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Abstract
Highly overparametrized neural networks can dis-
play curiously strong generalization performance –
a phenomenon that has recently garnered a wealth
of theoretical and empirical research in order to
better understand it. In contrast to most previous
work, which typically considers the performance
as a function of the model size, in this paper we
empirically study the generalization performance
as the size of the training set varies over multiple
orders of magnitude. These systematic experi-
ments lead to some interesting and potentially
very useful observations; perhaps most notably
that training on smaller subsets of the data can
lead to more reliable model selection decisions
whilst simultaneously enjoying smaller computa-
tional overheads. Our experiments furthermore al-
low us to estimate Minimum Description Lengths
for common datasets given modern neural net-
work architectures, thereby paving the way for
principled model selection taking into account
Occams-razor.

1. Introduction
According to classical statistical learning theory, achieving
an optimal generalisation loss requires selecting a model
capacity that strikes the best balance between underfitting
and overfitting, i.e., between not having enough capacity
to model the training data accurately and having too much,
and thus prone to adapt too closely to the training data at
the expense of generalisation. Under this theory, the final
generalisation loss plotted against model capacity should
behave as a U-shaped curve – initially decreasing as the ca-
pacity increases (underfitting) to reach a minimum (optimal
model size) and then finally increase again (overfitting).

Contrary to these results, it has long been observed that
neural networks show a curiously good generalization per-
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formance (in terms of error) when applied to classification
problems, even though the generalization cross-entropy ex-
hibits all the characteristics of overfitting. There has recently
been renewed interest in studying this phenomenon, both
theoretically and empirically (Advani & Saxe, 2017; Spigler
et al., 2018). Belkin et al. (2019) for example argue that
beside the classical underfitting and overfitting regimes, a
third one for massively overparameterised models exists.
The transition into this regime is called the interpolation
threshold and is characterized by a peak in generalization
error, followed by a phase of further decrease. The pecu-
liar shape of the generalization-error over model-size curve
lends the term double-descent to this phenomenon. Work by
Nakkiran et al. (2019) has sharpened this picture and shown
that this behaviour can be observed when training modern
neural network architectures on established, challenging
datasets. Most of the work studying generalization of neural
networks focuses on the relationship between generalization
performance and model size. Instead we present an empiri-
cal study that investigates the generalization performance
as a function of the training set size.

In the rest of the Introduction we outline the main contribu-
tions of our work.

1.1. Performance analysis

One of our key contributions is to gather performance curves
as a function of the training set size for a wide range of archi-
tectures on ImageNet, CIFAR10, MNIST and EMNIST. We
also perform an extensive sweep over a wide range of archi-
tectures, model sizes, optimizers and, crucially, we vary the
size of the training sets over multiple orders of magnitude,
starting from the full dataset down to only few examples per
class. Our study covers even extreme cases – for example
the training of oversized ResNet architectures with 10 or
less examples per class. This is, to the best of our knowl-
edge, the most extensive empirical analysis conducted on
generalization for massively overparameterized models, and
strengthens the emerging understanding of training regimes
for modern deep learning.

1.2. A ranking-hypothesis

One salient observation we have made has not been de-
scribed in the literature: overparameterized model archi-
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Figure 1. Learning curves for ResNet-101 on subsets of the ImageNet dataset using a RMSProp with a cosine learning-rate schedule. Left:
the uncalibrated generalization cross-entropy shows a strong overfitting signature (dashed line), the calibrated cross-entropy does not.
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Figure 2. Post-convergence generalization error vs. generalization
cross-entropy without early-stopping for a range of model archi-
tectures and training set sizes. The colours represent the different
model architectures. We observe that the calibrated cross entropy
is strongly correlated with the generalization error rate.

tectures seem to maintain their relative ranking in terms
of generalization performance, when trained on arbitrarily
small subsets of the training set.

This observation prompts us to hypothesize that: when (i)
two sufficiently large neural network architectures A and
B are trained with a well tuned optimizer on datasets of
size N; and (ii) we observe that, in expectation, A performs
better than B; then (iii) A will also perform better than B
in expectation for all differently sized datasets drawn from
the same underlying distribution, as long as we remain well
beyond the interpolation threshold.

