
Latent Variable Modelling with Hyperbolic Normalizing Flows

A. Background on Riemannian Geometry
An n-dimensional manifold is a topological space that is equipped with a family of open sets Ui which cover the space and
a family of functions ψi that are homeomorphisms between the Ui and open subsets of R. The pairs (Ui, ψi) are called
charts. A crucial requirement is that if two open sets Ui and Uj intersect in a region, call it Uij , then the composite map
ψi ◦ ψ−1j restricted to Uij is infinitely differentiable. IfM is an n−dimensional manifold then a chart, ψ : U → V , onM
maps an open subset U to an open subset V ⊂ Rn. Furthermore, the image of the point p ∈ U , denoted ψ(p) : Rn is termed
the local coordinates of p on the chart ψ. Examples of manifolds include Rn, the Hypersphere Sn, the Hyperboloid Hn, a
torus. In this paper we take an extrinsic view of the geometry, that is to say a manifold can be thought of as being embedded
in a higher dimensional Euclidean space, —i.e. Mn ⊂ Rn+1, and inherits the coordinate system of the ambient space. This
is not how the subject is usually developed but for spaces of constant curvature one gets convenient formulas.

Tangent Spaces. Let p ∈ M be a point on an n−dimensional smooth manifold and let γ(t) → M be a differentiable
parametric curve with parameter t ∈ [−ε, ε] passing through the point such that γ(0) = p. SinceM is a smooth manifold
we can trace the curve in local coordinates via a chart ψ and the entire curve is given in local coordinates by x = ψ ◦ γ(t).
The tangent vector to this curve at p is then simply v = (ψ ◦ γ)′(0). Another interpretation of the tangent vector of γ is by
interpreting the point p as a position vector and the tangent vector is then interpreted as the velocity vector at that point.
Using this definition the set of all tangent vectors at p is denoted as TpM, and is called the tangent space at p.

Riemannian Manifold. A Riemannian metric tensor g on a smooth manifoldM is defined as a family of inner products
such that at each point p ∈M the inner product takes vectors from the tangent space at p, gp = 〈·, ·〉p : TpM×TpM→ R.
This means g is defined for every point on M and varies smoothly. Locally, g can be defined using the basis vectors
of the tangent space gij(p) = g(∂

∂pi
, ∂
∂pj

). In matrix form the Riemannian metric, G(p), can be expressed as, ∀u, v ∈
TpM×TpM, 〈u, v〉p = g(p)(u, v) = uTG(p)v. A smooth manifold manifoldM which is equipped with a Riemannian
metric at every point p ∈M is called a Riemannian manifold. Thus every Riemannian manifold is specified as the tuple
(M, g) which define the smooth manifold and its associated Riemannian metric tensor.

Armed with a Riemannian manifold we can now recover some conventional geometric insights such as the length of a
parametric curve γ, the distance between two points on the manifold, local notion of angle, surface area and volume. We
define the length of a curve, L[γ] =

∫ b
a
gγ(t)||γ′(t)||dt. This definition is very similar to the length of a curve on Euclidean

spaces if we just observe that the Riemannian metric is In. Now turning to the distance between points p and q we can
reason that it must be the smallest or distance minimizing parametric curve between the points which in the literature are
known as geodesics4. Stated another way: d(p, q) = inf

{
L[γ] |γ : [a, b]→M

}
with , γ(a) = p and γ(b) = q. A norm is

induced on every tangent space by gp and is defined as TpM : || · ||p :
√
〈·, ·〉p. Finally, we can also define an infitisimal

volume element on each tangent space and as a result measure dM(p) =
√
|G(p)|dp, with dp being the Lebesgue measure.

B. Background Normalizing Flows
Given a parametrized density on Rn a normalizing flow defines a sequence of invertible transformations to a more complex
density over the same space via the change of variable formula for probability distributions (Rezende & Mohamed, 2015).
Starting from a sample from a base distribution, z0 ∼ p(z), a mapping f : Rd → Rd, with parameters θ that is both
invertible and smooth, the log density of z′ = f(z0) is defined as log pθ(z′) = log p(z0) − log det

∣∣∣∂f∂z ∣∣∣. Where, pθ(z′)
is the probability of the transformed sample and ∂f/∂x is the Jacobian of f . To construct arbitrarily complex densities
a chain of functions of the same form as f can be defined and through successive application of change of density for
each invertible transformation in the flow. Thus the final sample from a flow is then given by zj = fj ◦ fj−1... ◦ f1(z0)
and it’s corresponding density can be determined simply by ln pθ(zj) = ln p(z0) −

