
Learning Curves in Kernel Regression and Wide Neural Networks

1. Background on Kernel Machines
1.1. Reproducing Kernel Hilbert Space

Let X ✓ Rd and p(x) be a probability distribution over
X . Let H be a Hilbert space with inner product h·, ·i

H
. A

kernel K(·, ·) is said to be reproducing for H if function
evaluation at any x 2 X is the equivalent to the Hilbert
inner product with K(·,x): K is reproducing for H if for
all g 2 H and all x 2 X

hK(·,x), gi
H

= g(x). (SI.1)

If such a kernel exists for a Hilbert space, then it is unique
and defined as the reproducing kernel for the RKHS (Evge-
niou et al., 1999; Schölkopf & Smola, 2001).

1.2. Mercer’s Theorem

Let H be a RKHS with kernel K. Mercer’s theorem (Mercer,
1909; Rasmussen & Williams, 2005) allows the eigendecom-
position of K

K(x,x0) =
X

⇢

�⇢�⇢(x)�⇢(x), (SI.2)

where the eigenvalue statement is

Z
dx0p(x0)K(x,x0)�⇢(x

0) = �⇢�⇢(x). (SI.3)

1.3. Representer Theorem

Let H be a RKHS with inner product h., .i
H

. Consider the
regularized learning problem

minf2HL̂[f ] + �||f ||2
H
, (SI.4)

where L̂[f ] is an empirical cost defined on the discrete sup-
port of the dataset and � > 0. The optimal solution to
the optimization problem above can always be written as
(Schölkopf & Smola, 2001)

f(x) =
pX

i=1

↵iK(xi, x). (SI.5)

1.4. Solution to Least Squares

Specializing to the case of least squares regression, let

L̂[f ] =
pX

i=1

(f(xi)� yi)
2. (SI.6)

Using the representer theorem, we may reformulate the
entire objective in terms of the p coefficients ↵i

L[f ] =
pX

i=1

(f(xi)� yi)
2 + �||f ||2

H

=
pX

i=1

(
pX

j=1

↵jK(xi,xj)� yi)
2

+ �
X

ij

↵i↵j

D
K(xi, ·),K(xj , ·)

E

H

= ↵>K2↵� 2y>K↵+ y>y + �↵>K↵. (SI.7)

Optimizing this loss with respect to ↵ gives

↵ = (K+ �I)�1y. (SI.8)

Therefore the optimal function evaluated at a test point is

f(x) = ↵>k(x) = y>(K+ �I)�1k(x). (SI.9)

2. Derivation of the Generalization Error
Let the RKHS H have eigenvalues �⇢ for ⇢ 2 Z+. Define
 ⇢(x) =

p
�⇢�⇢(x), where �⇢ are the eigenfunctions of

the reproducing kernel for H. Let the target function have
the following expansion in terms of the kernel eigenfunc-
tions f⇤(x) =

P
⇢ w⇢ ⇢(x). Define the design matrices

�⇢,i = �⇢(xi) and ⇤⇢� = �⇢�⇢� . Then the average gener-
alization error for kernel regression is

Eg = Tr
⇣
D
⌦
G2
↵
{xi}

⌘
(SI.10)

where

G =

✓
1

�
��> +⇤�1

◆�1

, � = ⇤�1/2 . (SI.11)

and
D = ⇤�1/2

⌦
ww>

↵
w
⇤�1/2. (SI.12)

Proof. Define the student’s eigenfunction expansion
f(x) =

P
⇢ w⇢ ⇢(x) and decompose the risk in the ba-

sis of eigenfunctions:

Eg({xi}, f⇤) =
⌦
(f(x)� y(x))2

↵
x

=
X

⇢,�

(w⇢ � w⇢)(w� � w�) h ⇢(x) �(x)ix

=
X

⇢

�⇢(w⇢ � w⇢)
2

= (w �w)>⇤(w �w). (SI.13)

Next, it suffices to calculate the weights w learned through
kernel regression. Define a matrix with elements  ⇢,i =
 ⇢(xi). The training error for kernel regression is

Etr = || >w � y||2 + �||w||22 (SI.14)
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The `2 norm on w is equivalent to the Hilbert norm on the
student function. If f(x) =

P
⇢ w⇢ ⇢(x) then

||f ||2
H

= hf, fi
H

=
X

⇢�

w⇢w� h ⇢(·), �(·)iH =
X

⇢

w2
⇢, (SI.15)

since h ⇢(·), �(·)iH = �⇢,� (Bietti & Mairal, 2019). This
fact can be verified by invoking the reproducing property
of the kernel and it’s Mercer decomposition. Let g(·) =P

⇢ a⇢ ⇢(·). By the reproducing property

hK(·,x), g(·)i
H

=
X

⇢,�

a� ⇢(x) h ⇢(·), �(·)iH

= g(x) =
X

⇢

a⇢ ⇢(x) (SI.16)

Demanding equality of each term, we find
X

�

a� h ⇢(·), �(·)iH = a⇢ (SI.17)

Due to the arbitrariness of a⇢, we must have
h ⇢(·), �(·)iH = �⇢,� . We stress the difference be-
tween the action of the Hilbert inner product and averaging
feature functions over a dataset h ⇢(x) �(x)ix = �⇢�⇢,�
which produce different results. We will always decorate
angular brackets with H to denote Hilbert inner product.

