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Abstract
Existing techniques for certifying the robustness
of models for discrete data either work only for a
small class of models or are general at the expense
of efficiency or tightness. Moreover, they do not
account for sparsity in the input which, as our
findings show, is often essential for obtaining non-
trivial guarantees. We propose a model-agnostic
certificate based on the randomized smoothing
framework which subsumes earlier work and is
tight, efficient, and sparsity-aware. Its computa-
tional complexity does not depend on the num-
ber of discrete categories or the dimension of the
input (e.g. the graph size), making it highly scal-
able. We show the effectiveness of our approach
on a wide variety of models, datasets, and tasks –
specifically highlighting its use for Graph Neural
Networks. So far, obtaining provable guarantees
for GNNs has been difficult due to the discrete
and non-i.i.d. nature of graph data. Our method
can certify any GNN and handles perturbations to
both the graph structure and the node attributes.1

1. Introduction
Verifying the robustness of machine learning models is cru-
cial since data can be noisy, incomplete, manipulated by
an adversary, or simply different from what was previously
observed. Even a seemingly accurate classifier is of limited
use if slight perturbations of the input can lead to misclassifi-
cation. Robustness certificates provide provable guarantees
that no perturbation regarding a specific threat model will
change the prediction of an instance. However, obtaining
meaningful robustness guarantees is challenging since it
often involves solving a difficult optimization problem.

1Technical University of Munich. Correspondence to: Aleksan-
dar Bojchevski <a.bojchevski@in.tum.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1You can find the project page and the code online:
https://www.daml.in.tum.de/sparse_smoothing

An overwhelming majority of certificates in the literature
can handle only continuous data. The few approaches that
tackle discrete data either work for a small class of mod-
els, or stay general while sacrificing efficiency or tightness.
While our proposed approach works in general and can be
used for any discrete data such as sequences (text, audio),
discretized images or molecules, we highlight its use for
graphs – a particularly important instance of discrete data.

Specifically, we focus on Graph Neural Networks (GNNs)
since they are a fundamental building block (alongside
CNNs and RNNs) for many machine learning models today.
Their rise to prominence is not surprising since often real-
world data can be naturally represented as a graph. They
have been successfully applied across a variety of domains
and applications: from breast cancer classification (Rhee
et al., 2018) to fraud detection (Wang et al., 2019).

At the same time, there is strong evidence showing that
GNNs suffer from poor adversarial robustness (Zügner et al.,
2018; Dai et al., 2018; Zügner & Günnemann, 2019a) – they
are sensitive to small adversarial perturbations designed to
achieve a malicious goal. Take for example a GNN-based
model for detecting fake news on a social network (Monti
et al., 2019; Shu et al., 2020). Adversaries have a strong
incentive to fool the system in order to avoid detection. In
this context, a perturbation could mean modification of the
graph structure (inserting or deleting edges in the social
graph) or modifying the node attributes (e.g. the text content
of the news). Even in scenarios where adversaries are un-
likely, understanding the robustness of GNNs to worst-case
noise is important, especially in safety-critical applications.

While some (heuristic) defenses exist (Xu et al., 2019; En-
tezari et al., 2020), we should never assume that the attackers
will not be able to break them in the future (Carlini & Wag-
ner, 2017). Robustness certificates, on the other hand, are by
definition unbreakable. Given a clean input x and a pertur-
bation set Br(x) encoding the threat model (e.g. all inputs
within an lp-ball of radius r centered at x) the goal is to
verify that the prediction for x and ∀x̃ ∈ Br(x) is the same.
If this holds, we say that x is certifiably robust w.r.t. Br(x).

Existing certificates for graphs handle either attribute per-
turbations (Zügner & Günnemann, 2019b) or structure per-

https://www.daml.in.tum.de/sparse_smoothing
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turbations (Bojchevski & Günnemann, 2019a; Zügner &
Günnemann, 2020), but not both, and only work for a small
class of models. Furthermore, they are valid only for node-
level classification, and extending these techniques to new
models and threat scenarios is not straightforward. Our ap-
proach handles both types of perturbations and applies to
any GNN. This includes, for the first time, graph-level clas-
sification models for which there are no existing certificates.

In this paper we utilize randomized smoothing (Cohen et al.,
2019) – a powerful general technique for building certifi-
ably robust models. Inspired by connections to differential
privacy (Lécuyer et al., 2019), this method boils down to
randomly perturbing the input and reporting the output/class
corresponding to the “majority vote” on the randomized
samples. Given any function f(·), e.g. any GNN, we can
build a “smoothed” function g(·) that produces a similar
output to f (e.g. comparable accuracy if f is a classifier)
and for which we can easily provide (probabilistic) robust-
ness guarantees. Importantly, to compute the certificate we
need to consider only the output of f for each sample. This
is precisely what makes it particularly appealing for certify-
ing GNNs since it allows us to sidestep a complex analysis
of the message-passing dynamics and the non-linear inter-
actions between the nodes. Randomized smoothing is not
without limitations however, which we discuss in § L.

The bulk of the work on randomized smoothing (Cohen
et al., 2019; Lécuyer et al., 2019; Li et al., 2018) focuses on
continuous data and guarantees in terms of l1, l2 or l∞ balls
which are not suited for the discrete data domain. Only few
approaches can tackle discrete data with l0-ball guarantees
(Lee et al., 2019; Levine & Feizi, 2019; Dvijotham et al.,
2020). None of these approaches attempt to certify discrete
graph data, and there are several major challenges we need
to overcome to successfully do so. Jia et al. (2020b) apply
randomized smoothing to only certify the robustness of
community detection against structural perturbations. Their
certificate also suffers from the same limitations.

The biggest limitation of all previous certificates for dis-
crete data is that they rely on randomization schemes that
do not take sparsity into account. A common scheme is to
randomly flip bits in the input with a given probability p.
This is clearly not feasible for graph data due to the sparsity
of real-world graphs. Even for a small flip probability (e.g.
p = 0.01) applying this scheme would introduce too many
random edges in the graph, which means that the graph
structure is completely destroyed by the random noise, ren-
dering the resulting smoothed classifier useless.2 On the
other hand, p has to be sufficiently high to obtain any guar-

2For example, the Cora-ML dataset has n = 2810 nodes, so
random sampling introduces pn2 = 0.01·28102 = 78961 random
edges in expectation, i.e. around 28 random edges per node, which
is significantly higher than the average node degree of 6.

antees, since higher p values lead to higher certified radii.
Similarly, the node attributes are also often sparse vectors,
e.g. corresponding to bag-of-words representations of text,
and suffer from the same issue. None of the existing discrete
certificates are sparsity-aware. The core idea of this paper
is to incorporate sparsity in the randomization scheme by
perturbing non-zeros/edges and zeros/non-edges separately
in a way that preservers the structure of the data.

Besides the common issue with sparsity, Lee et al. (2019)’s
and Jia et al. (2020b)’s certificates are tight but computation-
ally expensive, while Levine & Feizi (2019) and Dvijotham
et al. (2020)’s certificates sacrifice tightness to obtain im-
proved runtime. We overcome these limitations and propose
a certificate which is at the same time tight, efficient to
compute, and sparsity-aware. In summary, we make contri-
butions on two fronts:

1. GNN Certificates: Our certificates handle both structure
and attribute perturbations and can be applied to any
GNN, including graph-level classification models.

2. Discrete Certificates: (i) We generalize previous work
by explicitly accounting for sparsity; (ii) We obtain tight
certificates with a dramatically reduced computational
complexity, independent of the input size.

The key observation behind these contributions is that we
can partition the space of binary vectors into a small num-
ber of regions of constant likelihood ratio. The certificate
is obtained by traversing these regions and keeping track
of the PMF w.r.t. the clean input and the adversarial exam-
ple. For example, for binary data the number of regions in
our partitioning equals the size of the (certified) radius, i.e.
grows linearly, and does not depend on the input size. This
is in stark contrast to previous work where the number of
regions is quadratic w.r.t. the input size. Considering that
the adjacency matrix of a graph with n nodes has n2 entries,
this reduction in complexity from up to (n2)2 = n4 to r
regions (where r is the radius) is necessary for feasibility.
Furthermore, by drawing connections between our random-
ization and the Poisson-Binomial distribution for binary data
(product of Multinomials for discrete data) we develop an
algorithm to efficiently traverse and compute these regions.

2. Background and Preliminaries
Let x ∈ X = {0, 1}d be an observed binary vector. For
simplicity we keep the main exposition w.r.t. binary data
and we discuss the general discrete case in § 5. In § 6 we
show how to instantiate our framework for GNNs, where
x corresponds to the (flattened) adjacency and/or attribute
matrix of a graph. We defer all proofs to the appendix (§ A).

Given a classifier g(·) the goal of the attacker is to find an
adversarial example x̃ ∈ B(x) in the perturbation set such
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that x̃ is misclassified3, i.e. g(x) 6= g(x̃) (evasion attack).
Our goal is to verify whether such an adversarial example
exists, i.e. verify whether g(x)

?
= g(x̃) for all x̃ ∈ B(x).

