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Abstract

We present a neural network architecture that
is fully equivariant with respect to transforma-
tions under the Lorentz group, a fundamental
symmetry of space and time in physics. The
architecture is based on the theory of the finite-
dimensional representations of the Lorentz group
and the equivariant nonlinearity involves the ten-
sor product. For classification tasks in particle
physics, we demonstrate that such an equivariant
architecture leads to drastically simpler models
that have relatively few learnable parameters and
are much more physically interpretable than lead-
ing approaches that use CNNs and point cloud
approaches. The competitive performance of the
network is demonstrated on a public classifica-
tion dataset (Kasieczka et al., 2019) for tagging
top quark decays given energy-momenta of jet
constituents produced in proton-proton collisions.

1. Introduction
The success of CNNs as a method of computer vision
has made clear the benefits of explicitly translationally
equivariant neural network architectures: there are far fewer
learnable parameters and these parameters are organized
into much more interpretable structures. The ability to
interpret convolutional kernels as images boosted our
understanding of why and how such networks operate
(Zeiler & Fergus, 2014).

However, there are many relevant problems that exhibit
much more complex symmetries than flat images. Such
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problems may require or benefit from latent space repre-
sentations that are intimately connected with the theory of
the specific underlying symmetry group. Indeed, these sym-
metries are manifest in the data itself, as each data point
is generated by a symmetric process or model. Following
this approach, elegant architectures can be advised based on
fundamental principles, and the “building blocks” of such ar-
chitectures are greatly restricted by the imposed symmetries.
This is a highly sought-after property in neural network de-
sign since it may improve generality, interpretability, and
uncertainty quantification, while simplifying the model.

These general ideas have already led to the development
of multiple equivariant architectures for sets (permutation
invariance) (Zaheer et al., 2017), graphs (graph isomor-
phisms), 3D data (spatial rotations) (Monti et al., 2017),
and homogeneous spaces of Lie groups such as the two-
dimensional sphere (Cohen et al., 2018). For more discus-
sion and references see Section 2.

Symmetries play a central role in any area of physics
(Frankel, 2004), and as such physics provides the widest
variety of symmetry groups relevant in computational prob-
lems. In particular, high energy and particle physics involve
symmetry groups ranging from U(1), SU(2) and SU(3) to
the Lorentz group SO(1, 3), and even more exotic ones like
E8. Architectures that respect these symmetries can pro-
vide more sensible and tractable models, whose parameters
may be directly interpreted in the context of known physical
models, as in the case of CNNs.

Harmonic analysis provides two parallel but theoretically
equivalent implementations of group equivariance in neural
networks. The first is a natural generalization of CNNs to ar-
bitrary Lie groups and their homogeneous spaces (Cohen &
Welling, 2016), where activations are functions on the group,
the nonlinearity is applied point-wise, and the convolution
is an integral over the group. The second approach works
entirely in the Fourier space (Thomas et al., 2018; Anderson
et al., 2019), that is, on the set of irreducible representations
of the group. It is the latter approach that we adopt in this
work due to its direct applicability to vector inputs.

These approaches are general, but here we present the first
specific application of a group equivariant architecture in
physics. We focus on a particle physics application where
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the data typically contain the energy-momentum 4-vectors
of particles produced in collision events at high energy par-
ticle accelerators such as the Large Hadron Collider (LHC)
at CERN in Geneva, Switzerland, or by simulation software
used to model the collision events. Probing elementary par-
ticle collisions at high energies is one of the best approaches
to discover new small-scale fundamental phenomena, such
as the discovery of Higgs boson at the LHC in 2012 (ATLAS
Collaboration, 2012; CMS Collaboration, 2012). There the
collisions occur 40 million times per second (40 MHz) be-
tween clouds of protons traveling at nearly the speed of
light. Within each proton-proton bunch collision an average
of O(30) individual pairs of protons collide and produce
sprays of outgoing particles that are measured by complex
detection systems. These detectors – such as the general-
purpose ATLAS (ATLAS Collaboration, 2008) and CMS
(CMS Collaboration, 2008) detectors – have O(100M) in-
dividual sensors that record combinations of positions, tra-
jectories, momenta, and energies of outgoing particles. The
data obtained from these detectors must therefore be both
filtered and processed by automated on-line systems.

The energy-momentum vector of a particle depends on the
inertial frame of the observer, and the transformations be-
tween these frames are described by the Lorentz group
O(1, 3). In addition to regular spatial rotations it contains the
so-called Lorentz boosts, which make the Lorentz group non-
compact. The architecture presented below avoids computa-
tional difficulties associated with the non-compactness of
the group by working entirely within its finite-dimensional
representations. This choice is not only computationally
efficient, but also physically sensible.