The training error has a unique minimum

w = (  > + �I)�1 y = (  > + �I)�1  >w

= w � �(  > + �I)�1w, (SI.18)

where the target function is produced according to y =
 >w.

Plugging in the w that minimizes the training error into the
formula for the generalization error, we find

Eg({xi},w) = �2
⌦
w(  > + �I)�1⇤(  > + �I)�1w

↵
.

(SI.19)
Defining

G = �⇤1/2(  >+�I)�1⇤1/2 =

✓
1

�
��> +⇤�1

◆�1

,

(SI.20)
and

D = ⇤�1/2
⌦
ww>

↵
⇤�1/2, (SI.21)

and identifying the terms in (SI.19) with these definitions,
we obtain the desired result. Then each component of the
mode error is given by:

E⇢ =
X

�

D⇢,� hG2
�,⇢i (SI.22)

3. Solution of the PDE Using Method of
Characteristics

Here we derive the solution to the PDE in equation 17 of the
main text by adapting the method used by (Sollich, 1999).
We will prove both Propositions 2 and 3.

Let

g⇢(p, v) ⌘
D
G̃(p, v)⇢⇢

E
, (SI.23)

and

t(p, v) ⌘ Tr hG(p, v)i =
X

⇢

g⇢(p, v). (SI.24)

It follows from equation 17 that t obeys the PDE

@t(p, v)

@p
=

1

�+ t

@t(p, v)

@v
, (SI.25)

with an initial condition t(0, v) = Tr(⇤�1 + vI)�1. The
solution to first order PDEs of the form is given by the
method of characteristics (Arfken, 1985), which we describe
below, and prove Proposition 2.

Proof of Proposition 2. The solution to (SI.25) is a surface
(t, p, v) ⇢ R3 that passes through the line (Tr(⇤�1 +
vI)�1, 0, v) and satisfies the PDE at all points. The
tangent plane to the solution surface at a point (t, p, v)
is span{( @t

@p , 1, 0), (
@t
@v , 0, 1)}. Therefore a vector a =

(at, ap, av) 2 R3 normal to the solution surface must satisfy

at
@t

@p
+ ap = 0, at

@t

@v
+ av = 0.

One such normal vector is (�1, @t
@p ,

@t
@v ).

The PDE can be written as a dot product involving this
normal vector,

✓
�1,

@t

@p
,
@t

@v

◆
·
✓
0, 1,� 1

�+ t

◆
= 0, (SI.26)

demonstrating that (0, 1,� 1
�+t ) is tangent to the solution

surface. This allows us to parameterize one dimensional
curves along the solution in these tangent directions. Such
curves are known as characteristics. Introducing a parameter
s 2 R that varies along the one dimensional characteristic
curves, we get

dt

ds
= 0,

dp

ds
= 1,

dv

ds
= � 1

�+ t
. (SI.27)

The first of these equations indicate that t is constant along
each characteristic curve. Integrating along the parameter,
p = s+ p0 and v = � s

�+t + v0 where p0 is the value of p
when s = 0 and v0 is the value of v at s = 0. Without loss
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of generality, take p0 = 0 so that s = p. At s = 0, we have
our initial condition

t(0, v) = Tr
�
⇤�1 + v0I

��1
. (SI.28)

Since t takes on the same value for each characteristic

t(p, v) = Tr
✓
⇤�1 +

✓
v +

p

�+ t(p, v)

◆
I

◆�1

, (SI.29)

which gives an implicit solution for t(p, v). Now that we
have solved for t(p, v), remembering (SI.24), we may write

g⇢(p, v) =

✓
1

�⇢
+ v +

p

�+ t(p, v)

◆�1

. (SI.30)

This equation proves Proposition 2 of the main text.

Next, we compute the modal generalization errors E⇢ and
prove Proposition 3.

Proof of Proposition 3. Computing generalization error of
kernel regression requires the differentiation with respect to
v at v = 0 (eq.s (11) and (16) of main text). Since

⌦
G2
↵

is
diagonal, the mode errors only depend on the diagonals of
D and on

⌦
G2

⇢,⇢

↵
= �@g⇢

@v |v=0:

E⇢ =
X

�

D⇢,�

⌦
G2

�,⇢

↵
= �

hw2
⇢i

�⇢

@g⇢
@v

����
v=0

. (SI.31)

We proceed with calculating the derivative in the above
equation.

@g⇢(p, 0)

@v
= �

✓
1

�⇢
+

p

�+ t(p, 0)

◆�2

⇥
✓
1� p

(�+ t)2
@t(p, 0)

@v

◆
. (SI.32)

We need to calculate @t(p,v)
@v |v=0

@t(p, 0)

@v
= ��

✓
1� p

(�+ t)2
@t(p, 0)

@v

◆
, (SI.33)

where

� ⌘
X

⇢

✓
1

�⇢
+

p

�+ t(p, 0)

◆�2

. (SI.34)

Solving for the derivative, we get

@t(p, 0)

@v
= � �

1� � p
(�+t)2

, (SI.35)

and

@g⇢(p, 0)

@v
= �

✓
1

�⇢
+

p

�+ t

◆�2✓
1� �p

(�+ t)2

◆�1

.

