divergence in terms of
the conjugate function ¢* () and the mean parameters 7).
As shown in App. A, this divergence, D, is equivalent to
D, with the order of arguments reversed

Dy[Br—1 : Bl
D;(_L[ﬂ-ﬂk || ﬂ-qu]'

As in (25), we expand the dual divergences along a path as

> Dy[Br1 : Byl

Dw*[’l]k N nk—l] = (27)

(28)

K
) = > (Be-1 — Br)Vab(Br)
k=1
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Since the last term corresponds to a right-Riemann sum, we
can similarly characterize the gap in TVOy (6, ¢, x) using a
sum of KL divergences in the reverse direction

K
T™VOy (6, 4, X) —logp(x) = Z D;(_L[WﬁkHwﬁk—l}' (29)
k=1

4.4. Integral Forms and Symmetrized KL

To further contextualize the developments in this section,
we show in App. C that both thermodynamic integration
and the TVO may be understood using the integral form of
the Taylor remainder theorem. In particular, the expression
(4) underlying TT corresponds to the gap in a zero-order
approximation, whereas we have previously shown that the
KL divergence arises from a first-order remainder.

We can thus obtain integral expressions for the KL diver-
gence, lending further intution for its interpretation as the
area of a region in Fig. 3 or Fig. 5

B
Po(x,2)
B/ (Br — B) Vary, [log m]dﬁ.

DK_>L[7T¢31C71 ||7Tﬁk] =
Combining the remainders in each direction, we recover a
known identity relating the symmetrized KL divergence to
the integral of the Fisher information (App. C.3 (56), Dabak
& Johnson (2002)).

Similarly, we can visualize (twice) the symmetrized KL as
the area of a rectangle in Fig. 5, by adding the gaps in the
left- and right-Riemann approximations for a single interval

Dﬁ[ﬂﬂk—l;ﬂ'ﬁk] = D;L[ﬂﬁk—lnﬂﬁk] + D;L[Wﬂknﬂ-ﬁka

= (B — Br—1) (ke — Me—1) - (30)

From the Taylor remainder perspective, we note that (30)
can be derived using a further application of TI, or the funda-
mental theorem of calculus, to the function Vg1)(8), with

e — ko1 =[5 V3(B)dB (App. C.3 (58)).

For 3y = 0 and 8, = 1, we can confirm from (7)-(8) that
7 —no = BUBO — ELBO = D1 [qy||pe] + Dxcr.pel|gs)-

Before presenting our proposed approach for choosing 3
in the next section, we note that App. D.1 describes a
‘coarse-grained’ linear binning schedule from Grosse et al.
(2013), which allocates intermediate distributions based on
the identity (30) and is evaluated as a baseline in Sec. 8.

5. Moment-Spacing Schedule

Masrani et al. (2019) observe that TVO performance can
depend heavily on the choice of partition schedule Pg, and
propose log-uniform spacing of {82, ...0k_1} with grid
search over the initial 3.

A

ng, +

M- +

Br—1 Br

Figure 5. Adding the KL divergences in each direction, we can
visualize the symmetrized KL divergence as the area of a rectangle.
The curvature of the TVO integrand suggests which direction of the
KL divergence is larger, with the divergence becoming symmetric
when 73 is linear in 3 (see App. D.2).

Instead, we propose choosing i to yield equal spacing
in the y-axis of the TVO integrand 73 = E, [log qu((:"i)) I,
which corresponds to Lebesgue integration rather than Rie-
mann integration in Fig. 6. This scheduling arises naturally
from our exponential family in Sec. 3, with the mean param-
eters 7)g corresponding to the dual parameters (Wainwright
& Jordan (2008) Sec. 3.5.2). Equal spacing in the mean
parameters also corresponds to the ‘moment-averaged’ path
of Grosse et al. (2013), which was shown to yield robust
estimators and natural generative samples from intermediate
mg in the context of AIS.