Unfortunately this is only an hypothesis, but if this con-
jecture is true it would have profound practical implica-
tions. Namely, it would mean that, for sufficiently large
models, it would be possible to perform model selection
or architecture-search using small subsets of the data, and
expect that the decision regarding which model to prefer
remains valid when applied to much larger datasets. Indeed,
our experiments show that training on small or medium
sized subsets of the training data leads in many cases not
only to faster convergence, but also to a more robust signal
for model selection than training on big datasets, and is
therefore often preferable.

1.3. Calibration & minimum description length

Independently of the model-selection hypothesis, we also
show that it is possible to avoid some negative effects
of overfitting by simply choosing an optimal softmax-
temperature on a small held-out dataset; i.e., by calibrat-
ing the neural network (Guo et al., 2017). After calibra-
tion, the generalization cross-entropy becomes a stable and
well-behaved quantity even when model sizes and training
set sizes vary considerably. Being able to compute well-
behaved generalization cross-entropy on small training sets
allow us to compute reliable Minimum Description Length
estimates, a quantity that is of interest for principled model
selection taking into account Occam’s-razor. We will dis-
cuss this more in depth in Section 5.

2. Related Work
The literature on generalization performance for learned
predictors is vast and spans seminal work on the classi-
cal bias-variance-tradeoff (Geman et al., 1992; Domingos,
2000) all the way to theoretical and empirical work inves-
tigating the still poorly understood, but often strong gener-
alization performance of neural networks. The latter has
been approached from a number of different directions: For
example pointing out that neural networks seem to perform
implicit capacity control (Zhang et al., 2016), investigating
the learning dynamics and properties of the loss landscape
(Spigler et al., 2018) and interpreting stochastic gradient de-
scent as an approximation of probabilistic inference (Mandt
et al., 2017). Finally, two lines of work recently contributed
to the understanding of generalization, the first studying in-
finitely wide neural networks (Jacot et al., 2018; Allen-Zhu
et al., 2019) and the second focusing on the double-decent
phenomenon (Belkin et al., 2019; Nakkiran et al., 2019).

The vast majority of these previous studies focus on the
model-size dependency of the generalization performance.
Notable exceptions are the work by Nakkiran et al. (2019),
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who investigates the neighbourhood of the interpolation
threshold, and the work by Hestness et al. (2017), who
first evaluated the generalization error-rate for language
models and ResNets as a function of the training set size.
They point out that the generalization error-rate can be well
predicted by assuming a power law and interpolating from
smaller training sets to bigger ones. In a similar fashion, our
work shows that the relative model ranking trained on small
datasets is maintained when trained on bigger ones, a result
of practical importance for model selection and architecture
search.

3. Methods
3.1. Temperature calibration

Overparameterized models are typically trained by minimiz-
ing either a regression loss or a categorical cross-entropy
loss, but in contrast are then evaluated on their generaliza-
tion performance measured on the error-rate. This is be-
cause the generalization cross-entropy can overfit severely
for models that are sufficiently big.

We show here that it is possible to avoid the negative ef-
fects of overfitting when using the categorical cross-entropy
by simply choosing an optimal softmax-temperature on a
small heldout dataset; i.e., by calibrating the neural network
in the way proposed by Guo et al. (2017). In practice we
implement temperature calibration by performing gradient
descent on the calibrated cross-entropy loss w.r.t. a single
scalar temperature parameter. We interleave the regular
model training steps with steps of gradient descent on the
calibration loss on some held-out data, that we refer to as
the calibration dataset. This allows us to track the general-
ization cross-entropy online during learning.

This calibration procedure can prevent the generalization
cross-entropy from overfitting, even when the model size
is order of magnitudes larger than the training set size, and
without relying on early-stopping (see Figure 1 and Fig-
ure 2). Note that, just as with the post-convergence calibra-
tion proposed by Guo et al. (2017), the calibration procedure
does not modify the other parameters, directly or indirectly.

Being able to compute well-behaved generalization cross-
entropies is desirable because it is the loss we optimize for
and because it allows us to compute MDL estimates, as
explained in Section 5. That being said, we could express
all other results in this paper in terms of error-rates instead
of cross-entropies, and the observations and conclusions
would still hold (see Supplementary material).