∑j
i=1 ln det

∣∣∣ ∂fi
∂zi−1

∣∣∣. Of practical
importance when designing normalizing flows is the cost associated with computed the log determinant of the Jacobian
which is computationally expensive and can range anywhere from O(n!) − O(n3) for an arbitrary matrix and a chosen
algorithm. However, through an appropriate choice of f this computation cost can be brought down significantly. While
there are many different choices for the transformation function, f , in this work we consider only RealNVP based flows as
presented in (Dinh et al., 2017) and (Rezende & Mohamed, 2015) due to their simplicity and expressive power in capturing
complex data distributions.

4Actually a geodesic is usually defined as a curve such that the tangent vector is parallel transported along it. It is then a theorem that
it gives the shortest path.

Latent Variable Modelling with Hyperbolic Normalizing Flows

B.1. Variational Inference with Normalizing Flows

One obvious use case for Normalizing Flows is in learning a more expressive often multi-modal posterior distribution
needed in Variational Inference. Recall that a variational approximation is a lower bound to the data log-likelihood. Take for
example amortized variational inference in a VAE like setting whereby the posterior qθ is parameterized and is amenable to
gradient based optimization. The overall objective with both encoder and decoder networks:

log p(x) = log

∫
p(x|z)p(z)dz (19)

≥ Eqθ(z|x)[log
p(x, z)

qθ(z|x)
] (Jensen’s Inequality) (20)

= Eqθ(z|x)[log p(x|z)] + Eqθ(z|x)
[
log

p(z)

qθ(z|x)

]
(21)

= Eqθ(z|x)[log p(x|z)]−DKL(qθ(z|x)||p(z)) (22)

The tightness of the Evidence Lower Bound (ELBO) also known as the negative free energy of the system, −F(x), is
determined by the quality of the posterior approximation to the true posterior. Thus, one way to enrich the posterior
approximation is by letting qθ be a normalizing flow itself and the resultant latent code be the output of the transformation.
If we denote q0(z0) the probability of the latent code z0 under the base distribution and zk as the latent code after K flow
layers we may rewrite the Free Energy as follows:

F(x) = Eq0(z0)[log qk(zj)− log p(x, zj)] (23)

= Eq0(z0)
[
log q0(z0)−

j∑
i=1

ln det
∣∣∣ ∂fi
∂zi−1

∣∣∣− log p(x, zi)
]

(24)

= DKL(q0(z0)||p(zj))− Eq0(z0)
[j∑
i=1

ln det
∣∣∣ ∂fi
∂zi−1

∣∣∣− log p(x|zi)
]

(25)

For convenience we may take q0 = N (µ, σ2) which is a reparametrized gaussian density and p(z) = N (0, I) a standard
normal.

B.2. Euclidean RealNVP

Computing the Jacobian of functions with high-dimensional domain and codomain and computing the determinants of large
matrices are in general computationally very expensive. Further complications can arise with the restriction to bijective
functions make for difficult modelling of arbitrary distributions. A simple way to significantly reduce the computational
burden is to design transformations such that the Jacobian matrix is triangular resulting in a determinant which is simply the
product of the diagonal elements. In (Dinh et al., 2017), real valued non-volume preserving (RealNVP) transformations are
introduced as simple bijections that can be stacked but yet retain the property of having the composition of transformations
having a triangular determinant. To achieve this each bijection updates a part of the input vector using a function that is
simple to invert, but which depends on the remainder of the input vector in a complex way. Such transformations are denoted
as affine coupling layers. Formally, given a D dimensional input x and d < D, the output y of an affine coupling layer
follows the equations:

y1:d = x1:d (26)
yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d). (27)

Where, s and t are parameterized scale and translation functions. As the second part of the input depends on the first, it is
easy to see that the Jacobian given by this transformation is lower triangular. Similarly, the inverse of this transformation is
given by:

x1:d = y1:d (28)
xd+1:D = (yd+1:D − t(y1:d)� exp(−s(y1:d)). (29)

Latent Variable Modelling with Hyperbolic Normalizing Flows

Note that the form of the inverse does not depend on calculating the inverses of either s or t allowing them to be complex
functions themselves. Further note that with this simple bijection part of the input vector is never touched which can limit
the expressiveness of the model. A simple remedy to this is to simply reverse the elements that undergo scale and translation
transformations prior to the next coupling layer. Such an alternating pattern ensures that each dimension of the input vector
depends in a complex way given a stack of couplings allowing for more expressive models. Finally, the Jacobian of this
transformation is a lower triangular matrix,