Given a budget of intermediate distributions K = |Pg|, we
seek 3y such that 77, are uniformly distributed between the
endpoints 179 = ELBO and 77 = EUBO (see (7)-(8))

_ k k
Be=m5" ((1 - ?) -ELBO + o= -EUBO> . (3D

We use ngl (1) to indicate the value of the natural parameter
B such that the expected sufficient statistics 73 match a
desired target ;. This mapping between parameterizations
is known as the Legendre transform and can be a difficult
optimization in its own right (Wainwright & Jordan, 2008).

However, in the TVO setting, estimating moments 7)g for a
given [ simply involves reweighting and normalizing the
importance samples using SNIS in (12). Equipped with this
cheap evaluation mechanism, we can apply binary search
to find the 3, with a given expectation value 7g, , as in (31).
We update our choice of schedule at the end of each epoch,
and provide further implementation details in App. G.

We visualize an example of our moments schedule in Fig.
6. Note that uniform spacing in 1 does not imply uniform
spacing in 3, since the Legendre transform is non-linear.
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Figure 6. By enforcing equal spacing in the mean parameter space,
our moments schedule naturally ‘adapts’ by allocating more parti-
tions to regions where the integrand is changing quickly.

The resulting spacing in the z-axis reflects how quickly 7g
is changing as a function of /3, matching the intuition that we
should allocate more points in regions where the integrand
is changing quickly. Our moment-spacing schedule thus
adapts to the shape of the TVO integrand, which can change
significantly across training (Fig. 7). The integrand itself
reflects the degree of posterior mismatch, since the curve
will be flat when ¢4(z | x) = pg(z ]| x), with ng = log pg(x)
V(. On the other hand, an integrand rising sharply away
from 8 = 0 indicates a poor proposal, with only several
importance samples dominating the SNIS weights.

6. Doubly-Reparameterized TVO Gradient

To optimize the TvO, Masrani et al. (2019) derive a
REINFORCE-style gradient estimator (see their App. F),
which provides lower variance gradients and improved per-
formance with discrete latent variables. Writing \ to denote
{¢,0}, with w = py(x,2)/qs(z | x) and 75(x, z) as in (5),
we obtain gradients for expectations of arbitrary f(z) under
7, with the TVO integrand corresponding to f(z) = log w,

d
~ En[f(2)] =

Er, [%f(z)] + Covy, {f(z), % log 75(x, z)] (32)
However, when z; ~ ¢4(z | x) can be reparameterized via
z; = z(€;, ), €, ~ p(e), we can improve the estimator
in (32) by more directly incorporating f(z) gradient infor-
mation. To this end, we derive a doubly-reparameterized
gradient estimator in App. [

d _ d 02 0f(2)
5 @) = B [ 1) 5. 522000
0z dlogw

+(1 - B) Covy, {f(z), 8 } . (33)

% 0z

Epoch

Figure 7. We visualize placement of 3;, for our moments-spacing
schedule across the first 100 epochs, with K = 20. Most S
concentrate near 0 in early epochs, but spread out as training
proceeds and the integrand becomes flatter as a function of 3.

Doubly-reparameterized gradient estimators avoid a known
signal-to-noise ratio issue for inference network gradients
(Rainforth et al., 2018), using a second application of the
reparameterization trick within the expanded total deriva-
tive (Tucker et al., 2018). We use a simplified form of (33)
(see App. I (75)) for learning ¢ and (32) for learning 6.
Comparing the covariance terms of (32) and (33), note that
L log7s(x,2) and B g—; 9 lgi © differ by their differenta-
tion operator and a factor of log g4 due to reparameteriza-
tion, with log 73 = log ¢4 + B logw.

Further, the effect of the partial derivative g—; 82—(:) in the

first term of (33) linearly decreases as 8 — 1 and m3(z | x)
has less dependence on ¢.