3.2. Datasets and models

Throughout this study we present a large number of experi-
ments on subsets of different sizes of popular benchmarking

datasets. We call the total set of datapoints available for a
particular training run the available dataset, which is split
into a training set and a calibration set. The former is used
to optimize the connection weights, the batch-norm param-
eters and all other parameters that are considered part of
the neural networks, while the latter to optimise the cali-
bration temperature, as explained in Section 3.1, as well as
to determine the optimal learning-rate and, potentially, to
perform early-stopping. If not mentioned otherwise, we will
use a 90%/10% training/calibration split of the available
dataset. To assess a model’s ability to generalise beyond the
available-dataset, we then successively evaluate them on a
separate held-out or evaluation dataset. We experimented
with balanced subset sampling, i.e. ensuring that all subsets
always contain an equal number of examples per class. But
we did not observe any reliable improvements from doing
so and therefore reverted to a simple i.i.d sampling strategy.
We always pay particular attention to not to inadvertently
leak data, i.e. use datapoints that have not been properly
accounted for to select the hyperparameters.

We conduct experiments on the following datasets:
MNIST consists of 60k training and 10k test examples from
10 classes (LeCun, 1998). We train MLPs of various depth
and width, with and without dropout, as well as standard
ConvNets on this dataset. Unless otherwise noted, we use
ReLU as the nonlinearity.
EMNIST provides 112,800 training and 18,800 test data-
points from 47 classes in its balanced subset (Cohen et al.,
2017). We train the same family of model architectures we
also train on MNIST.
CIFAR10 consists of 50k training and 10k test examples
from 10 classes (Krizhevsky et al., 2009). We train a wide
range of models on this dataset, including simple archi-
tectures like MLPs and ConvNets; architectures that have
been carefully optimized for image classification: ResNet-
20 (He et al., 2016) and Wide ResNets (Zagoruyko & Ko-
modakis, 2016) as well as a selection of architectures from
the NASBench-101 (Ying et al., 2019) search space. The
latter were chosen by disregarding the worst 10% and then
picking 5 equally-spaced from the remaining ones. The
Supplementary material contains the description of these
architectures. The rationale is that we want to evaluate a
range on non-optimal architectures and confirm their rela-
tive ranking is preserved when using smaller datasets too.
ImageNet contains 1.28M training and 50k validation exam-
ples from 1000 classes (Russakovsky et al., 2015). We train
a selection of widely known standard models like VGG-16
(Simonyan & Zisserman, 2014), ResNets (He et al., 2016)
and Inception (Szegedy et al., 2016). Additionally we con-
sider S3TA (Zoran et al., 2019), a sequential and attention
based model that takes multiple glimpses at various spacial
locations in the image before emitting a prediction. It is
composed of a ResNet-style feature extractor with a reduced
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Figure 3. Cross-entropy performance profiles for the ResNet-101 architecture on ImageNet when trained with RMSProp. We use 90% of
the available data for training, 10% for calibration and report the generalization performance on the unseen validation set. Note that even
when training with as little as ≈ 2.3 images per class, there is no harm in using a ResNet model with 4 × more channels (16× more
parameters) than the standard ResNet.
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Figure 4. Performance profiles for a fully connected MLP with 3
hidden layers on CIFAR10 as a function of the hidden layer size.
Red points mark the smallest models that approach a close to zero
training error-rate.

number of strides, to keep the spatial resolution higher, and
an LSTM equipped with a spatial attention mechanism to
ingest features. The rationale for including it in our explo-
ration is that it supposedly has a different inductive bias than
pure conventional models, which could increase the chance
of falsifying our consistent ranking hypothesis.

3.3. Training

To ensure our observations are not specific to a particular
optimization method, we run experiments with different
variants of gradient-descent. For each experiment we sweep
over a fixed set of possible learning rates and pick the best
one according to the calibration loss, independently for each
model architecture and training set size.

Throughout this study we use the following optimizers:
Adam (Kingma & Ba, 2014) with fixed learning rates
{10−4, 3 · 10−4, 10−3} and 50 epochs.
Momentum SGD with initial learning rates {10−4, 3 ·
10−4, · · · , 10−1} cosine-decaying over 50 epochs down to
0 (0.9 momentum and ε = 10−4).
RMSProp + cosine schedule (Tieleman & Hinton, 2012)
with initial learning rates of {0.03, 0.1, 0.3} and cosine-
decaying to 0 over 50 epochs. We choose the same hyperpa-
rameters used by (Ying et al., 2019) for their NASBench-101

experiments, with the exception of the number of epochs,
which we reduced from 108 to 50 (momentum=0.9, ε = 1).