2.1. Randomized Smoothing Framework

Let f : X → Y denote a (deterministic or random) func-
tion corresponding to a base classifier which takes a vector
x ∈ X as input and outputs a single class f(x) = y ∈ Y
with Y = {1, . . . , C}. We construct a smoothed (ensemble)
classifier g : X → Y from f as follows:

g(x) = arg max
y∈Y

Pr(f(φ(x)) = y) (1)

where φ is a randomization scheme to be specified (e.g.
adding Gaussian noise to x), which assigns probability mass
Pr(φ(x) = z) for each randomized outcome z ∈ X . In
other words, g(x) returns the most likely class (the majority
vote) if we first randomly perturb the input x using φ and
then classify the resulting vector φ(x) with the base classi-
fier f . To simplify notation let py(x) = Pr(f(φ(x)) = y)
and y∗ = arg maxy∈Y py(x). Let p∗ = py∗(x) be the prob-
ability of the most likely class. Following Lee et al. (2019)
we define the certificate:

ρx,x̃(p, y) = min
h∈H:

Pr(h(φ(x))=y)=p

Pr(h(φ(x̃)) = y) (2)

where x̃ ∈ X is a given neighboring point, and H is the
set of measurable classifiers with respect to φ. We have that
ρx,x̃(p, y) ≤ Pr(f(φ(x̃)) = y) is a tight lower bound on
the probability that a neighboring point x̃ is classified as y
using the smoothed classifier g. The bound is tight in the
sense that the base classifier f satisfies the constraint.

Now, given a clean input x and a perturbation set B(x)
specifying a threat model (e.g. l0-ball), if it holds that:

min
x̃∈B(x)

ρx,x̃(p∗, y∗) > 0.5 (3)

then we can guarantee that Pr(f(φ(x̃)) = y∗) > 0.5, for
all x̃ ∈ B(x). This implies that g(x) = g(x̃) = y∗ for any
input within the ball, i.e. x is certifiably robust.

Computing py(x) exactly is difficult, so similar to previous
work (Cohen et al., 2019) we compute a lower bound py(x)
based on the Clopper-Pearson Bernoulli confidence interval
(Clopper & Pearson, 1934) with confidence level α using
Monte Carlo samples from φ(·). Since ρx,x̃(p) is an increas-
ing function of p (Lee et al., 2019), a lower bound entails
a valid certificate. The certificate is probabilistic and holds
with probability 1− α.

Eq. 3 is tight for two classes and provides a sufficient condi-
tion to guarantee robustness for more classes (|Y| > 2). In

3Or classified as some chosen target class other than g(x).

§ B we show how to obtain better guarantees for multi-class
classification by computing confidence intervals that hold
simultaneously for all classes using Bonferroni correction.

2.2. Solving the Optimization Problem in Eq. 2

Assume we can partition X =
⋃I
i Ri,Ri ∩ Rj = ∅ into

disjoint regionsRi of constant likelihood ratio, i.e. for every
z ∈ Ri it holds Pr(φ(x) = z)/Pr(φ(x̃) = z) = ci for
some constant ci. Then, Eq. 2 is equivalent to the following
Linear Program (LP) (Lee et al., 2019):

min
h

hT r̃ s.t. hTr = p, 0 ≤ h ≤ 1 (4)

where h ∈ [0, 1]I is the vector we are optimizing over
corresponding to the classifier h, and r is a vector where
ri = Pr(φ(x) ∈ Ri) for each region, and similarly for
r̃i. The exact solution to this LP can be easily obtained
with a greedy algorithm: first sort the regions such that
c1 ≥ c2 ≥ · · · ≥ cI , then iteratively assign hi = 1 for all
regionsRi until the budget constraint is met (except for the
final region which we “consume” partially). See § A for
more details. Therefore, how efficiently we can compute
the certificate depends on the number of regions and how
difficult it is to compute Pr(φ(x) ∈ Ri) for a givenRi and
x. This is why reducing the number of regions is crucial.

We show that the optimization problem for the multi-class
certificate is also a simple LP and can be exactly solved
with a similar greedy algorithm (§ B). Another interpreta-
tion of Eq. 2 is that it corresponds to likelihood ratio testing
with significance level p between two different hypothe-
ses: Pr(φ(x) = z) vs. Pr(φ(x̃) = z) (Tocher, 1950). We
show in § 4.3 that given our choice of randomization φ, the
problem is equivalent to hypothesis testing of two Poisson-
Binomial distributions with different parameters.

3. Threat Model
We assume that an adversary can perturb x by flipping some
of its bits. We define the ball centered at the clean input x:

Bra,rd(x) = {x̃ : x̃ ∈ X ,
d∑
i=1

I(x̃i = xi − 1) ≤ rd,

d∑
i=1

I(x̃i = xi + 1) ≤ ra} (5)

which contains all binary vectors x̃ which can be obtained
from x by deleting at most rd bits (flipping from 1 to 0)
and adding at most ra bits (flipping from 0 to 1). Analo-
gously, we define the sphere Sra,rd(x) where the inequali-
ties in Eq. 5 are replaced by equalities. The minimum over
Bra,rd(x) in Eq. 3 is always attained at some x̃ ∈ Sra,rd(x).

Intuitively, the radii ra and rd control the global budget of
the attacker, i.e. the overall number of additions or deletions
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Figure 1. The vector x̃ is obtained from x by adding exactly ra
bits and deleting exactly rd bits. Any vector z in the regionRra,rd

q

is obtained by flipping q bits in xC and not flipping (retaining) q
bits in x̃C . Solid boxes denote ones and empty boxes denote zeros.

they can make. This is in contrast to other threat models for
binary/graph data which do not distinguish between addition
and deletion. Threat models for graphs often specify addi-
tional local budget constraints, e.g. at most given number
of perturbations per node. We focus on global constraints
which correspond to more powerful attacks.

Note that with this threat model we can also provide l0-ball
guarantees, i.e. to certify w.r.t. ‖x− x̃‖0 ≤ r we can simply
certify w.r.t. all balls Bra,rd(x) where ra + rd = r.

4. Sparsity-Aware Certificate
4.1. Data-Dependent Sparsity-Aware Randomization

We define the following noise distribution with two param-
eters p−, p+ ∈ [0, 1] independently for each dimension i:

Pr(φ(x)i 6= xi) = pxi
− p

(1−xi)
+ (6)

The randomization scheme φ flips the bit xi = 1 to 0 (e.g.
deletes an existing edge) with probability p−, and similarly
flips the bit xi = 0 to 1 (e.g. adds a new edge) with proba-
bility p+. This allows us to control the amount of smoothing
separately for the ones and zeros (edges and non-edges). In
other words, the noise distribution is data-dependent, which
is in contrast to all previous randomized smoothing certifi-
cates. Moreover, we say that φ is sparsity-aware since often,
for real-world data, the number of ones in x is significantly
smaller than the number of zeros, i.e. ‖x‖0 � d.

As we will show in § 8 sparsity-awareness is crucial for
obtaining non-trivial certificates. The randomization scheme
defined in Lee et al. (2019) is a special case which flips the
i-th bit xi with a single probability p = p− = p+ regardless
of its value. For the general discrete case see § 5.

4.2. Regions of Constant Likelihood Ratio

We can partition X into a small number of regions of con-
stant likelihood which enables us to use the greedy algo-
rithm for solving Eq. 2 specified in § 2.2 to obtain an

efficient certificate. Given any x and x̃ ∈ Sra,rd(x), let
C = {i : xi 6= x̃i} be the set of dimensions where x and x̃
disagree, and let C̃ = {1, . . . , d}\C be its complement. Now,
let xC , x̃C ∈ {0, 1}|C| denote the vectors x, x̃ considering
only the dimensions specified in C.

We define the regionRra,rdq containing all binary vectors z
which can be obtained by flipping exactly q bits in xC and
which have any configuration of ones and zeros in xC̃ :

Rra,rdq = {z ∈ X :‖xC − zC‖0 = q,

‖1− xC‖0 = ra, ‖xC‖0 = rd}

The region Rra,rdq contains at the same time all vectors z
which can be obtained by retaining (not flipping) q bits in
x̃C , i.e. ‖x̃C − zC‖0 = rd + ra − q for all z ∈ Rra,rdq . To
see this, note that from the definition of Sra,rd(x), x̃C is
the complement to xC , and we can obtain x̃C from xC by
flipping exactly rd bits from 1 to 0, and flipping exactly ra
bits from 0 to 1. See Fig. 1 for an illustration.

We can partition X in exactly ra + rd + 1 such regions.

Proposition 1 The set {Rra,rd0 , . . . ,Rra,rdra+rd
} partitions

the entire space of binary vectors X into disjoint regions, i.e.
X =

⋃q=ra+rd
q=0 Rra,rdq andRra,rdi ∩Rra,rdj = ∅,∀i 6= j.

Since the smoothing is independent per dimension we can
restrict our attention only to those dimensions where x and
x̃ disagree, otherwise Pr(φ(x)i 6= xi) = Pr(φ(x̃)i 6= x̃i)
for i ∈ C̃ which does not change the ratio cq for any re-
gion Rra,rdq . This implies that the number of regions is
independent of the dimension d. Furthermore, by definition
|C| = ra + rd, thus we can make between 0 and ra + rd
flips in total counting only w.r.t. the dimensions in C, and
any given z vector belongs only to a single region.