∂y

∂x
=

[
Id 0

∂yd+1:D

xT1:d
diag(exps(x1:d))

]
. (30)

C. Change of Variable for Tangent Coupling
We now derive the change in volume formula associated with one T C layer. Without loss of generality we first define a
binary mask which we use to partition the elements of a vector at ToHnK into two sets. Thus b is defined as

bj =

{
1 if j ≤ d
0 otherwise,

Note that all T C layer operations exclude the first dimension which is always copied over by setting b0 = 1 and ensures
that the resulting sample always remains on ToHnK . Utilizing b we may rewrite Equation 11 as,

y = expKo
(
b� x̃+ (1− b)� (x̃� σ(s(b� x̃)) + t(b� x̃))

)
, (31)

where x̃ = logKo (x) is a point on the tangent space at o. Similar to the Euclidean RealNVP, we wish to calculate the jacobian
determinant of this overall transformation. We do so by first observing that the overall transformation is a valid composition
of functions: y := expKo ◦ f ◦ log

K
o (x), where z = f(x̃) is the flow in tangent space. Utilizing the chain rule and the identity

that the determinant of a product is the product of the determinants of its constituents we may decompose the jacobian
determinant as,

det
(∂y
∂x

)
= det

(∂expKo (z)

∂z

)
· det

(∂f(x̃)
∂x̃

)
· det

(∂ logKo (x)
∂x

)
. (32)

Tackling each term on RHS of Eq. 32 individually, det
(
∂expKo (z)

∂z

)
=
(
R sinh(

||z||L
R)

||z||L

)n−1
as derived in (Nagano et al.,

2019). As the logarithmic map is the inverse of the exponential map the jacobian determinant is also the inverse —i.e.

det
(
∂ logKo (x)

∂x

)
=
(

sinh(|| logKo (x)||L)
|| logKo (x)||L

)1−n
. For the middle term in Eq. 32 we proceed by selecting the standard basis

{e1, e2, ...en} which is an orthonormal basis with respect to the Lorentz inner product. The directional derivative with
respect to a basis element ej is computed as follows:

df(x̃) =
∂

∂ε

∣∣∣
ε=0

f(x̃+ εej)

=
∂

∂ε

∣∣∣
ε=0
{b� (x̃+ εej) + (1− b)� ((x̃+ εej)� σ(s(b� (x̃+ εej))) + t(b� (x̃+ εej)))}

= b� ej +
∂

∂ε

∣∣∣
ε=0
{(1− b)� ((x̃+ εej)� σ(s(b� (x̃+ εej))) + t(b� (x̃+ εej)))}

As b ∈ [0, 1]n is a binary mask, it is easy to see that if bj = 1 then only the first term on the RHS remains and the directional
derivative with respect to ej is simply the basis vector itself. Conversely, if bj = 0 then the first term goes to zero and we are
left with the second term,

Latent Variable Modelling with Hyperbolic Normalizing Flows

df(x̃) =
∂

∂ε

∣∣∣
ε=0
{(1− b)� ((x̃+ εej)� σ(s(b� (x̃+ εej))) + t(b� (x̃+ εej)))}

=
∂

∂ε

∣∣∣
ε=0
{(1− b)� ((x̃+ εej)� σ(s(b� x̃)) + t(b� x̃))}

= ej � σ(s(b� x̃)).

Where in the second line we’ve used the fact b � εej = 0. All together, the directional derivatives computed using our
chosen basis elements are,

df(x̃) = (e1, e2, . . . ed, ed+1 � σ(s(b� x̃)), . . . eD � σ(s(b� x̃))).

The volume factor given by this linear map is det(df(x̃)) =
√
GTG, where G is the matrix of all directional derivatives.

As the basis elements are orthogonal all non-diagonal entries of GTG go to zero and the determinant is the product of the
Lorentz norms of each component. As ||ej ||L = 1 and ||ej � σ(s(b� x̃))||L = ||ej � σ(s(b� x̃))||2 for ToHn

K the overall
determinant is then df(x̃) = diag σ(s(b� x̃)). Finally, the full log jacobian determinant of a T C layer is given by,

log det
(∂y
∂x

)
=
(R sinh(||z||LR)

||z||L

)n−1
+

n∑
i=d+1

σ(s(x̃1))i +
(R sinh(

|| logKo (x)||L
R)

|| logKo (x)||L

)1−n
(33)

Thus the overall computational cost is only slightly larger than the regular Euclidean RealNVP, O(n).