For all experiments we use a batch size of 256 examples.
The term epoch always refers to the number of gradient steps
required to go through the full-sized dataset once; i.e., on
ImageNet an epoch is always 1.28M/256 = 5000 gradient
steps, regardless of the size of the actual training set used.

We evaluated many more combinations than those presented
in this paper, a selection of which is contained in the Sup-
plementary material. Throughout all these control runs our
qualitative results were confirmed, which suggests that these
results do not just emerge from the interaction of specific
models and optimizers; or from a particularly sensible hy-
perparameter choice.

4. Experiments
4.1. Properties of calibration

Figure 1 visualizes typical learning curves when training a
ResNet-101 model with cosine-decayed RMSProp on sub-
sets of ImageNet. Depending on the training set size the
model can memorise the training set and reach a zero train-
ing error-rate within a few thousand gradient steps. The
uncalibrated cross-entropy on held-out data shows severe
symptoms of overfitting in these cases but, as reported be-
fore, the error computed on the same set tends to instead
flatline and not to degrade significantly.

This suggests that the models are not unfavourably adjust-
ing their decision boundaries as training progresses into the
overfitting regime, but are first and foremostly becoming
unduly confident in their predictions. When using cali-
bration we rectify this over-confidence and obtain stable
cross-entropies that show the same kind of robust behaviour
as the evaluation error-rate.

Early-stopping can still have a positive effect though: We
regularly observe a small degradation in generalization per-
formance just around the point where the rapid decrease in
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Figure 5. Top row: Generalization performance for various model architectures trained with Adam on MNIST and EMNIST as a function
of training set size. Uncertainty bands represent standard-deviation after training with 30 different seeds. Bottom row: SNR for the
performance difference between models; estimated using 1000 bootstrap samples.
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Figure 6. Top: Generalization performance for models trained
on ImageNet; Uncertainty bands from training 5 different seeds.
Bottom: SNR for the performance difference between models;
estimated using 1000 bootstrap samples.

training error tapers off into a slow decrease towards zero.
We can usually minimize this effect by making the models
bigger and tuning the learning rate more accurately to reach
optimal performance. These observations are not specific to
this experiment, but generalize to all optimizers and models
considered in the paper.

Figure 2 depicts the very strong correlation between the gen-
eralization error and calibrated crossentropy for EMNIST
models trained with Momentum-SGD, CIFAR10 models
with Adam and ImageNet models with annealed RMSProp.

4.2. Interaction of model size and training set size

We designed a set of experiments to directy connect to pre-
vious work and to confirm that the recent insight regarding
model size and generalization performance holds in the
small data regime. Just like previous work we vary the
model size by proportionally scaling the number of chan-
nels in all the convolutional layers or, for MLPs, the width
of all the fully connected layers throughout the models. In
contrast to previous work, here we additionally sweep over
the size of available data used for training. As expected, it is
evident from Figure 3b) and Figure 4 that scaling up models
does generally improve the generalization performance, but
comes with a price in terms of memory and computational
effort, and is subject to diminishing marginal improvements.
Selecting a model-size for a problem therefore requires find-
ing the best trade-off between computational resources and
the missed generalization performance one is willing to ac-
cept. An interesting observation from these experiments
is that the model size to achieve close-to-optimal perfor-
mance seems to be independent of the size of the training
set. For ResNet-101 on ImageNet for example (Figure 3
b), it takes ≈ 384 channels in the first ResNet block to
achieve close to optimal performance when training on ei-
ther the 10k or the 1.2M samples training sets. Similarly
on CIFAR10 (Figure 4), between 1024 and 2048 units in
the hidden layers achieves close-to optimal performance
on all training sizes. The Supplementary material contains
additional plots suggesting the same constant relationship
over a number of experiments.