4.3. Poisson-Binomial View of the Regions

Before we state further results, it is helpful to consider a
different view of the randomization scheme φ and how it
influences the regions. The scheme φ(·) is equivalent to first
drawing a noise sample εi ∼ Ber(p = pxi

− p
(1−xi)
+ ) from a

Bernoulli distribution with probability p = p− if xi = 1 or
p = p+ otherwise, and setting φ(x)i = xi ⊕ εi, where ⊕
is the XOR. Here, we directly see that φ is data-dependent
and sparsity-aware since we can specify e.g. a relatively
large p− for the ones and relatively small p+ for the zeros
to avoid introducing too many noisy bits in x.

Proposition 2 Given any x, x̃ ∈ Sra,rd(x) and any re-
gion Rra,rdq , Pr(φ(x) ∈ Rra,rdq ) = Pr(Q = q) where
Q ∼ PB([p+, ra], [p−, rd]) = PB(p+, . . . , p+︸ ︷︷ ︸

ra times

, p−, . . . , p−︸ ︷︷ ︸
rd times

)

is a Poisson-Binomial random variable on {0, . . . , ra + rd}.
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Intuitively, all vectors z ∈ Rra,rdq correspond to observing q
“successes” where a “success” is interpreted as successfully
flipping the bit of xC , which happens with probability p− or
p+. At the same time, “success” is interpreted as retaining
(not flipping) the bit of x̃C with probability (1 − p−) or
(1 − p+). The probability distribution for the number of
successes is a sum of d independent, but not identical (since
pi = p+ or pj = p−) Bernoulli random variables which is
a Poisson-Binomial random variable.

Since εi are independent we have Pr(φ(x) = z) =∏
i∈C̃ Pr(φ(x)i=zi)

∏
j∈C Pr(φ(x)j =zj). By definition

Rra,rdq contains all vectors z that have any configuration of
ones and zeros in C̃ so when we sum over all z ∈ Rra,rdq

the first product equals 1. Therefore, we can equivalently
consider a sum of only |C| non-identical Bernoulli random
variables which is a Poisson-Binomial random variable, i.e.
Pr(φ(x) ∈ Rra,rdq ) = PB([p+, ra], [p−, rd]) is a |C| di-
mensional Poisson-Binomial distribution with two groups
of distinct probabilities. See Fig. 1 for an illustration.

In other words, Eq. 2 can be seen as performing likelihood
ratio testing where the two hypotheses correspond to two
Poisson-Binomial distributions with different parameters,
PB([p+, ra], [p−, rd]) vs. PB([1− p−, ra], [1− p+, rd]) re-
lating to x and x̃ respectively.4

For the special case p+ = p− = p, the Poisson-Binomial
distribution reduces to a standard Binomial distribution, i.e.
Q ∼ Bin(p, ra + rd). Analogously, for discrete data the
probability for φ(x) to land in the respective regions is a
Multinomial distribution (see § 5 and § M). This allows us
to obtain the same certificate as in Lee et al. (2019) for a
significantly reduced cost, and highlights that the choice of
how we partition the space into regions is crucial.

Proposition 3 For all z ∈ Rra,rdq , the likelihood ratio is

ηra,rdq =
Pr(φ(x) = z)

Pr(φ(x̃) = z)
=

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra

and is constant in the regionRra,rdq . Moreover, for a fixed
ra and rd, the ratio ηra,rdq is a monotonically decreasing
function of q if (p− + p+) < 1, constant if (p− + p+) = 1,
or monotonically increasing function of q if (p− + p+) > 1.

We make several observations about our propositions and
provide detailed proofs in § A.

Linear number of regions. With Prop. 1 and Prop. 3 we
can partition X into exactly (ra + rd + 1) number of re-
gions with constant likelihood ratio. The number of regions

4The greedy algorithm in § 2.2 is thus equivalent to ρx,x̃(p) =
Φ(Φ−1

PBx
(p))PBx̃ where Φ and Φ−1 are the CDF and inverse CDF

function of the Poisson-Binomial distribution respectively.

grows linearly with the radii. Crucially, this implies that the
number of regions is independent of the input size d. In the
special case when p− = 0 and p+ > 0 (or similarly p− > 0
and p+ = 0) there are only three (non-empty) regions. For
a discussion of these cases see § C.

Data (size) independence. From Prop. 2 and Prop. 3 it
follows that the value of ρx,x̃(p, y), and hence the certificate,
is exactly the same for any p, y,x and x̃ ∈ Sra,rd(x). In
other words, as long as x and x̃ differ in exactly rd zeros
and ra ones, the solution to Eq. 3 is the same. Moreover,
the certificate does not depend on the configuration of ones
and zeros in the dimensions C̃ where x and x̃ agree since
neither the probability Pr(φ(x) ∈ Rra,rdq ) nor the ratio
ηra,rdq depend on the values of xi and x̃i for i ∈ C̃.

Altogether this means that w.l.o.g. we can compute the
certificate based on the following two canonical vectors:
xca = (1, . . . , 1, 0, . . . , 0) and x̃ca = (0, . . . , 0, 1, . . . , 1),
where ‖xca‖0 = rd and ‖x̃ca‖0 = ra. We can furthermore
conclude that if several inputs have the same py(x), which
is indeed the case in practice, we only need to compute the
certificate once to certify all of them.

No sorting. Since ηra,rdq is monotonic in q we do not need
to construct all regions in advance and afterwards sort them
in a decreasing order. We can completely avoid the sort-
ing required for the greedy algorithm outlined in § 2.2 and
directly visit the regions one by one, increasing q (or de-
creasing when p++p− > 1) each time until we reach py(x).
For more details and pseudo-code see § D.

4.4. Efficiently Computing Pr(φ(x) ∈ Rra,rdq )

Since Pr(φ(x) ∈ Rra,rdq ) = PB(q; [p+, ra], [p−, rd]) we
need to compute the PMF of a Poisson-Binomial distribu-
tion. If done naively we need to sum r!/[r!(r − q)!] terms
where r = ra + rd. Fortunately, there is a recursive formula
that requires only O(qr) operations (Chen & Liu, 1997).
Since we only have two distinct flip probabilities we can
further simplify to obtain the following recursive formula:

Tra,rd(i) = ra · (p+/(1− p+))i + rd · (p−/(1− p−))i

Rra,rd(q) =
1

q

q∑
i=1

(−1)i+1 · Tra,rd(i) ·Rra,rd(q − i)

Now PB(q; ·) = Rra,rd(q)·(1−p+)ra ·(1−p−)rd . To avoid
unnecessary computations we additionally unroll the recur-
sion with dynamic programming.5 An alternative approach
is to compute the PMF via the Discrete Fourier Transform
(Fernández & Williams, 2010). Compared to previous dis-
crete certificates (Lee et al., 2019; Levine & Feizi, 2019) we
do not need to compute Binomial coefficients.

5For multiple-precision arithmetic we use the gmpy2 Python
library: https://pypi.org/project/gmpy2/.

https://pypi.org/project/gmpy2/
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5. General Certificate for Discrete Data
Let x ∈ XK = {0, . . . ,K − 1}d be a d-dimensional vector
where each xi belongs to one of K different categories. We
define the sparsity-aware randomization scheme φ(·):

Pr(φ(xi) = k) =

{
[ p+
K−1 ](xi 6=k)(1− p+)(xi=k), xi = 0

[ p−
K−1 ](xi 6=k)(1− p−)(xi=k), xi 6= 0

That is, we flip zeros with probability p+, and non-zeros
with probability p−, uniformly to any of the other values.
For the special case p+ = p− we recover the randomization
scheme and the certificate from Lee et al. (2019), and for
K = 2 we recover our certificate for binary data.

As before, we can partition XK into disjoint regions of
constant likelihood ratio and efficiently solve the problem
defined in Eq. 2. We show that the number of regions does
not depend on the number of discrete categories K or the
dimension of the input d. Specifically, for p+ = p− we
have exactly 2r + 1 regions where r is the certified radius,
i.e. ‖x − x̃‖0 = r. For p+ 6= p− the number of regions
is upper bounded by (r + 1)2. Here the key insight is that
again Pr(φ(x)i 6= xi) = Pr(φ(x̃)i 6= x̃i) if xi = x̃i so
w.l.o.g. we can consider only the dimensions where x and
x̃ disagree. For a detailed analysis of the regions and how
to efficiently compute them see § M in the appendix.

5.1. Comparison with Existing Discrete Certificates

There are up to (d + 1)2 non-empty regions for the parti-
tioning in Lee et al. (2019), i.e. quadratic w.r.t. input size.
Since their certificate is a special case (p+ = p−) our par-
titioning provides a dramatic reduction of complexity. For
example, to certify perturbations to the binary adjacency
matrix where d = n2 we have to traverse up to O(n4) re-
gions which is infeasible even for small graphs. With our
certificate we have to examine at most ra + rd + 1 regions
regardless of the graph size. Beyond this, in § 8.2 we show
that our sparsity-aware randomization yields a higher certi-
fied ratio. Other certificates for discrete data which are based
on f -divergences (Dvijotham et al., 2020) or randomized
ablation (Levine & Feizi, 2019) sacrifice tightness to gain
computational efficiency and provide looser guarantees.