(SI.36)

The error in mode ⇢ is therefore

E⇢ =
hw2

⇢i
�⇢

✓
1

�⇢
+

p

�+ t(p)

◆�2✓
1� p�(p)

(�+ t(p))2

◆�1

,

(SI.37)

so it suffices to numerically solve for t(p, 0) to recover
predictions of the mode errors. Equations (SI.29) (evaluated
at v = 0), (SI.34) and (SI.37) collectively prove Proposition
3.

4. Learning Curve for Power Law Spectra
For � > 0, the mode errors asymptotically satisfy E⇢ ⇠
O(p�2) since p

�+t ⇠ p
� and (�+t)2

(�+t)2��p ⇠ Op(1) (see be-
low). Although each mode error decays asymptotically like
p�2, the total generalization error can have nontrivial scal-
ing with p that depends on both the kernel and the target
function.

To illustrate the dependence of the learning curves on the
choice of kernel and target function, we consider a case
where both have power law spectra. Specifically, we assume
that �⇢ = ⇢�b and a2⇢ ⌘ w2

⇢�⇢ = ⇢�a for ⇢ = 1, 2, .... We
introduce the variable z = t+� to simplify the computations
below. We further approximate the sums over modes with
integrals

Eg ⇡ z2

z2 � p�

Z
1

1

d⇢ ⇢�a

�p
z⇢

�b + 1
�2 . (SI.38)

We use the same approximation technique to study the be-
havior of z(p)

z = �+
z

p

Z
1

1

d⇢

1 + z
p⇢

b
= �+

✓
z

p

◆1� 1
b
Z

1

(z/p)1/b

du

1 + ub

= �+

✓
z

p

◆1� 1
b

F (b, p, z), (SI.39)

where F (b, p, z) =
R
1

(z/p)1/b
du

1+ub . If p � ��1/(b�1) then
z ⇡ �, otherwise z ⇡ p1�bF (b, p, z)b. Further, the scaling
z ⇠ O(p1�b) is self-consistent since the lower endpoint of
integration (z/p)1/b ⇠ p�1 ! 0 so F (b, z, p) approaches
a constant F (b) for p ! 1

z ⇠ p1�bF (b)b , F (b, z, p) ⇠ F (b) =

Z
1

0

du

1 + ub
.

(SI.40)

We similarly find that p�(p) ⇠ O(p2�2b) if p ⌧ ��1/(b�1).
The mode-independent prefactor is approximately constant

z2

z2��p ⇠ Op(1).

We can use all of these facts to identify scalings of Eg . We
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will first consider the case where p ⌧ ��1/(b�1):

Eg ⇠
Z

1

1

d⇢⇢�a

(pb⇢�b + 1)2

⇡ p�2b

Z p

1
d⇢⇢�a+2b +

Z
1

p
d⇢⇢�a

=
1

a� 1� 2b
p�2b +

2b

(a� 1)(2b+ 1� a)
p�(a�1).

(SI.41)

If 2b > a � 1 then the second term dominates, indicating
that higher frequency modes k > p provide a greater contri-
bution to the error due to the slow decay in the target power.
In this case Eg ⇠ p�(a�1). If, on the other hand, 2b < a�1
then lower frequency modes k < p dominate the error and
Eg ⇠ p�2b.

Now, suppose that p > ��1/(b�1). In this regime

Eg ⇠
Z

1

1

d⇢⇢�a

( p�⇢
�b + 1)2

⇡ �2

p2

Z (p/�)1/b

1
d⇢ ⇢2b�a +

Z
1

(p/�)1/b
d⇢⇢�a

=
�2

p2
1

2b� a+ 1

⇣ p
�

⌘(2b�a+1)/b
� 1

�

+
1

a� 1

⇣ p
�

⌘(1�a)/b
. (SI.42)

Here there are two possible scalings. If 2b > a � 1 then
Eg ⇠ p�(a�1)/b while 2b < a� 1 implies Eg ⇠ p�2.

So the total error scales like

Eg ⇠ p�min{a�1,2b} , p < ��1/(b�1)

Eg ⇠ p�min{a�1,2b}/b , p > ��1/(b�1). (SI.43)

A verification of this scaling is provided in Figure SI.1,
which shows the behavior of z and Eg in these two regimes.
When the explicit regularization is low (or zero) (p <
��1/(b�1)), our equations reproduce the power law scal-
ings derived with Fourier analysis in (Spigler et al., 2019)2.

The slower asymptotic decays in generalization error when
explicit regularization � is large relative to the sample size
indicates that explicit regularization hurts performance. The
decay exponents also indicate that the RKHS eigenspectrum
should decay with exponent at least as large as b⇤ > a�1

2
for optimal asymptotics. Kernels with slow decays in their
RKHS spectra induce larger errors.