According to the double-decent perspective (Belkin et al.,
2019) we would expect the generalization error (and poten-
tially the generalization cross-entropy) over model-size to
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Figure 7. Left: Selected models trained on CIFAR10; uncertainty bands from 30 different seeds. The ConvNet has 4 hidden layers with
3x3 kernels and 256 channels; every second layer uses stride 2 width a single 2048 unit wide fully connected hidden layer on top. Right:
Five models equidistantly selected from the NASBench-101 architecture search space; 50% of the available datapoints were used for
training, 50% for calibration.

spike around the point where a model barely reaches approx-
imate zero training error. We never quite see a spike, but we
do observe recognizable artifacts in the curves; most pro-
nounced on CIFAR10 when using a fully connected MLP
(see Figure 4). For all other models and datasets this effect
was much less pronounced and usually not recognizable.

4.3. Consistent Model Ranking

Having established that we get reasonable and consistent
results when training big neural networks on tiny datasets
down to only few examples per class, and that it is neither
necessary nor desirable to downscale the model size when
the training set is small, we can now focus on comparing
different model architectures on a given dataset. For all these
experiments we choose sufficiently big models: models
that are beyond their interpolation threshold for the full
datasets. More precisely, we consider a model “big enough”
if doubling its size (in terms of number of parameters) does
not result in a noticeable generalization improvement.

Figure 5 (top-row) shows the results for MNIST and EM-
NIST. For both datasets we compare fully connected MLPs
with 3 hidden layers, 2048 units each, either with or without
dropout and a simple convolutional network with 4 layers,
5x5 spatial kernel, stride 1 and 256 channels. For compari-
son we also added logistic regression, even though we do
not consider it part of our hypothesis because it can not
be scaled to be a universal approximater to approach the
irreducible Bayes-error.

Overall, we tried many different variations and architectures:
Replacing ReLUs with tanh non-linearities, adding batch-
norm or layer-norm, changing the number of hidden layers
or convolution parameters. Many of these changes have
an effect on the performance over dataset-size curves, but
we could not find a pair of architectures with performance
curves that crossed outside of their uncertainty bands, i.e.,
whose relative ranking was not maintained across all the
datasets sizes we trained on. We therefore suspect that, in

expectation, whenever a model A achieves better general-
ization performance than an architecture B given a certain
sized training set, it will also have a better performance for
all other training set sizes.

Figure 6 (top-row) shows the corresponding results for Im-
ageNet, with uncertainty estimates computed over 5 seeds.
All models here are slightly oversized versions of their litera-
ture counterparts, for example the ResNets use 384 channels
in their lowest ResNet block instead of 256 like the ones
described by He et al. (2016).

Not only the standard image recognition models maintain
their relative ranking as the training set size changes, but
even the S3TA model follows the same pattern. Indeed we
notice that the generalization performance-curve is domi-
nated by the ResNet-style feature extractor, i.e, that training
a S3TA model with a ResNet-50 style feature extractor
moves the curve close to the standard ResNet-50 perfor-
mance curve. In the interest of clarity, to better appreciate
the difference between the curves, we plot them in a sepa-
rate figure without uncertainty estimates (see Supplementary
material).

Figure 7 (top-row) shows the results for models on CI-
FAR10, with uncertainty bands obtained from training 30
different seeds. Even though the uncertainty is higher and
the models are generally closer together, we still observe
that the model architectures maintain their relative rank-
ing, within their respective uncertainty bands. For all these
models the generalization error seems to be far away from
converging to the underlying (irreducible) Bayes error even
when training on the full dataset.

4.4. Uncertainty of model selection

If the ranking is preserved across dataset sizes we should
be able to perform model selection using training sets of
arbitrary size and assume that our decision remains opti-
mal for larger datasets created from the same underlying
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distribution.

Visually inspecting Figure 5, 6 or 7 reveals indeed some of
the features we expect in this case: In the limit of very small
datasets, all models start on average with a uniform pre-
diction, achieving a generalization loss of ≈ log(#classes)
for balanced datasets. In the limit of very large datasets,
and assuming sufficiently large models and effective train-
ing procedures, they all approach a common performance:
presumably the irreducible Bayes error of the dataset. For
intermediate sized training sets though, different models ex-
hibit vastly more varied generalization performance. In fact,
we see that the performance gap between any two models is
visibly larger for some intermediate sized training sets than
for the full sized datasets.