6. Instantiating the Certificate for GNNs
Let G = (V, E) be an attributed graph with n = |V| nodes.
We denote with A ∈ {0, 1}n×n the adjacency matrix and
F ∈ {0, 1}n×m the matrix of m-dimensional binary fea-
tures for each node. We consider three different scenar-
ios: (i) the adversary can only perturb the graph structure:
x = vec(A), (ii) only the node attributes: x = vec(F ), (iii)
or both: x = [vec(A), vec(F )]. Here vec(·) “flattens” a
matrix into a vector, and [·, ·] denotes concatenation. When
the graph is undirected, vec(A) considers only the lower (or

upper)-triangular part of A. The base classifier f(·) can be
any GNN. If we are certifying the node classification task,
perturbing a single given graph can potentially change the
predictions for all nodes. To certify a given target node t
we simply focus on its own predictions (its own distribution
over node-level classes) which in general could be computed
based on the entire graph. Note, under our threat model we
can apply the perturbation anywhere in the graph/features,
e.g. including the neighbors of node t. Here we focus on
node-level classification and in § G in the appendix we show
results for graph-level classification.

6.1. Joint Certificates for the Graph and the Attributes

When jointly certifying perturbations to both the graph struc-
ture and the node attributes, if we set x = [vec(A), vec(F )]
we have to share a single set of radii (ra, rd) and flip
probabilities (p+, p−) for both A and F . However, it may
be beneficial to specify different flip probabilities/radii.
To achieve this we first independently calculate the set
of regions RA = {. . . ,Rr

A
a ,r

A
d

q , . . . } for x = vec(A)

and RF = {. . . ,Rr
F
a ,r

F
d

q , . . . } for x = vec(F ) using
different (rAa , r

A
d , r

F
a , r

F
d ). Then to compute the certifi-

cate we form the regionsRq,q′ , where Pr(φ(x)∈Rq,q′) =

Pr(φ(x)∈Rr
A
a ,r

A
d

q ) Pr(φ(x)∈Rr
F
a ,r

F
d

q′ ). The total number
of Rq,q′ regions is thus (rAa + rAd + 1)(rFa + rFd + 1).
Therefore, we pay only a small price in terms of complexity
for the flexibility of specifying different radii. The size of
the balls we can certify in practice is relatively small, e.g.
the four radii are typically below 100 so the certificate is
feasible. Note that this can be trivially extended to certify ar-
bitrary groupings of x into subspaces with different radii/flip
probabilities per subspace. However, the complexity quickly
increases. For more details see § E.

6.2. Comparison with Existing Certificates for GNNs

There are only few certificates for GNNs: Zügner &
Günnemann (2019b) can only handle attribute attacks,
while Bojchevski & Günnemann (2019a) and Zügner &
Günnemann (2020) only handle graph attacks. All three
certificates apply only to node classification and a small
class of models. Since their certificates hold for certain
(base) classifiers, e.g. GCN (Kipf & Welling, 2017) or PPNP
(Gasteiger et al., 2019), which tend to be less robust than
their smoothed counterparts, we cannot make a fair compari-
son. Moreover, they rely on local budget constraints (at most
given number of perturbations per node), and provide looser
guarantees when using global budget only (since e.g. the
global budget certificate for PPNP is NP-Hard). Nonethe-
less, we compare our certificate with these approaches in
the appendix, and show that it provides comparable or better
guarantees (see § F). Jia et al. (2020b)’s certificate is neither
sparsity-aware nor efficient, and does not apply to GNNs.
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Figure 2. Certifying attribute perturbations for GCN on Cora-ML. The heatmap on the left shows the ratio of certified nodes for different
radii for p+ = 0.01, p− = 0.6. Darker cells correspond to higher certified ratio. On the right, we show the x and y-axis of the heatmap
for different flip probabilities, i.e. ra = 0, rd varies (blue histogram) and rd = 0, ra varies (orange histogram) respectively.

7. Training
Our certificates hold regardless of how the base classifier f
is trained. However, in order to classify the labeled example
(x, y) correctly and robustly, g needs to consistently classify
the noisy φ(x) as y. To ensure this, similar to previous
work (Cohen et al., 2019), we train the base classifier with
perturbed inputs, that is we apply φ(·) during training which
is akin to data augmentation with noise. We also investigated
the approach suggested by Salman et al. (2019), where one
directly trains the smoothed classifier g, rather than f . When
the base classifier f is a GNN and the task is node-level
classification, unlike Salman et al. (2019) we did not observe
performance improvements with this strategy. See § I for a
detailed comparison. One explanation could be that unlike
image classifiers, where a single perturbation affects only a
single image, a single perturbation of the graph can affect
the predictions for many (potentially all) nodes.

Adversarial training. Even though adversarial training
(Kurakin et al., 2017; Madry et al., 2018) is a heuristic
defense adding adversarial examples during training tends
to also improve the certifiable robustness (Wong & Kolter,
2018; Zügner & Günnemann, 2019b). This has also been
demonstrated for smoothed classifiers (Salman et al., 2019),
especially given access to additional unlabeled data (Car-
mon et al., 2019). However, adversarial training tends to be
useful only with a sufficiently powerful attack. While for
continuous data we can simply maximize the loss w.r.t. x
via projected gradient descent (PGD) to find an adversarial
example, PGD is not well suited for discrete data (Zügner
et al., 2018). Therefore, we leave it as future work to de-
velop suitable techniques for finding adversarial examples
of g so we can employ adversarial training.

8. Experimental Evaluation
Our main goal is to answer the following research questions:
(i) What are the trade-offs for different flip probabilities? (ii)

What is the benefit of sparsity-awareness? (iii) How robust
are different GNNs for different threat models? (iv) How
large is the efficiency gain due to the improved partitioning?

8.1. Graph Neural Networks

Setup. We evaluate the certifiable robustness of three GNNs:
GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018)
and APPNP (Gasteiger et al., 2019). We focus on the node
classification task and the three scenarios we outlined in § 6.
We demonstrate our claims on two datasets: Cora-ML (n =
2995, e = 8416) and PubMed (n = 19717, e = 44324)
(Sen et al., 2008). The graphs are sparse, i.e. their number of
edges e� n2. See § H for further details about the data. For
all experiments we set the confidence level α = 0.01 and the
number of samples for certification to 106 (105 for MNIST
and ImageNet). We discuss how we choose hyperparameters
and further implementation details in § J.

In Fig. 2 we show the certified ratio w.r.t. attribute perturba-
tions for GCN on Cora-ML, i.e. the ratio of nodes which can
be certified given the provided radii. The heatmap Fig. 2(a)
investigates the trade-offs for certifying addition vs. deletion
for p+ = 0.01, p− = 0.6. Since p− is significantly higher
we can certify a larger rd radius. To ensure the model is
robust to a few worst-case deletions, we need to ensure it
is robust to many randomly deleted bits. The contour lines
show the radii for which the certified ratio is at least 0.3
(0.5), i.e. at least 30 % (50 %) of all nodes can be certified.

In Fig. 2(b) we investigate the trade-offs for different de-
grees of smoothing. The y-axis shows the ratio of certified
nodes. By decreasing the flip probabilities we can certify a
larger portion of nodes but at lower radii, while increasing
the probabilities allows for larger certified radii overall at
the price of smaller ratios. This implies that in practice we
can choose a suitable smoothing degree depending on the
threat model since the difference in clean accuracy is at most
2 % for all cases (not shown here, see § K).
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Figure 3. Certifiable robustness for different models. Solid lines denote rd (with ra = 0) and dotted lines denote ra (with rd = 0).
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Figure 6. The benefit of our sparsity-aware
certificates on binarized MNIST.

In Fig. 3 we compare the ratio of certified nodes for different
GNNs and threat models. We can see that when perturbing
the attributes (Fig. 3(a)) GAT is more robust than GCN and
APPNP. On the other hand when perturbing the graph struc-
ture (Fig. 3(b)) the order is inverted, now APPNP is more
robust than GCN and GAT. This highlights that different
models have different robustness trade-offs.

We can further observe that certifying the attributes is in
general easier compared to certifying the graph structure.
Certifying edge addition is the most challenging scenario.
Intuitively, since most nodes have a low degree (e.g. average
degree on Cora-ML is 6) the attacker can easily misclassify
them by adding a few edges to nodes from a different class.

Interestingly, if we consider the special case where φ only
deletes edges (by setting p+ = 0) the certified ratio for
rd is significantly improved (Fig. 3(c)). In practice, the
observed graph x might already be corrupted. The certificate
verifies that all x̃ in the ball, including the unobserved clean
graph, have the same prediction. From this point of view, by
randomly deleting edges we are reducing the influence of
adversarial edges which were potentially added. Since for
many applications it is more feasible for the attacker to add
rather than remove edges, certifying rd is exactly the goal.
In general, we see that none of the graph models are really
robust, especially w.r.t. structure perturbations. We leave it
as future work to make these approaches more reliable. In
§ K we also compare our binary-class vs. our multi-class

certificate, the multi-class certificate is better in most cases.

Next, in Fig. 4 we show our method’s ability to certify
robustness against joint perturbations to both the graph
structure and the node attributes. We set pA+ = 2× 10−5,
pA− = 0.4 for the graph, and pF+ = 2× 10−5, pF− = 0.6
for the attributes. This combined scenario yields slightly
worse certificates than when only allowing perturbations
w.r.t. one input. Similar to single perturbations, we observe
that certificates w.r.t. addition are especially hard to obtain.