2We note that in a recent version of their paper, Spigler et al.
(2019) used our formalism to independently derive the scalings in
(SI.43) for the ridgeless (� = 0) case. Our calculation in an earlier
preprint had missed the possible ⇠ p�2b and ⇠ p�2 scalings,
which we corrected after their paper.

5. Replica Calculation
In this section, we present the replica trick and the saddle-
point approximation summarized in main text Section 2.3.
Our goal is to show that the continuous approximation of
the main paper and previous section can be interpreted as
a finite size saddle-point approximation to the replicated
system under a replica symmetry ansatz. We will present
a detailed treatment of the thermodynamic limit and the
replica symmetric ansatz in a different paper.

Let G̃(p, v) =
�
1
���

> +⇤�1 + vI
��1. To obtain the

average elements
D
G̃(p, v)⇢,�

E
we will use a Gaussian in-

tegral representation of the matrix inverse
D
G̃(p, v)⇢,�

E

=
@2

@h⇢@h�

⌧
1

Z

Z
due�

1
2u(

1
���>+⇤�1+vI)u+h·u

�

�

,

(SI.44)

where

Z =

Z
du e�

1
2u(

1
���>+⇤�1+vI)u, (SI.45)

and make use of the identity Z�1 = limn!0 Zn�1 to
rewrite the entire average in the form

R(h) =

Z nY

a=1

dua
D
e�

1
2

P
a ua( 1

���>+⇤�1+vI)ua+h·u(1)
E

(SI.46)

with the identification that
D
G̃(p, v)⇢,�

E
=

@2

@h⇢@h�
lim
n!0

R(h)|h=0. (SI.47)

Following the replica method from the physics of disordered
systems, we will first restrict ourselves to integer n and then
analytically continue the resulting expressions to take the
limit of n ! 0.

Averaging over the quenched disorder (dataset) with the
assumption that the residual error (w � w) ·  (xi) is a
Gaussian process, we find

D
e�

1
2�

P
a ua��>ua

E
= e�

p
2 log det(I+ 1

�Q), (SI.48)

where order parameters Qab = ua ·ub have been introduced.

To enforce the definition of these order parameters, Dirac
delta functions are inserted into the expression for R. We
then represent each delta function as a Fourier integral so
that integrals over ua can be computed

�(Qab �ua ·ub) =

Z
dQ̂abe

iQabQ̂ab�iQ̂abu
a
·ub

. (SI.49)
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(a) z = t+ � (b) Eg(p)

Figure SI.1. Approximate scaling of learning curve for spectra that decay as power laws �k ⇠ k�b and a2
k ⌘ w2

k�k = k�a. Figure (a)
shows a comparison of the numerical solution to the implicit equation for t+ � as a function of p and its comparison to approximate
scalings. There are two regimes which are separated by p ⇡ ��1/(b�1). For small p, z ⇠ p1�b but for large p, z ⇠ �. The total
generalization error is shown in (b) which scales like p1�a for small p and p(1�a)/b for large p.

After inserting delta functions to enforce order parameter
definitions, we are left with integrals over the thermal de-
grees of freedom

Z nY

a=1

duae�
1
2

P
a ua⇤�1ua

�i
P

ab Q̂abu
aub+u(1)h

= e
�

1
2

P
⇢ log det( 1

�⇢
I+2iQ̂)+ 1

2

P
⇢ h2

⇢(
1
�⇢

I+2iQ̂)�1
11 . (SI.50)

We now make a replica symmetric ansatz Qab = q�ab + q0
and 2iQ̂ab = q̂�ab + q̂0. Under this ansatz R(h) can be
rewritten as

R(h) =
Z

dqdq̂ddq̂dq̂0e
�pnF(q,q0,q̂,q̂0)e

1
2

P
⇢ h2

⇢(
1
�⇢

I+2iQ̂)�1
11 ,

(SI.51)

where the free energy is

2pF(q, q0, q̂, q̂0) =p log
⇣
1 +

q

�

⌘
+ p

q0
�+ q

+ v(q + q0)

� (q + q0)(q̂ + q̂0) + q0q̂0

+
X

⇢

"
log

✓
1

�⇢
+ q̂

◆
+

q̂0
1
�⇢

+ q̂

#
.

(SI.52)

In the limit p ! 1, R(h) is dominated by the saddle point
of the free energy where rF(q, q̂, q0, q̂0) = 0. The saddle

point equations are

q̂⇤ =
p

q⇤ + �
+ v,

q⇤ =
X

⇢

1
1
�⇢

+ q̂⇤
=
X

⇢

1
1
�⇢

+ v + p
q⇤+�

,

q⇤0 = q̂⇤0 = 0. (SI.53)

We see that q⇤ is exactly equivalent to t(p, v) defined in
SI.29 for the continuous approximation. Under the saddle
point approximation we find

R(h) ⇡ e�npF(q⇤,q⇤0 ,q̂
⇤,q̂⇤0 )e

1
2

P
⇢ h2

⇢
1

1
�⇢

+q̂⇤
. (SI.54)