While this is encouraging, optimization of neural networks
is a stochastic process, with noise from the selection of train-
ing and calibration examples, from parameter initialization,
the mini-batching process and potentially others sources.
To ensure a reliable model selection process one can not
consider the absolute performance gap alone, but should
also take into account its uncertainty. To quantify the relia-
bility of the model selection signal, i.e. the performance gap,
we estimate the signal to noise ratio: SNR =

√
∆2

V ar[∆]

with ∆ = LA − LB , where LX is the final generalization
cross-entropy after training model X . The bottom rows of
Figures 5 and 6 show the SNR estimates computed using
1000 bootstrap samples.

4.5. Computational savings from smaller datasets

We used fixed learning rates, or fixed learning rate schedules,
for all our experiments without any early stopping. This
simplified the experimental setup and reduced the number of
additional hyperparameters we needed to tune independently
per dataset size, which could have skewed the results if not
done fairly. But that also means that, by choice, we did
not enjoy any computational savings from using smaller
datasets, even though Figure 1 suggests that it takes fewer
training steps to converge on smaller datasets and thus that
such savings should be possible.

To get a lower bound on the potential computational savings,
we implemented a simple automatic annealing scheme for
ImageNet: Every 1.28M/256 = 5000 training steps we
performed a full-batch evaluation of the calibrated cross-
entropy on the calibration set. We lowered the learning rate
by a factor of 10 when the performance did not improve for
three consecutive iterations. We terminated training when
the learning rate reached 1/1000-th of it’s initial value. Us-
ing this schedule for ResNet models, we use 128k training
examples (which provides a good SNR, as suggested by Fig-
ure 6) and observe that training terminates after 4-7x fewer
gradient steps than training on the full 1.28M examples.

5. MDL and Bayes Factor Estimation
We now show that we can use calibrated generalization
cross-entropy estimates to perform model selection follow-
ing Occam’s Razor, the principle according to which we
should prefer simpler models if possible.

Within the field of deep learning model selection is typi-
cally done with a simple cross validation strategy: Split the
available data into a training and a validation set and choose
the model that performs best on the validation subset. This
approach works well when a lot of data is available and
when overfitting is not a major concern.

Other approaches to model selection like for example
Bayesian model selection or the Minimum Description
Length (MDL) principle have been studied in detail and
can often be understood in a context of a general theory of
inductive inference. For these it is known that their defini-
tion gives raise to a notion of the models complexity. And
we know that they prefer to select simpler models (accord-
ing to their respective complexity measure) if they have
similar predictive performance.

Unfortunately, neither of these approaches are naively appli-
cable to deep neural networks: To perform Bayesian model
selection between two model architecturesH1 andH2 for
example, we need to compute p(H1|D)

p(H2|D) = p(D|H1)p(H1)
p(D|H2)p(H2) ,

where p(D|Hi) =
∫

Θ
p(D|Θ)p(Θ)dΘ, which is in most

cases intractable. Indeed, estimating this quantity for deep
neural networks proved to to be a very challenging prob-
lem, and usually requires changes to the parameterization
and training procedure, often leading to models with signifi-
cantly worse predictive performance (Mac Kay, 2003).

Minimum Description Length (MDL) (Rissanen, 1978;
1989; Grünwald, 2007) provides a closely related alterna-
tive principle that also considers p(D|Hi) the quantity of
interest, but does not force us to consider the prior p(Θ) and
posterior p(Θ|D) explicitly. Instead, we are only concerned
with the shortest possible compression of the dataset D:
The length of a message that transmits the content of the
dataset (the labels) uniquely from a sender to a receiver as-
suming some model and coding-procedureH. We will refer
to the length of the message as DL(D|H). By virtue of the
Kraft-McMillan theorem, we know that any such procedure
corresponds to a probability distribution over all possible
datasets: since

∑
D exp(−DL(D|H)) ≤ 1, we can identify

p(D|H) ∝ exp(−DL(D|H)).

Blier & Ollivier (2018) described an approach to construct-
ing a prequential (Dawid, 1984; Grünwald, 2007) code that
works well together with deep neural networks: The basic
idea is to transmit one datapoint at a time; always coding
it with a code derived from a model that was trained on
the previously transmitted datapoints. When the sender and
receiver use a deterministic training method (i.e. fixed seeds
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DL(D|H1)− DL(D|H2) LR MLP MLP+do
Log. regression
MLP 11982± 142
MLP+dropout 12237± 154 254± 60
ConvNet 15293± 126 3310± 64 3057± 87

Table 1. MDL log-evidence estimates for various model pairs on
MNIST in nats. For example, the evidence in favour of an MLP
with dropout vs an MLP without is exp(254) ≈ 10110 to 1.