Sparsity. Sparsity is crucial when certifying graphs. To
show this we certify the attributes and set p+ = p− = 0.1
since p+ = 0.1 is the largest value such that the clean accu-
racy is still reasonably high. We further compare with the
randomized ablation certificate by Levine & Feizi (2019)
which also does not consider sparsity. Their certificate de-
pends on the number of retained pixels k, or in our case
retained entries of the feature (adjacency) matrix. There is
an inherent trade-off: lower value of k equals higher certified
radius but worse classification accuracy. We set k = 0.2d to
the lowest value that still maintains reasonable accuracy.

For all certificates we compute the maximum certified radius
averaged across all nodes which we denote with r, and we
show the results in Table 1. We can see that our sparsity-
aware certificate is significantly better. The performance
gap widens even further for graph perturbations (not shown
here). We can conclude that sparsity-awareness is essential.
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Table 1. Maximum certified radius averaged across nodes for at-
tribute perturbations on GCN. SA stands for sparsity-aware.

SA rd ra

p+ = p− = 0.1 (Lee et al., 2019) n 2.03 2.03
k = 0.2d (Levine & Feizi, 2019) n 2.01 2.01
p+ = 0.01, p− = 0.6 y 9.99 3.38
p+ = 0.01, p− = 0.8 y 12.65 4.94
p+ = 0.00, p− = 0.8 y 18.66 2.14

Efficiency. The overall runtime to compute our certificate
for all test nodes from the Cora-ML dataset using a GCN
model is less than 25 minutes, or around 0.54 seconds per
node. Most of the time is spent on py(x) and can be trivially
reduced. Finally, to demonstrate that our certificates scales
to large graphs we certify w.r.t. the attributes on the PubMed
dataset which has over 19.5k nodes (results shown in Fig. 5).

8.2. Discretized Images

To show the general applicability of our method and the
importance of sparsity and efficiency we also certify a CNN
model on discretized images and compare with existing
discrete certificates (see § J for details).

Sparsity. In Fig. 6 we compare our certificate with Lee
et al. (2019) on binarized MNIST images. Since they have
a single radius (ra = rd) we compare our radii by setting
rd = 0 and varying ra ≥ 0 (and similarly for rd ≥ 0). Their
certificate is not sparsity-aware and is a special case of ours
(we set p+ = p− = 0.2). For our certificates we can specify
different flip probabilities (we set p+ = 0.1, p− = 0.2)
which results in a significant increase in the certified ratio
w.r.t. rd and matching ratio w.r.t. ra. We also compare our
binary-class (b.c.) with our multi-class (m.c.) certificate
(using Bonferroni correction) and we see that the tighter
multi-class certificate tends to provide better guarantees.

Efficiency. In Table 2 we show the certified accuracy for
discretized ImageNet data (K = 256) and p+ = p− = 0.8.
We see that our certificate matches (Lee et al., 2019)’s but
at a dramatically improved runtime, from 4 days to under
a second. Dvijotham et al. (2020)’s certificate is efficient
at the expense of tightness and obtains worse guarantees.
Even though ρx,x̃ can be precomputed once and reused for
different test inputs, without our improvement it would still
be infeasible if d is slightly larger or varies (e.g. sequences).

9. Related Work
GNNs are a fundamental part of the modern machine learn-
ing landscape and have been successfully used for a va-
riety of tasks from node-level classification (Defferrard

Table 2. Certified accuracy for different radii on ImageNet. We
show only the time to compute the certificate given py(x). Since
φ(·) is the same for all certificates the time to compute py(x) is
also the same (and depends on the number of random samples).
The numbers for the baselines are from the respective papers.

Certificate Time r = 1 r = 3 r = 5 r = 7

(Dvijotham et al., 2020) 28 ms 0.36 0.22 0.14 0
(Lee et al., 2019) 4 days 0.54 0.34 0.24 0.18
Ours 2.5 ms 0.54 0.34 0.24 0.18

et al., 2016; Kipf & Welling, 2017; Velickovic et al., 2018)
to graph-level classification and regression (Gilmer et al.,
2017; Gasteiger et al., 2020) across many domains. However,
GNNs are highly sensitive to small adversarial perturbations
(Zügner et al., 2018; Dai et al., 2018; Zügner & Günnemann,
2019a; Bojchevski & Günnemann, 2019b) – a common phe-
nomenon observed for machine learning models in general
(Szegedy et al., 2014; Goodfellow et al., 2015).

Beyond heuristic defenses (Kurakin et al., 2017; Madry
et al., 2018; Xu et al., 2019; Entezari et al., 2020), which can
be easily broken in practice (Athalye et al., 2018), certifiable
robustness techniques provide provable guarantees (Hein &
Andriushchenko, 2017; Wong & Kolter, 2018; Raghunathan
et al., 2018). Most certificates either have scalability issues
or rely on conservative relaxations. In contrast, the recently
proposed randomized smoothing technique (Cohen et al.,
2019; Lécuyer et al., 2019; Lee et al., 2019; Li et al., 2018)
is a general approach which is relatively computationally
inexpensive, yet provides good (probabilistic) guarantees.

Most work on randomized smoothing focuses on con-
tinuous data with a few exceptions that can tackle bi-
nary/discrete data. In contrast to our approach, these certifi-
cates are not sparsity-aware and are either computationally
intractable or provide loose guarantees (see § 5.1). More-
over, our paper is the first to apply randomized smoothing
to GNNs. There are only few certificates for graphs (Zügner
& Günnemann, 2019b; Bojchevski & Günnemann, 2019a;
Zügner & Günnemann, 2020) and as we discussed in § 1
and in § 6.2 they have serious limitations that we overcome.

10. Conclusion
We propose the first sparsity-aware certificate for discrete
data based on the randomized smoothing framework. Our
certificate can be efficiently computed and the complexity
does not depend on the input size or the number of dis-
crete categories. The sparsity-awareness and the drastically
improved efficiency significantly broaden its applicability
compared to previous work. We apply our certificate to study
the robustness of different Graph Neural Networks and show
that there are clear trade-offs across GNNs models.
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A. Proofs
Proof (Prop. 1). First we show that the regions are disjoint.
Let z ∈ Rra,rdi , and z ∈ Rra,rdj for some i 6= j. From the
definition of a region it follows that ‖xC − zC‖0 = i and
‖xC − zC‖0 = j. This can be true only if i = j which is a
contradiction. Therefore, z cannot belong to two different
regions. For any z and x, ‖xC − zC‖0 ∈ {0, . . . , ra+rd}
since the ‖ · ‖0 (Hamming) distance between two |C|-
dimensional vectors has the range {0, . . . , |C|}. Thus, any
z must land in some region Rra,rdq with q ≤ |C|, and for
any q > |C| = ra + rd we have Rra,rdq = ∅. Therefore,
X =

⋃q=∞
q=0 Rra,rdq =

⋃q=ra+rd
q=0 Rra,rdq . �

Proof (Prop. 2). For any x, x̃ ∈ Sra,rd(x), andRra,rdq :

Pr
(
φ(x) ∈ Rra,rdq

)
= Pr

(
‖xC − φ(x)C‖0 = q

)
=

Pr
(∑
i∈C

I[xi 6= φ(x)i] = q
)

= Pr
(∑
i∈C

εi = q
)

(7)

where εi ∼ Ber(p = pxi
− p

(1−xi)
+ ). The first equality in Eq. 7

follows from the definition of a region, and the last equality
follows from the definition of φ(·). Since x ∈ Rra,rdq we
have

∑
i∈C xi = rd and

∑
i∈C 1 − xi = ra. Therefore,∑

i∈C εi ∼ Q where Q = PB([p+, ra][p−, rd]). �

Proof (Prop. 3). For any z ∈ Rra,rdq , by definition it holds
‖xC − zC‖0 = q. Let q− =

∑d
i=1 I(xi − 1 = zi) and

q+ =
∑d
i=1 I(xi + 1 = zi), so q = q+ + q−. We have:

ηra,rdq =
Pr(φ(x) = z)

Pr(φ(x̃) = z)

=

∏
i∈C̃ Pr(φ(x)i=zi)

∏
j∈C Pr(φ(x)j=zj)∏

i∈C̃ Pr(φ(x̃)i=zi)
∏
j∈C Pr(φ(x̃)j=zj)

=

∏
j∈C Pr(φ(x)j=zj)∏
j∈C Pr(φ(x̃)j=zj)

=
p
q−
− (1− p−)rd−q−p

q+
+ (1− p+)ra−q+

p
ra−q+
− (1− p−)q+p

rd−q−
+ (1− p+)q−

= pq−ra− (1− p−)rd−qpq−rd+ (1− p+)ra−q

=

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra
Where the second equality holds since φ is independent per
dimension, and the third equality holds since x and x̃ agree
on C̃. Plugging in the definition of φ and rearranging we
obtain ηra,rdq . Thus, the ratio is constant for any z ∈ Rra,rdq .
Now we show that the ratio is a monotonic function of q:

ηra,rdq =

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra
= C ·

[
p+p−

p+p− + 1− (p+ − p−)︸ ︷︷ ︸
:=u

]q
(8)

Here C =
[ p+p−
(1−p+)(1−p−)