Taking the n ! 0 limit as promised, we obtain the normal-
ized average

R̃(h) ⌘ lim
n!0

R(h) = e
1
2

P
⇢ h2

⇢
1

1
�⇢

+q̂⇤
, (SI.55)

so that the matrix elements are

D
G̃(p, v)⇢,�

E
=

@2

@h⇢@h�
R̃(h)|h=0 =

�⇢,�
1
�⇢

+ v + p
�+q⇤

,

q⇤ =
X

⇢

1
1
�⇢

+ v + p
�+q⇤

. (SI.56)
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Using our formula for the mode errors, we find

E⇢ =
X

�

D⇢,�

D
G̃(p, v)2�,⇢

E

= �D⇢,⇢
@

@v

D
G̃(p, v)⇢,⇢

E
|v=0

=

⌦
w2

⇢

↵

�⇢

(�+ q⇤)2

(�+ q⇤)2 � �p

✓
1

�⇢
+

p

�+ q⇤

◆�2

,

(SI.57)

consistent with our result from the continuous approxima-
tion.

6. Spectral Dependence of Learning Curves
We want to calculate how different mode errors change as
we add one more sample. We study:

1

2

d

dp
log

E⇢

E�
, (SI.58)

where E⇢ is given by eq. (21). Evaluating the derivative,
we find:

1

2

d

dp
log

✓
E⇢

E�

◆

= �
 

1
1
�⇢

+ p
�+t

� 1
1
��

+ p
�+t

!
@

@p

✓
p

�+ t

◆
. (SI.59)

Using eq. (22),

@t

@p
= � @

@p

✓
p

�+ t

◆X

⇢

✓
1

��
+

p

�+ t

◆�2

= �� @
@p

✓
p

�+ t

◆
, (SI.60)

where we identified the sum with �. Inserting this, we
obtain:

1

2

d

dp
log

✓
E⇢

E�

◆
=

"
1

1
�⇢

+ p
�+t

� 1
1
��

+ p
�+t

#
1

�

@t

@p
.

(SI.61)

Finally, solving for @t/@p from (SI.60), we get:

@t

@p
= � 1

�+ t

(�+ t)2�

(�+ t)2 � p�
= � 1

�+ t
Tr
�
G2
�
,

(SI.62)
proving that @t/@p < 0. Taking �� > �⇢ without loss of
generality, it follows that

d

dp
log

✓
E⇢

E�

◆
> 0 ) d

dp
logE⇢ >

d

dp
logE� . (SI.63)

7. Spherical Harmonics
Let �� represent the Laplace-Beltrami operator in Rd.
Spherical harmonics {Ykm} in dimension d are harmonic
(��Ykm(x) = 0), homogeneous (Ykm(tx) = tkYkm(x))
polynomials that are orthonormal with respect to the uni-
form measure on Sd�1 (Efthimiou & Frye, 2014; Dai & Xu,
2013). The number of spherical harmonics of degree k in
dimension d denoted by N(d, k) is

N(d, k) =
2k + d� 2

k

✓
k + d� 3

k � 1

◆
. (SI.64)

The Laplace Beltrami Operator can be decomposed into the
radial and angular parts, allowing

�� = ��r ��Sd�1 (SI.65)

Using this decomposition, the spherical harmonics are eigen-
functions of the surface Laplacian

��Sd�1Ykm(x) = k(k + d� 2)Ykm(x). (SI.66)

The spherical harmonics are related to the Gegenbauer poly-
nomials {Qk}, which are orthogonal with respect to the mea-
sure d⌧(z) = (1�z2)(d�3)/2dz of inner products z = x>x0

of uniformly sampled pairs on the sphere x,x0 ⇠ Sd�1. The
Gegenbauer polynomials can be constructed with the Gram-
Schmidt procedure and have the following properties

Qk(x
>x0) =

1

N(d, k)

N(d,k)X

m=1

Ykm(x)Ykm(x0),

Z 1

�1
Qk(z)Q`(z)d⌧(z) =

!d�1

!d�2

�k,`
N(d, k)

, (SI.67)

where !d�1 = ⇡d/2

�(d/2) is the surface area of Sd�1.

8. Decomposition of Dot Product Kernels on
Sd�1

For inputs sampled from the uniform measure on Sd�1,
dot product kernels can be decomposed into Gegenbauer
polynomials introduced in SI Section 7.

Let K(x,x0) = (x>x0). The kernel’s orthogonal decom-
position is

(z) =
1X

k=0

�kN(d, k)Qk(z),

�k =
!d�2

!d�1

Z 1

�1
(z)Qk(z)d⌧(z). (SI.68)

To numerically calculate the kernel eigenvalues of , we
use Gauss-Gegenbauer quadrature (Abramowitz & Stegun,
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1972) for the measure d⌧(z) so that for a quadrature scheme
of order r
Z 1

�1
(z)Qk(z)d⌧(z) ⇡

rX

i=1

wiQk(zi)(zi), (SI.69)

where zi are the r roots of Qr(z) and the weights wi are
chosen with

wi =
�(r + ↵+ 1)2

�(r + 2↵+ 1)

22r+2↵+1r!