Finally, we see that (33) passes two basic sanity checks,
with the covariance correction term vanishing at both end-
points. At S = 0, we recover the gradient of the ELBO,
i5Ex[[(2)] = E.(eg)[45/(2)]. At 8 = 1, note that
the 9z 9f(z)

op Oz
ing L Er, [f5(2)] = Ep, [ 25 f4(2)]. This is to be expected
for expectations under py(z | x), since the derivative with
respect to ¢ passes inside the expectation and g—; =0.

term cancels when expanding % f(2), leav-

7. Related Work

Thermodynamic integration (TI) is a strategy for estimating
partition function ratios or free energy differences in simu-
lations of physical systems (Ogata, 1989; Gelman & Meng,
1998; Frenkel & Smit, 2001), and also finds applications
in model selection for phylogenetics (Lartillot & Philippe,
2006; Xie et al., 2011).

Physics applications of TI often involve sampling forward
and reverse state trajectories (Frenkel & Smit, 2001; Habeck,
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Figure 8. Scheduling Performance by K on Omniglot, with S = 50. Legend shows (min / max) test log pg(x) across K.

2017), as might be done using MCMC transition operators.
Indeed, similar upper and lower bounds to the TVO are
used to evaluate bidirectional Monte Carlo (Grosse et al.,
2016). A body of recent work ‘bridging the gap’ between
VI and MCMC (Salimans et al., 2015; Wolf et al., 2016;
Hoffman, 2017; Li et al., 2017; Caterini et al., 2018; Huang
et al., 2018; Ruiz & Titsias, 2019; Lawson et al., 2019)
may thus provide a basis for practical improvements in
thermodynamic variational inference.

Several recent VI objectives also naturally appear within
the TVO framework. As we show in App. B, each log-
partition function log Z(x) (14) in our exponential family
corresponds to a Renyi divergence VI objective (Li & Turner,
2016) with order &« = 1 — 3. The CUBO objectives of Dieng
et al. (2017) correspond to upper bounds on log py(x) and
log partition functions with 8 € [1, 2]. From our exponential
family perspective, there is no explicit restriction that our
natural parameters J remain in the unit interval, with the
x2—divergence at 8 = 2 of notable interest (Cortes et al.,
2010). Bamler et al. (2017; 2019) also apply a Taylor series
approach to obtain tighter bounds on log pg(x), although
the expansion is with respect to the importance weights

T(x,z) = log [ f((le’i)) rather the natural parameter 3.

8. Experiments

We investigate the effect of our moment-spacing schedule
and reparameterization gradients using a continuous latent
variable model on the Omniglot dataset. We estimate test
log pg(x) using the IWAE bound (Burda et al., 2015) with 5k
samples, and use S = 50 samples for training unless noted.
In all plots, we report averages over five random seeds, with
error bars indicating min and max values. We describe our
model architecture and experiment design in App. F, ! with
runtimes and additional results on binary MNIST in App. H.

1https ://github.com/vmasrani/tvo_all_in

Moment Spacing Dynamics We seek understand the dy-
namics of our moment spacing schedule in Fig. 7, vi-
sualizing the choice of 3 points across training epochs
with K = 20. Our intermediate distributions concentrate
near § = 0 at the beginning of training, since ¢4(z|x)
and py(z | x) are mismatched and the TVO integrand rises
sharply away from ¢4 (z | x). This effect is particularly dra-
matic within the first five epochs.

While the curve is still fairly noisy within the first twenty
epochs, it begins flatten as training progresses and ¢4 (z | x)
learns to match pg(z | x). This is reflected in the ) achiev-
ing a given proportion of the moments difference (EUBO-
ELBO) moving to higher values. We found the moment-
scheduling partitions to be relatively stable after 100 epochs.

Grid Search Comparison Next, we fix K = 2 with only
(1 chosen by the moment spacing schedule. We compare
against grid search in Fig. 1 and Fig. 12 (App. H), and plot
test log pg(x) as a function of 51 € [0, 1] across 25 static
values. We report the value of 3; for our moments schedule
at the final epoch, which indicates where 73, is halfway
between our estimated ELBO and EUBO.