]−(ra+rd) ≥ 0 is a non-negative
constant that does not depend on q since p+, p− ∈ [0, 1],
and hence does not change the monotonicity. We have three
cases: (i) if p+ + p− < 1 then u > 0 in the denominator of
Eq. 8, the ratio is < 1 and thus a decreasing function of q;
(ii) if p+ + p− = 1 then u = 0 and the ratio becomes C · 1q ,
i.e. constant; (iii) if p+ + p− > 1 then u < 0, the ratio is
> 1 and thus an increasing function of q. �

B. Multi-Class Certificates
For the multi-class certificate our goal is to solve the follow-
ing optimization problem:

µx,x̃(p1(x), . . . , pY(x), y∗) (9)
= min
h∈H

Pr(h(φ(x̃)) = y∗)−max
y 6=y∗

Pr(h(φ(x̃)) = y)

s.t. Pr(h(φ(x)) = y∗) = py∗

and Pr(h(φ(x)) = y) = py, y 6= y∗

where y∗ is the (predicted or ground-truth) class we want
to certify. Similar to before computing py(x) exactly is
difficult, thus we compute a lower bound py∗(x) for y∗

and an upper bound py(x) for all other y. Since we are
conservative in the estimates, the solution to Eq. 9 using
these bounds yields a valid certificate. Estimating the lower
and upper bounds from Monte Carlo samples such that they
hold simultaneously with confidence level α requires some
care. Specifically, we have to correct for multiple testing
error. Similar to Jia et al. (2020a) we estimate each bound
individually using a Clopper-Pearson Bernoulli confidence
interval with confidence α

C where C = |Y| is the number
of classes and use Bonferroni correction to guarantee with
confidence of α that the estimates hold simultaneously.

The problem in Eq. 9 is valid if py∗(x) + pỹ(x) < 1. The

binary-class certificate assumes that pỹ(x) = 1 − py∗(x).
From here we can directly conclude that the multi-class cer-
tificate is in principle always equal or better than the binary
certificate, and in particular the improvement can only occur
when py∗(x) + pỹ(x) < 1. Note that, however, the value
of py∗(x) will be lower for the multi-class certificate com-
pared to the binary-class certificate due to the Bonferroni
correction. This implies that in some cases the binary-class
certificate can yield a higher certified radius. For the major-
ity of our experiments the multi-class certificate was better.

Now, given an input x and a perturbation set Bra,rd(x) if it
holds that: minx̃∈B(x) µx,x̃(p1(x), . . . , pY(x), y∗) > 0 we
can guarantee that classification margin for the worst-case
classifier is always bigger than 0 for all x̃ ∈ B(x). This
implies that g(x) = g(x̃) = y∗ for any input within the
ball, i.e. x is certifiably robust. Compare this to the previous
certificate where we had to verify whether ρx,x̃(p∗, y∗) >
0.5 which was not tight for |Y| > 2.
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Similar to before, Eq. 9 is equivalent to the following LP:

min
h,t

hT r̃ − tT r̃ (10)

s.t. hTr = py∗(x), tTr = pỹ(x),

0 ≤ h ≤ 1, 0 ≤ t ≤ 1

where ỹ = maxy 6=y∗ py(x) is the class with the second
highest number of majority votes after y∗. The proof is
analogous to the proof of Lemma 2 in Lee et al. (2019).

The exact solution to the LP is easily obtained with another
greedy algorithm: first sort the regions such that c1 ≥ c2 ≥
· · · ≥ cI , then iteratively assign hi = 1 in decreasing order
for all regionsRi until the constraint py∗(x) is met. Finally,
iteratively assign tj = 1 now in increasing order for all
regionsRj until the constraint pỹ(x) is met.

C. Special Cases for Flipping Probabilities
We derive the regions of constant likelihood ratio for the
case p+ = 0 and p− > 0. There are only three regions
which we have to consider. First note that there is only
one set of vectors z which can be reached by both x and x̃
when applying the randomization φ and these are the vectors
which have all valid (reachable via deletion) configurations
of ones and zeros in C̃ and all zeros in C. This holds since
xC and x̃C are complementary and we can only delete edges.
See Fig. 1 for an illustration. Denoting this region withR1

we have that Pr(φ(x) ∈ R1) = prd− and Pr(φ(x̃) ∈ R1) =
pra− since we need to successfully delete all edges.

The second region R2 corresponds to the case where we
flip less than rd bits in x and this happens with probability
Pr(φ(x) ∈ R2) = 1 − prd− . By definition the vectors in
the intersection reachable by both x and x̃ are all in R1,
thus Pr(φ(x̃) ∈ R2) = 0. Finally, the third region R3

corresponds to the case where we flip less than ra bits in
x̃, we have Pr(φ(x̃) ∈ R3) = 1 − pra− and Pr(φ(x) ∈
R3) = 0. For the binary class certificate we can ignore any
regions Ri where Pr(φ(x) ∈ Ri) = 0, so the only two
valid regions areR1 andR2. However, for our multi-class
certificate all three regions are necessary.

The case for p+ > 0, p− = 0 is analogous. We have:
Pr(φ(x) ∈ R′1) = pra+ and Pr(φ(x̃) ∈ R′1) = prd+ for
the first region; Pr(φ(x) ∈ R′2) = 1− pra+ and Pr(φ(x̃) ∈
R′2) = 0 for the second region; Pr(φ(x̃) ∈ R′3) = 1− prd+
and Pr(φ(x) ∈ R′3) = 0 for the third region.

D. Traversal of Regions
As we discussed in § 4.3 we can efficiently compute ρx,x̃ by
directly visiting the regionsRra,rdq in decreasing order w.r.t.
the ratio ηra,rdq without sorting. The pseudo-code is given
in Algorithm 1 and corresponds to the greedy algorithm

for solving the LP in Eq. 4 and thus Eq. 3. Once ρx,x̃ is
computed we simply have to check whether ρx,x̃ > 0.5
to certify the input x w.r.t. the given radii ra and rd. The
algorithm for the multi-class certificate µx,x̃ is similar.

Algorithm 1 Compute ρx,x̃ # special cases omitted
Input: p+, p−, ra, rd, py∗(x)
if p+ + p− < 1 then

start = 0, end = ra + rd
else

start = ra + rd, end = 0
end if
Initialize p = 0, ρx,x̃ = 0.
for q = start to end do

Compute ηra,rdq ratio using Prop. 3
Compute PB(q; ·) = Pr(φ(x) ∈ Rra,rdq ) as in § 4.4
Pr(φ(x̃) ∈ Rra,rdq ) = PB(q; ·)/ηra,rdq

if p+ Pr(φ(x) ∈ Rra,rdq ) > py∗(x) then
break

else
p = p+ Pr(φ(x) ∈ Rra,rdq )
ρx,x̃ = ρx,x̃ + Pr(φ(x̃) ∈ Rra,rdq )

end if
end for
if py∗(x)− p > 0 then
ρx,x̃ = ρx,x̃ + (py∗(x)− p)/ηra,rdq

end if
Output: ρx,x̃

E. Joint Certificates
As we discussed in § 6.1 it may be beneficial to spec-
ify different flip probabilities and radii for the graph and
attributes. Let xA = vec(A) ∈ {0, 1}n×n and xF =
vec(F ) ∈ {0, 1}n×m denote the flattened adjacency and
feature matrix respectively. Let x = [xA,xF ] ∈ XA,F

where XA,F = {0, 1}n×n+n×m. We apply the random-
ization schemes independently: for the graph φ(xA) with
pA+ , p

A
− , and for the attributes φ(xF ) with pF+ , p

F
− .

We define the region:

Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ = {z = [zA, zF ] ∈ XA,F :

zA ∈ Rr
A
a ,r

A
d

q , zF ∈ Rr
F
a ,r

F
d

q′ }

whereRr
A
a ,r

A
d

q andRr
F
a ,r

F
d

q′ are defined similar to before. We

have that the regions
{
Rr

A
a ,r

A
d ,r

F
a ,r

F
d

0,0 , . . . ,Rr
A
a ,r

A
d ,r

F
a ,r

F
d

rAa +rAd ,r
F
a +rFd

}
partition the space XA,F . This follows directly due to
the independence and the fact that the regions w.r.t.
graph/attributes partition their respective spaces. The total
number of regions is thus (rAa + rAd + 1)(rFa + rFd + 1).
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Figure 7. Comparison between our certificate
of the smoothed GCN classifier and Zügner
& Günnemann (2019b)’s certificate of the
base GCN classifier. We are certifying w.r.t.
the attributes on Cora-ML. Solid lines denote
rd (with ra = 0) and dotted lines denote ra
(with rd = 0).
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Figure 8. Comparison between our certificate
of the smoothed PPNP classifier and Bo-
jchevski & Günnemann (2019a)’s certificate
of the base PPNP classifier. We are certifying
edge deletion on Cora-ML. Our certificate is
significantly better despite the fact that we
are certifying undirected edges.
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Figure 9. The difference (∆) in the certifi-
cate ratio relative to m = 0 (standard train-
ing, dashed black line). The color gradient
denotes m ∈ {1, 5, 10, 25, 50, 100} with
darker colors corresponding to higher m.
The difference is relatively small overall, and
m = 1 (lightest color) is best.