V 0
r (zi)Vr+1(zi)

, (SI.70)

where
Vr(z) = 2rr!(�1)rQr(z) (SI.71)

For our calculations we take r = 1000.

9. Frequency Dependence of Learning Curves
in d ! 1 Limit

Here, we consider an informative limit where the number of
input data dimension, d, goes to infinity.

Denoting the index ⇢ = (k,m), we can write mode error
(SI.37), after some rearranging, as:

Ekm =
(�+ t)2

1� p�
(�+t)2

�k hw2
kmi

(�+ t+ p�k)2
, (SI.72)

where t and �, after performing the sum over degenerate
indices, are:

t =
X

m

N(d,m)(�+ t)�m
�+ t+ p�m

,

� =
X

m

N(d,m)(�+ t)2�2m
(�+ t+ p�m)2

. (SI.73)

In the limit d ! 1, the degeneracy factor (SI.64) ap-
proaches to N(d, k) ⇠ O(dk). We note that for dot-product
kernels �k scales with d as �k ⇠ d�k (Smola et al., 2001)
(Figure 1), which leads us to define the O(1) parameter
�̄k = dk�k. Plugging these in, we get:

Ekm(gk) =
d�k(t+ �)2

1� �̃

�̄k hw̄2
kmi

�
t+ �+ gk�̄k

�2

t =
X

m

(t+ �)�̄m
t+ �+ gm�̄m

,

�̃ =
X

m

gm�̄2m�
t+ �+ gm�̄m

�2 , (SI.74)

where gk = p/dk is the ratio of sample size to the de-
generacy. Furthermore, we want to calculate the ratio
Ekm(p)/Ekm(0) to probe how much the mode errors move
from their initial value:

Ekm(p)

Ekm(0)
=

1

1� �̃

1
⇣
1 + gk�̄k

t+�

⌘2 (SI.75)

Let us consider an integer l such that the scaling P = ↵dl

holds. This leads to three different asymptotic behavior of
gks:

gk ⇠ O(dl�k) � O(1), k < l

gk = ↵ ⇠ O(1), k = l

gk ⇠ O(dl�k) ⌧ O(1), k > l (SI.76)

If we assume t ⇠ O(1), we get an asymptotically consistent
set of equations:

t ⇡
X

m>l

�̄m + a(↵, t,�, �̄l) ⇠ O(1),

�̃ ⇡ b(↵, t,�, �̄l) ⇠ O(1), (SI.77)

where a and b are the lth terms in the sums in t and �̃,
respectively, and are given by:

a(↵, t,�, �̄l) =
(t+ �)�̄l

t+ �+ ↵�̄l
,

b(↵, t,�, �̄l) =
↵�̄2l�

t+ �+ ↵�̄l
�2 (SI.78)

Then using (SI.75), (SI.76) and (SI.77), we find the errors
associated to different modes as:

k < l,
Ekm(↵)

Ekm(0)
⇠ O(d2(k�l)) ⇡ 0,

k > l,
Ekm(↵)

Ekm(0)
⇡ 1

1� �̃(↵)
,

k = l,
Ekm(↵)

Ekm(0)
= s(↵) ⇠ O(1), (SI.79)

where s(↵) is given by:

s(↵) =
1

1� �̃(↵)

1
⇣
1 + ↵ �̄l

t+�

⌘2 . (SI.80)

Note that lim↵!0 �̃(↵) = lim↵!1 �̃(↵) = 0 and non-zero
in between. Then, for large ↵, in the limit we are considering

k < l,
Ekm(↵)

Ekm(0)
⇡ 0,

k > l,
Ekm(↵)

Ekm(0)
⇡ 1,

k = l,
Ekm(↵)

Ekm(0)
⇡

(�+
P

m>l �̄m)2

�̄2l

1

↵2
. (SI.81)

10. Neural Tangent Kernel
The neural tangent kernel is

KNTK(x,x
0) =

X

i

D@f✓(x)
@✓i

@f✓(x0)

@✓i

E

✓
. (SI.82)
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For a neural network, it is convenient to compute this re-
cursively in terms of the Neural Network Gaussian Process
(NNGP) kernel which corresponds to only training the read-
out weights from the final layer (Jacot et al., 2018; Arora
et al., 2019). We will restrict our attention to networks with
zero bias and nonlinear activation function �. Then

K(1)
NTK(x,x0)

= K(1)
NNGP (x,x

0)

K(2)
NTK(x,x0)

= K(2)
NNGP (x,x

0) +K(1)
NTK(x,x0)K̇(2)(x,x0)

. . .