We find that our adaptive scheduling matches the best per-
formance from grid search, with the optimal intermediate
distribution occurring at 3; ~ 0.3 on both datasets. With a
single, properly chosen intermediate distribution, we find
that the TVO can achieve notable improvements over the
ELBO at minimal additional cost.

Evaluating Scheduling Strategies From a numerical in-
tegration perspective, the TVO bounds should become arbi-
trarily tight as K — oo. However, Masrani et al. (2019)
observe that additional partitions can be detrimental for
learning in practice. We thus investigate the performance of
our moment spacing schedule with a varying number of par-
titions. We plot test log likelihood at K = {2, 5, 10, 30, 50},
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Figure 9. Model Learning and Inference by S with K = 5. Legend shows (min / max) values across S.

and compare against three scheduling baselines: linear, log-
uniform spacing, and the ‘coarse-grained’ schedule from
Grosse et al. (2013) (see App. D.1). We begin the log-
uniform spacing at 5; = 0.025, a choice which results from
grid search over 31 for K > 2 in Masrani et al. (2019).

We observe in Fig. 8a that the moment scheduler provides
the best performance at high and low K, while the log-
uniform schedule can perform best for particular K. As
previously observed, all scheduling mechanisms still suffer
degradation in performance at large K.

Reparameterized TVO Gradients While our schedul-
ing techniques do not address the detrimental effect of using
many intermediate /3, we now investigate the use of our repa-
rameterization gradient estimator from Sec. 6. Repeating
the previous experiment in Fig. 8b, we find that reparame-
terization helps preserve competitive performance for high
K and improves overall model likelihoods. Our moments
schedule is still particularly useful at low K, while the var-
ious scheduling methods converge to similar performance
with many partition points. All scheduling techniques will
be equivalent in the limit, as discussed in App. D.2.

Comparison with IWAE Finally, we compare TVO with
moments scheduling against the importance weighted au-
toencoder (IWAE) (Burda et al., 2015) and doubly reparame-
terized IWAE DREG (Tucker et al., 2018) for model learning
and posterior inference. It is interesting to note that IWAE
corresponds to a direct estimate of (1), with the SNIS

normalizer Zle w} in TVO (12) appearing inside the log.

In Fig. 9, we observe that TVO with reparameterization
gradients achieves model learning performance in between
that of IWAE and IWAE DREG, with lower KL divergences
across all values of S. We repeat this experiment for MNIST
in App. H Fig. 13, where TVO matches IWAE DREG model

learning with better inference. Although we tend to ob-
tain lower D, with lower model likelihood, we do not
observe strong evidence of the signal-to-noise ratio issues
of Rainforth et al. (2018) on either dataset. TVO with repa-
rameterization thus appears to provide a favorable tradeoff
between model learning and posterior inference.

9. Conclusion

In this work, we interpret the geometric mixture curve found
in thermodynamic integration (TI), annealed importance
sampling (AIS), and the Thermodynamic Variational Ob-
jective (TVO), using the Bregman duality of exponential
families. We leveraged this approach to characterize the gap
in TVO lower and upper bounds as a sum of KL divergences
along a given path, and presented an adaptive scheduling
technique based on the mean parameterization of our expo-
nential family. Finally, we derived a doubly-reparameterized
gradient estimator for terms in the TVO integrand.

The use of self-normalized importance sampling (SNIS) to
estimate expectations under 73 may still be a key limitation
of the TVO (see Masrani et al. (2019)), although we relied
on the efficiency of SNIS for our moment-spacing sched-
ule. Improved MCMC estimators that can be integrated with
end-to-end learning of ¢4(z | x) and pg(x, z) remain an in-
truiging direction for future work. In this study, we did not
observe performance gains using equal spacing in either the
KL or symmetrized KL divergence, but alternative sched-
ules might also be motivated via physical interpretations
(Andresen & Gordon, 1994; Salamon et al., 2002; Sivak &
Crooks, 2012). We thus hope that our work can encourage
further contributions in thermodynamic variational infer-
ence (TVI), a class of methods combining insights from VI,
MCMC, and statistical physics.
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