As before we can compute Pr(φ(x)∈Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ ) =

Pr(φ(xA)∈Rr
A
a ,r

A
d

q ) · Pr(φ(xF )∈Rr
F
a ,r

F
d

q′ ). Similarly we
have for the ratio:

η
rAa ,r

A
d ,r

F
a ,r

F
d

q,q′ =
Pr(φ(x)∈Rr

A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ )

Pr(φ(x̃)∈Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ )

= η
rAa ,r

A
d

q · ηr
F
a ,r

F
d

q′

The above directly follows from the definition of the regions
and because φ(xA) is independent of φ(xF ). Given the
values of ηq,q′ and Pr(φ(x)∈Rq,q′) for all q, q′ we can
again apply the greedy algorithm to compute ρx,x̃. Note that
this can be trivially extended to certify arbitrary groupings
of x into subspaces with different radii/flip probabilities per
subspace, however, the complexity quickly increases and in
general the number of regions will beO((rmax

a +rmax
d +1)v)

where v is the number of groupings and rmax
a , rmax

d are the
maximum radii across the groupings.

F. Existing Graph Certificates Comparison
We compare our certificates with the only two existing works
for certifying GNNs: Zügner & Günnemann (2019b)’s cer-
tificate which can only handle attacks on F and works for
the GCN model (Kipf & Welling, 2017); and Bojchevski
& Günnemann (2019a)’s certificate which can only han-
dle attacks on A and works for a small class of models
where the predictions are a linear function of (personalized)
PageRank.

Both certificates specify local (per node) and global bud-
gets/constraints, while our radii correspond to having only
global budget. Therefore, to ensure a fair comparison we set
their local budgets to be equal to their global budget which
is equal to one of our radii, i.e. q = Q = r∗ for Zügner

& Günnemann (2019b)’s certificate, and bv = B = r∗
for Bojchevski & Günnemann (2019a)’s certificate. As we
discussed in § 6.2 we can only compare the certified robust-
ness of the base classifier (existing certificates) versus the
smoothed variant of the same classifier (our certificate).

Zügner & Günnemann (2019b)’s certificate does not distin-
guish between adding/deleting bits in the attributes so we
compute a single radius corresponding to the total number
of perturbations. For our certificate we evaluate two cases:
(i) rd = 0 and ra varies; (ii) ra = 0 and rd varies. We use
a different configuration of flip probabilities for each case.
The certified ratio for all test nodes is shown on figure Fig. 7.
We see that our certificate is slightly better w.r.t. deletion
and worse w.r.t. addition.

For Bojchevski & Günnemann (2019a)’s certificate we ran-
domly select 50 test nodes to certify since solving their
relaxed QCLP with global budget is computationally ex-
pensive. We evaluate the robustness of the (A)PPNP model,
and we focus on edge removal since their global budget
certificate for edge addition took more than 12h to com-
plete. That is, we configure the set of fragile edges F to
contain only the existing edges (except the edges along the
minimum spanning tree which are fixed). The results for
different values of p− (for p+ = 0) are show in Fig. 8. We
see that we can certify significantly more nodes, especially
as we increase the radius. Note that the effective certified
radius for our approach is double of what is shown in Fig. 8
since we are certifying undirected edges, while Bojchevski
& Günnemann (2019a)’s certificate is w.r.t. directed edges.

G. Graph Classification
For most experiments we focused on the node-level classifi-
cation task. However, our certificate can be trivially adapted
for the graph-level classification task. Currently, there are no
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Figure 10. Certifying graph-level classification w.r.t. perturbations
of the graph structure on the MUTAG dataset. We set p+ = 0.2
and p− = 0.4. We can certify a high ratio of graphs for ra and rd.

other existing certificate that can handle this scenario. Given
any classifier f that takes a graphGi as an input and outputs
(a distribution over) graph-level classes, we can form the
smoothed classifier g by randomly perturbing Gi, e.g. by ap-
plying φ on x = vec(Ai) where Ai is the adjacency matrix
of the graph Gi. Then, we certify g simply by calculating
ρx,x̃ or µx,x̃. The certificates are still efficient to compute
and independent of the graph size.

To demonstrate the generality of our certificate we train
GIN on the MUTAG dataset, which consists of 188 graphs
corresponding to chemical compounds. The graphs are di-
vided into two classes according to their mutagenic effect
on bacteria. The results are shown in Fig. 10. We see that we
can certify a high ratio of graphs for both ra and rd. Similar
results hold when perturbing the node features.

H. Datasets
To evaluate our graph certificate we use two well-known ci-
tation graph datasets: Cora-ML (n = 2995, e = 8416, d =
2879) and PubMed (n = 19717, e = 44324, d = 500) (Sen
et al., 2008). The nodes correspond to papers, the edges cor-
respond to citations between them, and the node features
correspond to bag-of-words representations of the papers’
abstracts. For all experiments we standardize the graphs, i.e.
we make the graphs undirected and we select only the nodes
that belong to the largest connected component. After stan-
dardization we have: Cora-ML (n = 2810, e = 7981, d =
2879) and PubMed (n = 19717, e = 44324, d = 500). We
can see that both graphs are very sparse with the number
of edges e being only a small fraction of the total num-

ber of possible edges n2. Namely 0.1066% of all edges for
Cora-ML and 0.0114% for PubMed. Since the node features
are bag-of-words representations we see high sparsity for
the attributes as well. Namely, 1.7588% for Cora-ML and
10.0221% for PubMed. For our general certificate experi-
ments, similar to Lee et al. (2019) we binarize the MNIST
dataset by setting the threshold at 0.5, and we discretize the
ImageNet images to K = 256 values.

I. Training
To investigate the effect of smooth training (Salman et al.,
2019) on certified robustness we approximate the smoothed
probability gy(x) = Ex′∼φ(x)[f(x′)y] for class y with m
Monte Carlo samples gy(x) ≈

∑m
i=1 f(x(i))y, and we

compute the cross-entropy loss with l(g(x), y). Note that
m = 1 is equivalent to training f with noisy inputs. We
vary the number of Monte Carlo samples m we use during
training for a fixed value of p+ = 0.01, p− = 0.6. Fig. 9
shows the results when perturbing the attributes on Cora-
ML using GCN as a base classifier. Specifically, we show
the difference (∆) in the certified ratio relative to standard
(non-smoothed) training, i.e. m = 0. We see that including
the perturbations during training (m > 0) is consistently
better than standard training (m = 0). The difference for
different values of m is relatively small overall, with m = 1
being the best. Therefore, for all experiments we set m = 1.

J. Hyperparameters
For node classification, for all GNN models we randomly
select 20 nodes from each class for the training set, and
20 nodes for the validation set. We train the models for a
maximum of 3000 epochs with a fixed learning rate of 10−3

and patience of 50 epochs for early stopping. We optimize
the parameters with Adam and use a weight decay of 10−3.
For GCN and APPNP we use a single hidden layer of size
64, and we set the hidden size for GAT to 8 and use 8 heads
to match the number of trainable parameters. For MNIST
and ImageNet we use the standard train/validation/test split,
and we train a CNN classifier with the same configuration
as described in Lee et al. (2019). We set α = 0.01, and
use 103 and 106 samples (105 for MNIST and ImageNet) to
estimate y∗ and py∗(x) respectively. For all experiments, we
use our multi-class certificate since it yields slightly higher
certified ratios compared to the binary-class certificate (see
§ K). Note that to certify an input w.r.t. Bra,rd(x) it is
sufficient to certify w.r.t. Sra,rd(x). In practice, we compute
the maximum ra and rd for a given py∗(x) and pỹ(x) such
that the input is certifiably robust. Whenever the number
of majority votes is the same for several inputs, they have
the same py∗(x) and pỹ(x) so we only need to compute the
maximum radii once to certify all of them.
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Figure 11. Clean accuracy for different flip probabilities when per-
turbing the attributes on Cora-ML using GCN as a base classifier.

K. Further Experiments
First, we investigate the clean accuracy for different config-
urations of smoothing probabilities. In general, we would
like to select the flip probabilities to be as high as possible
such that the accuracy of the smoothed classifier is close
to (or better than) the accuracy of the base classifier. To
compute the clean accuracy we randomly draw 104 samples
with φ(·), record the class label for each test node, and make
a prediction based on the majority vote. On Fig. 11 we show
the clean accuracy averaged across 10 different random
train/validation/test splits when we perturb the Cora-ML
graph and using GCN as the base classifier.

Interestingly, when perturbing the attributes increasing p−
and p+ improves over the accuracy of the base classifier
(bottom-left corner, p− = 0, p+ = 0). We can interpret the
perturbation as dropout (except applied during both train-
ing and evaluation) which has been previously shown to
improve performance (Gasteiger et al., 2019; Velickovic
et al., 2018). On the other hand, similar to the conclusions
in our previous experiments, we see that the graph structure
is more sensitive to perturbations compared to the attributes
and the accuracy decreases as we increase the flip probabili-
ties.

Second, we repeat the experiment associated with Fig. 2(a)
where we calculate the certified ratio of test nodes for at-
tribute perturbations on Cora-ML. We compare the binary-
class certificate ρx,x̃ and the multi-class certificate µx,x̃.
Fig. 12 shows that the multi-class certificate is better, i.e.
achieves a higher certified ratio for the majority of (smaller)
radii, while the binary-class certificate performs better for
higher radii. In general, the absolute difference is relatively
small, with the multi-class certificate being better by 0.012
on average across different radii.
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Figure 12. Comparing the binary-class and multi-class certificate
for attribute perturbation on Cora-ML. Cells with blue (red) colors
show the radii for which the multi-class (respectively binary-class)
certificate obtains a higher certificated ratio. The darkest red cells
in the corners exceed the color map and have value of around 0.15.