DL(D|H1)− DL(D|H2) LR MLP MLP+do
MLP 11982± 142
MLP+dropout 12237± 154 254± 60
ConvNet 15293± 126 3310± 64 3057± 87

Table 2. MDL log-evidence estimates for selected model pairs on
CIFAR10 in nats.

for all randomness; well-defined stopping criteria etc.) both
sides learn exactly the same model and therefore can con-
struct a common code from its predictions. The total length
of the message to transmit a dataset D = {yi}Ni=1 of size
N is therefore DL(D|H) ≤

∑N
i=1 log p(yi|{yj}j<i,H).

Blier & Ollivier (2018) showed that they obtain significantly
shorter description lengths than with other approaches to
estimate them for deep learning models. However, they
did not have a principled way to regularize the models to
be trainable on small datasets. Instead they proposed to
switch between different model architectures with different
capacities; therefore not obtaining description lengths for a
single model, but rather for the entire procedure consisting
of multiple, increasingly more elaborate architectures and
their switching pattern.

Using calibration we can instead construct a coding method
for a single, fixed model and training procedure: Both sender
and receiver simply derive a training and calibration split
from the previously transmitted data and use the calibrated
cross-entropy prediction to construct the code for the next
datapoint. The remainder of the prequential approach re-
mains unchanged.

In practice this means that the description length of a dataset
for a given H can be approximated by the area under the
curve of plots like Figure 5, 6 and 7, if we just construct the
available and evaluation sets in a specific way: Instead of
randomly sampling them from the underlying distribution,
we have to ensure that the available dataset for a subset
of size N > M is a superset of the datapoints used when
training the model for the subset of size M ; and the evalua-
tion examples have to be exactly those examples that were
added.

A description length based model selection approach thus
considers the area between two plots in Figures 5 and 6
and Figure 7 (top-row) because it corresponds to the log-
evidence in favour of the model with the smaller area under
the curve: log DL(D|H1)− log DL(D|H2).

DL(D|H1)− DL(D|H2) VGG16 RN-50 RN-101
ResNet-50 1.14M
ResNet-101 1.23M 87k
ResNet-152 1.27M 125k 37k

Table 3. MDL log-evidence estimates for selected model pairs on
ImageNet in nats. The uncertainty for all models is less then 20k
nats for all pairings.

We implement the suggested splitting procedure and es-
timate the area between the performance curves using a
simple trapezoid integral approximation for various model
pairs. We obtain uncertainty estimates on this measure by
running 3 different seeds and by varying the number points
for the interval estimate (Tables 1 to 3).

6. Conclusions
In this paper we present a comprehensive empirical study
on how overparameterized neural networks generalize as a
function of the training set size. Our results confirm and
extend the recently growing body of literature that analyzes
and seeks to understand the curiously good generalization
performance of big neural networks; and takes an in-depth
analysis of the dependency between the training set size and
the generalization performance.

From our experimental result we derive the hypothesis that
sufficiently big neural networks, those that operate far be-
yond their interpolation threshold, maintain their expected
relative generalization performance ranking irrespective of
the size of the training set they are trained on. While we
are not aware of a theoretical argument that could support
this conjecture, we provide a strong empirical verification of
this claim conducted on several architectures, model sizes,
datasets and optimization methods. The results of our exper-
iments have a wide range of practical implications for model
selection and architecture search, even more so because our
experiments show that training on smaller subsets of the
data can not only save computational resources, but also
improve the model selection signal at the same time. Both
these aspects are of particular importance for neural archi-
tecture search approaches and can find immediate practical
application.

Finally, in this work we also show that simple temperature
calibration is sufficient to obtain reliable and well behaved
generalization performance in terms of cross-entropy. Tak-
ing a prequential perspective, this allows us to compute
Minimum Description Length estimates for deep-learning
models, a quantity that was previously inaccessible, and
thereby paving the way for a principled model selection
procedure that takes into account Occam’s-razor.
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