D. Change of Variable for Wrapped Hyperbolic Coupling
We consider the following function f : HnK → HnK , which we use to define a normalizing flow in n-dimensional hyperbolic
space (represented via the Lorentz model):

f(x) = expKo
(
b� x̃+ (1− b)� logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

)))
, (34)

where x̃ = logo(x) ∈ ToHnK is the projection of x ∈ HnK to the tangent space at the origin, i.e, ToHnK . As in T C we again
utilize a binary mask b so that

bj =

{
1 if j ≤ d
0 otherwise,

where 0 < d < n. In Equation equation 34 the function s : ToHdK → ToH
n−d
K is an arbitrary function on the tangent space

at the origin and σ denotes the logistic function. The function t : ToHdK → H∗K ⊂ Hn
K is a map from the tangent space at the

origin to a subset of hyperbolic space defined by the set of points satisfying the condition that vi = 0,∀i = 2...d,vi ∈ HnK
(under their representation in the Lorentz model).

Our goal is to derive the Jacobian determinant of f , i.e.,∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣ , (35)

To do so, we will use the following facts without proof or justification:

• Fact 1: The chain rule for determinants, i.e., the fact that∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣ = ∣∣∣∣det
(
∂f(x)

∂v

)∣∣∣∣ ∣∣∣∣det
(
∂v

∂x

)∣∣∣∣ , (36)

where v is introduced via a valid change of variables.

Latent Variable Modelling with Hyperbolic Normalizing Flows

• Fact 2: The Jacobian determinant for the exponential map expKu (z) = TuHnK → HnK is given by

∣∣det(expKu (z))
∣∣ = (R sinh(||z||LR)

||z||L

)n−1
(37)

• Fact 3: The Jacobian determinant for the logarithmic map logKu (v) = HnK → TuHnK is given by

∣∣∣det(logKu (v)
∣∣∣ = (R sinh(

|| logKo (v)||L
R)

|| logKo (v)||L

)1−n

(38)

• Fact 4: The Jacobian determinant for parallel transport PTKu→t(v) = TuHnK → TtHnK is given by∣∣det
(
PTKu→t(v)

)∣∣ = 1. (39)

Fact 2 and Fact 4 are proven in Nagano et al. (2019) “A Wrapped Normal Distribution on Hyperbolic Space for Gradient-
Based Learning” for K = −1 and rederived for general K in Skopek et al. (2019). Fact 3 follows from the fact that the
determinant of the inverse of a function is the inverse of that function’s determinant. We will use similar arguments to obtain
our determinant as were used in Nagano et al. (2019), and we refer the reader to Appendix A.3 in their work for background.

Our main claim is as follows

Proposition 3. The Jacobian determinant of the function f̃WHC in equation 13 is:∣∣∣∣det
(
∂y

∂x

)∣∣∣∣ = n∏
i=d+1

σ(s(x̃1))i ×
(R sinh(||q||LR)

||q||L

)l
×
(R sinh(

|| logKo (q̂)||L
R)

|| logKo (q)||L

)−l
×
(R sinh(||z̃||LR)

||z̃||L

)n−1
×
(R sinh(

|| logKo (x)||L
R)

|| logKo (x)||L

)1−n
, (40)

where
z = b� x̃+ logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
the argument to the parallel transport q is,

q = PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃))).

and
q̂ = expKt (q)

Proof. We first note that ∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣ = ∣∣∣∣det
(
∂f(x)

∂z

)∣∣∣∣× ∣∣∣∣det
(
∂z

∂x̃

)∣∣∣∣× ∣∣∣∣det
(
∂x̃

∂x

)∣∣∣∣ (41)

by the chain rule (recalling that x̃ = logo(x)). Now, we have that∣∣∣∣det
(
∂f(x)

∂z

)∣∣∣∣ = (R sinh(||z||LR)

||z||L

)n−1
(42)

by Fact 2. And, ∣∣∣∣det
(
∂x̃

∂x

)∣∣∣∣ = (R sinh(
|| logKo (x)||L

R)

|| logKo (x)||L

)1−n
(43)

by Fact 3. Thus, we are left with the term ∣∣∣∣det
(
∂z

∂x̃

)∣∣∣∣ .
To evaluate this term, we rely on the following Lemma:

Latent Variable Modelling with Hyperbolic Normalizing Flows

Lemma 2. Let h : ToHnK → ToHnK be a function from the tangent space at the origin to the tangent space at the origin
defined as:

h(x̃) = z = b� x̃+ logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
. (44)

Now, define a function h∗ : ToHn−dK → ToHn−dK which acts on the subspace of ToHn−dK corresponding to the standard
basis elements ed+1, ..., en as

h∗(x̃d+1:n) = logKod+1:n

(
expKtd+1:n

(
PTKod+1:n→td+1:n

(x̃d+1:n � σ(s))
))
, (45)

where x̃d+1:n denotes the portion of the vector x̃ corresponding to the standard basis elements ed+1, ..., en and s and t are
constants (which depend on x̃2:d). In equation 45, we use od+1:n ∈ Hn−dK to denote the vector corresponding to only the
dimensions d+ 1, ..., n and similarily for td+1:n. Then we have that∣∣∣∣det

(
∂z

∂x̃

)∣∣∣∣ = ∣∣∣∣det
(
∂h∗(x̃d+1:n)

∂x̃d+1:n)

)∣∣∣∣ . (46)

Proof. First note that by design we have that

[0, 0.., 0]⊕ h∗(x̃d+1:n) = logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
, (47)

i.e., the output of h∗ is equal to right hand side of Equation equation 44 after prepending/concatenating 0s to the output of
h∗.

Now, we can evaluate ∣∣∣∣det
(
∂z

∂x̃

)∣∣∣∣
by examining the directional derivative with respect to a set of basis elements of ToHnK . Now, given that this is the tangent
space at the origin, we know that the standard (i.e., Euclidean) basis elements e2, ..., en form a valid basis for this subspace,
since they are orthogonal under the Lorentz normal and orthogonal to the origin itself. Now, we can note first that

Deih(x̃) = ei,∀i = 2...d. (48)

In other words, the directional derivative for the first d basis elements is the simply the basis elements themselves. This can
be verified by taking the definition of the directional derivative:

Deih(x̃) =
∂

∂ε

∣∣∣
ε=0

h(x̃+ εei) (49)

and noting that the

logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
term must equal zero since (1− b)� ei = 0,∀i = 2, ..., d by design. Now, for the basis elements ei with i > d we have that

Deih(x̃) ⊥ ej ,∀i = d+ 1, ..., n, j = 2..., d. (50)

This holds because

Deih(x̃) =
∂

∂ε

∣∣∣
ε=0

h(x̃+ εei) (51)

=
∂

∂ε

∣∣∣
ε=0

logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
(52)

since b� ei = 0,∀i = d+ 1, ..., n by design and because

logKo

(
expKt(b�x̃)

(
PTKo→t(b�x̃)((1− b)� x̃� σ(s(b� x̃)))

))
⊥ ej ,∀x̃ ∈ ToHnK ,∀j = 2..., d. (53)

Latent Variable Modelling with Hyperbolic Normalizing Flows

due to the (1− b) term inside the parallel transport and by our design of the function t. Together, these facts give that the
Jacobian matrix for h (under the basis e2, ..., en) has the following block form:(

∂z

∂x̃

)
=

 I 0

A
∂h∗(x̃d+1:n)

∂x̃d+1:n)

 (54)

and by the properties of determinants of block matrices we have that∣∣∣∣det
(
∂z

∂x̃

)∣∣∣∣ = ∣∣∣∣det
(
∂h∗(x̃d+1:n)

∂x̃d+1:n)

)∣∣∣∣ (55)

Given Lemma 1, all that remains is to evaluate ∣∣∣∣det
(
∂h∗(x̃d+1:n)

∂x̃d+1:n)

)∣∣∣∣ . (56)

This can again be done by the chain rule, where we use Facts 2-4 to compute the determinant for exponential map, logarithmic
map, and parallel transport. Finally, the Jacobian determinant for the term

x̃� σ(s(b� x̃))) (57)

can easily be computed as
∏n
j=d+1 σ(s(b� x̃))j since the standard Euclidean basis is a basis for the tangent space at the

origin as shown in Appendix B.2.

E. Model Architectures and Hyperparameters
In this section we provide more details regarding model architectures and hyperparameters for each experiment in 4. For
all hyperbolic models we used a curvature warmup for 10 epochs which aids in numerical stability Skopek et al. (2019).
Specifically, we set R = 11 and linearly decrease to R = 2 every epoch after which it is treated as a learnable parameter.