L. Limitations
The main advantage of the randomized smoothing technique
is that we can utilize it without making any assumptions
about the base classifier f since to compute the certificate
we need to consider only the output of f for each sample.
This is also one of its biggest disadvantages since it does not
take into account any properties of f , e.g. smoothness. More
importantly, when applied for certifying graph data we can
additionally leverage the fact that the predictions for neigh-
boring nodes are often highly correlated, especially when
the graph exhibits homophily. Extending our certificate to
account for these aspects is a viable future direction.

Moreover, to accurately estimate py(x) we need a large
number of samples (e.g. we used 106 samples in our experi-
ments). Even though one can easily parallelize the sampling
procedure developing a more sample-efficient variant is de-
sirable. Finally, the guarantees provided are probabilistic,
the certificate holds with probability 1− α, and as shown
in previous work (Cohen et al., 2019; Lee et al., 2019) the
number of samples necessary to certify at a given radius
grows as we increase our confidence, i.e. decrease α.

M. Certificate for Discrete Data
As before, since the randomization scheme which we de-
fined in § 5 is applied independently per dimension w.l.o.g.
we can focus only on those dimensions C where x and x̃ dis-
agree. We omit all proofs for the discrete case since they are
analogous to the binary case. The only difference is in how
we partition the space XK and how we compute the respec-
tive regions. Once we obtain the regions the computation of
ρx,x̃ or µx,x̃ and hence the certificate is the same.
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Figure 13. Illustration of the regions for the general sparsity-aware
discrete certificate. We only show the dimensions C where x and
x̃ disagree. The triplets (qj , pj , sj) are used to parametrize the
regions. The variables a0, b0, c0, and a1, b1, c1 depend on the flip
probabilities p+, p− and the number of categories K (see text).

Intuitively, we have variables q0, q1, q2 corresponding to
the dimensions where zC matches xC , variables p0, p1, p2
corresponding to the dimensions where zC matches x̃C , and
variables s0, s1, s2 corresponding to the dimensions where
zC matches neither xC nor x̃C (see illustration in Fig. 13).
The fourth-case where zC matches both xC and x̃C is not
possible since by definition xi 6= x̃i for all i ∈ C. We define
the region parametrized by (qj , pj , sj) triplets:

Rq0,q1,q2
p0,p1,p2
s0,s1,s2

= {z ∈ XK :

q0 =
∑
i∈C

I(zi = xi)I(xi = 0),

q1 =
∑
i∈C

I(zi = xi)I(x̃i = 0),

q2 =
∑
i∈C

I(zi = xi)I(x̃i 6= 0)I(xi 6= 0),

p0 =
∑
i∈C

I(zi = x̃i)I(xi = 0),

p1 =
∑
i∈C

I(zi = x̃i)I(x̃i = 0),

p2 =
∑
i∈C

I(zi = x̃i)I(xi 6= 0)I(x̃i 6= 0),

s0 =
∑
i∈C

I(zi 6= x̃i)I(zi 6= xi)I(xi = 0),

s1 =
∑
i∈C

I(zi 6= x̃i)I(zi 6= xi)I(x̃i = 0),

s2 =
∑
i∈C

I(zi 6= x̃i)I(zi 6= xi)I(xi 6= 0)I(x̃i 6= 0)}

for a given clean x ∈ XK and adversarial x̃ ∈ Sr0,r1,r2(x)
which is defined subsequently.

We use a0 = 1 − p+ as a shorthand for the probability to
keep (not flip) a zero, b0 = p+

K−1 for the probability to flip a
zero to some other value, and c0 = 1−a0−b0. Similarly we
define a1 = 1−p−, b1 = p−

K−1 , and c1 = 1−a1−b1 for the

non-zero values. We can easily verify from the definitions
that given a specific configuration of qj , pj , sj variables the
ratio for the correspondingRq0,q1,q2

p0,p1,p2
s0,s1,s2

region equals:

η = Pr(φ(x) ∈ Rq0,q1,q2
p0,p1,p2
s0,s1,s2

)/Pr(φ(x̃) ∈ Rq0,q1,q2
p0,p1,p2
s0,s1,s2

)

=

(
a0
b1

)q0−p1( b0
a1

)p0−q1(c0
c1

)s0−s1(a1
b1

)q2−p2
(11)

Furthermore, we define rj = qj + pj + sj for j = 0, 1, 2.
Now, we can compute the probability for φ(x) to land in
the respective region as a product of Multinomials:

Pr(φ(x)∈Rq0,q1,q2
p0,p1,p2
s0,s1,s2

) =

2∏
j=0

Pr(uj=[qj , pj , sj ]) (12)

where uj are the following Multinomial random variables:

u0 ∼ Mul([a0, b0, c0], r0)

u1 ∼ Mul([a1, b1, c1], r1)

u2 ∼ Mul([a1, b1, c1], r2)

These variables have only 3 categories regardless of the
number of discrete categories in the input space. This is
due to the fact that we only need to keep track of 3 states:
zi = xi, zi = x̃i, and xi 6= zi 6= x̃i for all i ∈ C.

This construction suggests that we should parametrize our
threat model with three radii: r0/ra which counts the num-
ber of added non-zeros, r1/rd which counts the number
of removed non-zeros, and r2/rc which counts how many
non-zeros changed to another non-zero value. We have:

Sr0,r1,r2(x) = {x̃ ∈ XK :

d∑
i=1

I(xi = 0)I(xi 6= x̃i) = r0,

d∑
i=1

I(x̃i = 0)I(xi 6= x̃i) = r1,

d∑
i=1

I(xi 6= 0)I(x̃i 6= 0)I(xi 6= x̃i) = r2}

Similarly, we define the respective ball Br0,r1,r2(x) by re-
placing equalities with inequalities.

We can directly verify that for the binary case (K = 2), r2
necessarily has to be equal to 0. We recover the definition of
our threat model for binary data. Moreover, all si’s, as well
as c0 = (K−2)·p+

K−1 and c1 = (K−2)·p−
K−1 also have to be zero.

In order to partition the entire space XK we have to generate
all unique (qj , pj , sj) triplets where qj+pj+sj = rj . There
are Tj = (rj + 1)(rj + 2)/2 unique (qj , pj , sj) triplets for
j = 0, 1, 2. Therefore, the total number of regions is upper
bounded by T0 · T1 · T2. Note that this is an upper bound
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Figure 14. Joint certificate for both graph and attributes on Cora-ML. We show all pairwise heatmaps, e.g. rAa = rFd = 0 and varying
rAd , r

A
a . The figure is symmetric w.r.t. the diagonal, which shows the certified ratio as we fix all radii except one to 0.

since the ratio in Eq. 11 is the same for certain combinations
of qj’s, pj’s, and sj’s, e.q. when q0 − p1 = 1− 3 = 2− 4
and similarly for p0 − q1, s0 − s1, and q2 − p2. In these
cases we can merge these regions into a single region.

The overall computation of the regions is efficient and it
consists of: (i) generating all unique (qj , pj , sj) triplets; (ii)
computing the ratio defined in Eq. 11; and (iii) computing
the probability for φ(x) to land in the respective region
using Eq. 12. Since the number of regions is small the over-
all runtime is less than a second. We provide a reference
implementation in Python with further details.

For the special case of p+ = p− we have that a0 = a1,
b0 = b1, and c0 = c1. Then the ratio in Eq. 11 simplifies to:

η =

(
a0
b1

)q0+q1+q2−p0−p1−p2
=

(
a0
b1

)q′−p′
(13)

where we set q′ = q0 + q1 + q2 and p′ = p0 + p1 + p2. This
directly implies that in this case we do not need to keep track
of the different (qj , pj , sj) triplets, but rather it is sufficient
to parametrize the region with two variables, namely q′ and
p′. The probability that φ(x) lands in the respectiveRq′,p′

region also simplifies (see Fig. 13):

Pr(φ(x) ∈ Rq′,p′) = Pr(u = [q′, p′, r − q′ − p′]) (14)

where u ∼ Mul([a0, b0, c0], r). Moreover, we have that
q′ ∈ {0, . . . , r0+r1+r2} = {0, . . . , r}, where ‖x−x̃‖0 =
r. Similarly, p′ ∈ {0, . . . , r}. It follows that (q′ − p′) ∈
{−r, . . . , r}, and thus there are only 2r + 1 regions in total.

N. Further Analysis of Joint Certificates
On Fig. 14 we show our method’s ability to certify robust-
ness against combined perturbations on the graph and the
attributes. The configuration of flip probabilities is the same
as in § 8.1. Specifically to show different aspects of the 4D
heatmap (certified ratio w.r.t. the 4 different radii) we plot all
pairwise heatmaps, e.g. rAa = rFd = 0 and varying rAd , r

A
a .

The figure is symmetric w.r.t. the diagonal, which shows
the certified ratio as we fix all radii except one to 0. Similar
to before we observe that we can certify more easily w.r.t.
ra compared to rd. Since we are perturbing both features
and structure at the same time we can obtain only modest
certified radii. We leave it for future work to design models
that are robust to such joint perturbations.