K(L)
NTK(x,x0)

= K(L)
NNGP (x,x

0) +K(L�1)
NTK (x,x0)K̇(L)(x,x0),

(SI.83)

where

K(L)
NNGP (x,x

0) = E
(↵,�)⇠p(L�1)

x,x0
�(↵)�(�),

K̇(L)(x,x0) = E
(↵,�)⇠p(L�1)

x,x0
�̇(↵)�̇(�),

p(L�1)
x,x0 = N

 ✓
0
0

◆
,

✓
K(L�1)(x,x) K(L�1)(x,x0)
K(L�1)(x,x0) K(L�1)(x0,x0)

◆!
,

K(1)
NNGP (x,x

0) = x>x0. (SI.84)

If � is chosen to be the ReLU activation, then we can an-
alytically simplify the expression. Defining the following
function

f(z) = arccos

✓
1

⇡

p
1� z2 +

✓
1� 1

⇡
arccos(z)

◆
z

◆
,

(SI.85)
we obtain

K(L)
NNGP (x,x

0) = cos
⇣
f�(L�1)(x>x0)

⌘

K̇L(x,x
0) =

✓
1� 1

⇡
f�(L�2)(x>x0)

◆
, (SI.86)

where f�(L�1)(z) is the function f composed into itself
L� 1 times.

This simplification gives an exact recursive formula to com-
pute the kernel as a function of z = x>x0, which is what
we use to compute the eigenspectrum with the quadrature
scheme described in the previous section.

11. Spectra of Fully Connected ReLU NTK
A plot of the RKHS spectra of fully connected ReLU NTK’s
of varying depth is shown in Figure SI.2. As the depth in-
creases, the spectrum becomes more white, eventually, the

Figure SI.2. Spectrum of fully connected ReLU NTK without bias
for varying depth `. As the depth increases, the spectrum whitens,
causing derivatives of lower order to have infinite variance. As
` ! 1, �kN(d, k) ⇠ 1 implying that the kernel becomes non-
analytic at the origin.

kernel’s trace hK(x,x)ix =
P

k �kN(d, k) begins to di-
verge. Inference with such a kernel is equivalent to learning
a function with infinite variance. Constraints on the vari-
ance of derivatives

⌦
||rn

Sd�1f(x)||2
↵

correspond to more
restrictive constraints on the eigenspectrum of the RKHS.
Specifically, �kN(d, k) ⇠ O(k�n�1/2) implies that the
n-th gradient has finite variance

⌦
||rn

Sd�1f(x)||2
↵
< 1.

Proof. By the representer theorem, let f(x) =Pp
i=1 ↵iK(x,xi). By Green’s theorem, the variance

of the n-th derivative can be rewritten as

⌦
||rn

Sd�1f(x)||2
↵
= hf(x)(��Sd�1)nf(x)i

=
X

kk0mm0ij

↵i↵j�k�k0Ykm(xi)Yk0m0(xj)

⇥ hYkm(x)(��Sd�1)nYk0m0(x)i

=
X

kij

�2kk
n(k + d� 2)nN(d, k)↵i↵jQk(x

>

i xj)

 Cp2(↵⇤)2
X

k

�2kk
n(k + d� 2)nN(d, k)2,
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where ↵⇤ = maxj |↵j | and |Qk(z)|  CN(d, k) for a uni-
versal constant C. A sufficient condition for this sum to con-
verge is that �2kk

n(k+d�2)nN(d, k)2 ⇠ O(k�1) which is
equivalent to demanding �kN(d, k) ⇠ O(k�n�1/2) since
(k + d� 2)n ⇠ kn as k ! 1.

12. Decomposition of Risk for Numerical
Experiments

As we describe in Section 4.1 of the main text, the teacher
functions for the kernel regression experiments are chosen
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as

f⇤(x) =
p0X

i=1

↵iK(x,xi), (SI.88)

where the coefficients ↵i ⇠ B(1/2) are randomly sampled
from a centered Bernoulli distribution on {±1} and the
points xi ⇠ p(x) are drawn from the same distribution as
the training data. In general p0 is not the same as the number
of samples p. Choosing a function of this form is very
convenient for producing theoretical predictions of mode
errors as we discuss below.

12.1. Theoretical Mode Errors

Since the matrix elements
⌦
G2

⇢⇢

↵
are determined completely

by the kernel eigenvalues {�⇢}, it suffices to calculate the
diagonal elements of D to find the generalization error. For
the teacher function sampled in the way described above,
there is a convenient expression for D⇢⇢.

The teacher function admits an expansion in the basis of
kernel eigenfunctions

f⇤(x) =
X

⇢

w⇢ ⇢(x). (SI.89)

Using the Mercer decomposition of the kernel we can iden-
tify the coefficients

f⇤(x) =
p0X

i=1

↵iK(x,xi) =
X

⇢

⇣X

i

↵i ⇢(xi)
⌘
 ⇢(x)

(SI.90)
Comparing each term in these two expressions, we identify
the coefficient of the ⇢-th eigenfunction

w⇢ =
X

i

↵i ⇢(xi). (SI.91)

We now need to compute the D⇢⇢, by averaging w2
⇢ over all

possible teachers

D⇢⇢ =
1

�⇢

⌦
w2

⇢

↵
=

1

�⇢

X

ij

h↵i↵ji h ⇢(xi) ⇢(xj)i

=
1

�⇢

X

i

h ⇢(xi) ⇢(xi)i =
p0�⇢
�⇢

= p0, (SI.92)

since h ⇢(x) ⇢(x)i = �⇢. Thus it suffices to calculate
@
@v g⇢(p, v) for each mode and then compute mode errors
with

E⇢ = �d⇢
@g⇢(p, v)

@v
|v=0, (SI.93)

where @g⇢
@v |v=0 is evaluated in terms of the numerical solu-

tion for t(p, 0).