Structured Density Estimation. For all VAE models our encoder consists of three linear layers. The first layer maps the
input to a hidden space and the other two layers are used to paramaterize the mean and variance of the prior distribution and
map samples to the latent space. The decoder for these models is simply a small MLP that consists of two linear layers that
map the latent space to the hidden space and then finally back to the observation space. One important distinction between
Euclidean models and hyperbolic models is that we use aFor BDP the hidden dim size is 200 while for MNIST we use 600
and the latent space is varied as shown in Tables 1 and 2. All flow models used in this setting consist of 2 linear layers
each of size 128. Between each layer in either the encoder and decoder we use the LeakyRelu (Xu et al., 2015) activation
function while tanh is used between flow layers. Lastly, we train all models for 80 epochs with the Adam optimizer with
default setting (Kingma & Ba, 2014).

Graph Reconstruction. For graph reconstruction task we use the VGAE model as a base (Kipf & Welling, 2016) which
also uses three linear layers of size 16 as the encoder in the VAE model. The decoder however is parameter less and is simply
an inner product either in Euclidean space or in ToHnK for Hyperbolic models. As the reconstruction objective contains
N2 terms we rescale the DKL penalty by a factor of 1/N such that each of the losses are on the same scale. This can be
understood as a β−VAE like model where β = 1/N . Like the structured density estimation setting all our flow models
consist of two linear layers of size 128 with a tanh nonlinearity. Finally, we train the each model for 3000 epochs using the
Adam optimizer (Kingma & Ba, 2014).

Graph Generation. For the graph generation task we adapt the training setup from (Liu et al., 2019a) in that we pretrain a
graph autoencoder for 100 epochs to generate node latents. Empirically, we found that using a VGAE model for hyperbolic
space worked better than a vanilla a GAE model. Furthermore, instead of using simple linear layers for the encoder we
use GAT (Veličković et al., 2017) layer of size 32, which has access to the adjacency matrix. We use LeakyReLU for
our encoder non-linearity while tanh is used for all flow models. Unlike GRevNets that use node features sampled from
N (0, I) we find that it is necessary to provide the actual adjacency matrix otherwise training did not succeed. Our decoder
defines edge probabilities as p(Au,v = 1|zu, zv) = σ((−dG(u, v)− b)/τ) where b and τ are learned edge specific bias and
temperature parameters implemented as one GAT layer followed by a linear layer both of size 32. Thus both the encoder
and decoder are both parameterized and optimized using the Adam optimizer (Kingma & Ba, 2014).

Latent Variable Modelling with Hyperbolic Normalizing Flows

F. Additional Density Estimation Results
We now provide additional qualitative results for density estimation in hyperbolic space as visualized in the Poincaré disk.
For these visualizations we take a density initially defined on Euclidean space and project them to the hyperboloid using the
logarithmic map at the origin. We then sample 500 points from this new density and fit both T C andWHC based flows.
The results for the learned densities are shown below in Figure 6.

Target 𝒯C(Ours) 𝒲ℍC(Ours)

Figure 6. Top: Wrapped Gaussian with µ = [−1.0, 1.0] and σ = [1.0, 0.25]T . Mid: Checkerboard pattern projected to hyperbolic space.
Bot: 2D Spiral projected to hyperbolic space

G. Dataset Issues
Upon inspecting the code and data kindly provided by Mathieu et al. (2019) we uncovered some issues that led to us omitting
their CS-PhD and Phylogenetics datasets in our comparisons. In particular, Mathieu et al. (2019) use a decoder in their
cross-entropy loss that does not define a proper probability. This appears to have caused optimization issues that artificially
deflated the reported performance of all the models investigated in that work. When substituting in the dot product decoder
employed in this work, the accuracy of all models increases dramatically. After this change, there is no longer any benefit
from employing hyperbolic spaces on these datasets. In particular, after applying this fix, the performance of the hyperbolic

Latent Variable Modelling with Hyperbolic Normalizing Flows

VAE used by Mathieu et al. (2019) falls substantially below a Euclidean VAE. Since we expect our hyperbolic flows to
only give gains in cases where hyperbolic spaces provide a benefit over Euclidean spaces, these datasets do not provide a
meaningful testbed for our proposed approach. Lastly, upon inspecting the code and data in Mathieu et al. (2019), we also
found that the columns 1 and 2 in Table 4 of their paper appear to be swapped compared to the results generated by their
code.