12.2. Empirical Mode Errors

By the representer theorem, we may represent the student
function as f(x) =

PP
i=1 ↵iK(x,xi). Then, the general-

ization error is given by

Eg =
⌦
(f(x)� f⇤(x))2

↵

=
X
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�⇢��

0

@
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1
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↵j��(xj)�
P 0X

i=1

↵i��(xi)

1

A h�⇢(x)��(x)i
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X

⇢

�2⇢

0

@
X
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↵j↵j0�⇢(xj)�⇢(xj)
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X
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↵j↵i�⇢(xj)�⇢(xi) +
X
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On the d-sphere, by defining Ek =
PN(d,k)

m=1 Ekm we arrive
at the formula

Ek = �2kN(d, k)
�
↵>Qk(X

TX)↵� 2↵>Qk(X
TX)↵

+↵>Qk(X
T
X)↵

⌘
. (SI.95)

We randomly sample the ↵ variables for the teacher and
fit ↵ = (K + �I)�1y to the training data. Once these
coefficients are known, we can obtain empirical mode errors.

13. Neural Network Experiments
For the “pure mode” experiments with neural networks, the
target function was

f⇤(x) =
P 0X

i=1

↵iQk(x
>xi)

=

N(d,k)X

m=1

0

@
P 0X

i=1

↵iYkm(xi)

1

AYkm(x), (SI.96)

whereas, for the composite experiment, the target function
was a randomly sampled two layer neural network with
ReLU activations

f⇤(x) = r>�(⇥x). (SI.97)

This target model is a special case of eq. (SI.90) so the
same technology can be used to compute the theoretical
learning curves. We can use a similar trick as that shown
in equation (SI.92) to determine w⇢ for the NN teacher
experiment. Let the Gegenbauer polynomial expansion of
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�(z) be �(z) =
P

1

k=0 akN(d, k)Qk(z). Then the mode
error for mode k is Ek = a2

k

�2
k

⌦
g2k
↵

where
⌦
g2k
↵

is computed
with equation (SI.37).

A sample of some training error and generalization errors
from pure mode experiments are provided below in Figures
SI.3 and SI.4.

13.1. Hyperparameters

The choice of the number of hidden units N was based
primarily on computational considerations. For two layer
neural networks, the total number of parameters scales lin-
early with N , so to approach the overparameterized regime,
we aimed to have N ⇡ 10pmax where pmax is the largest
sample size used in our experiment. For pmax = 500, we
chose N = 4000, 10000.

For the three and four layer networks, the number of pa-
rameters scales quadratically with N , making simulations
with N > 103 computationally expensive. We chose
N to give comparable training time for the 2 layer case
which corresponded to N = 500 after experimenting with
{100, 250, 500, 1000, 5000}.

We found that the learning rate needed to be quite large
for the training loss to be reduced by a factor of ⇡
106. For the 2 layer networks, we tried learning rates
{10�3, 10�2, 1, 10, 32} and found that a learning rate of
32 gave the lowest training error. For the three and four
layer networks, we found that lower learning rates worked
better and used learning rates in the range from [0.5, 3].

14. Discrete Measure and Kernel PCA
We consider a special case of a discrete probability measure
with equal mass on each point in a dataset of size p̃

p(x) =
1

p̃

p̃X

i=1

�(x� xi). (SI.98)

For this measure, the integral eigenvalue equation becomes
Z

dx p(x)K(x,x0)�⇢(x)

=
1

p̃

p̃X

i=1

Z
dx �(x� xi)K(x,x0)�⇢(x)

=
1

p̃

p̃X

i=1

K(xi,x
0)�⇢(xi) = �⇢�⇢(x

0). (SI.99)

Evaluating x0 at each of the points xi in the dataset yields a
matrix equation. Let �⇢,i = �⇢(xi) and ⇤⇢,� = �⇢,��⇢

K�> = p̃�>⇤. (SI.100)
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(a) 3 Layer Training Loss; lr =2 (b) 4 Layer Training Loss; lr = 0.5

Figure SI.3. Training error for different pure mode target functions on neural networks with 500 hidden units per hidden layer on a sample
of size p = 500. Generally, we find that the low frequency modes have an initial rapid reduction in the training error but the higher
frequencies k � 4 are trained at a slower rate.

(a) 2 layer NN N = 4000 (b) 2 layer NN N = 104 (c) 3 layer N = 500

(d) 4 layer N = 500 (e) 2 Layer NN Student-Teacher; N = 2000 (f) 2 Layer NN Student-Teacher; N = 8000

Figure SI.4. Learning curves for neural networks on “pure modes” and on student teacher experiments. The theory curves shown as solid
lines. For the pure mode experiments, the test error for the finite width neural networks and NTK are shown with dots and triangles
respectively. Logarithms are evaluated with base 10.