2. Related Work
There is a large body of work on equivariance in machine
learning. Here we mention a few notable publications most
closely related to the methods of our work. Equivariance
in neural networks was first examined in applications
involving finite groups, such as graph isomorphisms (Bruna
et al., 2014; Henaff et al., 2015) and permutations (Zaheer
et al., 2017). A general approach to group-convolutional
neural networks was proposed in (Cohen & Welling, 2016).
Equivariant networks with respect to spacial translations
and rotations were developed in (Worrall et al., 2017).
For rotational symmetries of the 2-dimensional sphere,
the importance of the Fourier space spanned by spherical
harmonics was realized in (Cohen et al., 2018; Esteves
et al., 2018). In (Weiler et al., 2018) this approach was
extended to the entire Euclidean group SE(3). A complete
description of equivariant networks for scalar fields on
homogeneous spaces of compact Lie groups was given
in (Kondor & Trivedi, 2018). It was later generalized to
general gauge fields in (Cohen et al., 2019a;b).

The parallel approach, where even the nonlinear operations
are performed equivariantly in the Fourier space of SO(3),
was independently proposed in (Thomas et al., 2018) and
(Kondor, 2018). Successful applications of these ideas in
computer vision and chemistry were demonstrated in (Kon-
dor et al., 2018; Anderson et al., 2019). While the use of
Lorentz-invariant quantities and Lorentz transformations
in networks has been demonstrated in (Butter et al., 2018;
Erdmann et al., 2019), our work provides the first equiv-
ariant neural network architecture for fundamental physics
applications.

3. Theory of the Lorentz group
Lorentz transformations Particles moving in laborato-
ries at velocities approaching the speed of light are described
by the theory of special relativity. Its mathematical formu-
lation is based on the postulate that space and time are
unified into the 4-dimensional spacetime, and the Euclidean
dot product of vectors is replaced by the Minkowski, or
Lorentzian, metric. In the standard Cartesian basis, this
metric has the diagonal form diag(1,−1,−1,−1):

(t, x, y, z) · (t ′, x ′, y′, z′) = tt ′−xx ′−yy′−zz′ = ηµν xµx ′ν

(here we set the speed of light equal to one and use the Ein-
stein summation convention for repeated indices). Similarly,
the energy and momentum of a particle are combined into
the energy-momentum 4-vector whose square is also the
mass squared of the particle:

(E, px, py, pz)2 = E2 − p2
x − p2

y − p2
z = m2.

An inertial frame in this spacetime is a choice of an orthonor-
mal basis {e0, e1, e2, e3}, i.e. ea · eb = ηab, a, b = 0, . . . , 3.
The components of the metric are the same in any such
frame. The Lorentz group is defined as the group of linear
isomorphisms Λµν of the spacetime that map inertial frames
to inertial frames, or equivalently, preserve the metric:

Λ
λ
µηλρΛ

ρ
ν = ηµν .

This group is denoted by O(1, 3) and consists of 4 connected
components distinguished by orientations of space and time.

Often one further requires inertial frames to be positively
oriented and positively time-oriented. That is, all orthonor-
mal bases are similarly oriented and the timelike basis vec-
tor in each of them (e0) belongs to the future light cone
(i.e. its temporal component is positive). Restricting Lorentz
transformations to only such frames (which amounts to re-
quiring detΛ = 1 and Λ0

0 > 0), one obtains the proper
orthochronous Lorentz group SO+(1, 3), which is the con-
nected component of the identity in O(1, 3). From here on in
this text, this is the group we will call the “Lorentz group”.
The basic principle of special relativity is that all laws of
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physics appear equivalent to observers in all inertial frames.
This makes the Lorentz group the fundamental symmetry in
relativistic physics.

The group SO(3) of spatial rotations (acting on x, y, z in a
chosen inertial frame) is a subgroup of the Lorentz group. In
addition to these rotations, it contains the so-called Lorentz
boosts which transform between inertial frames of observers
moving relative to each other at a relative velocity β = v/c
(in units of the speed of light c). Namely, given two inertial
frames {ei}3i=0 and {e′i}3i=0, the relative velocity vector β
and the boost factor γ are defined by e′0 = γe0+

∑3
i=1 γβiei .

Since e′0 has unit norm, the boost factor is related to β by
γ = (1− β2)−1/2. Now, if one rotates the spatial axes so that
β = (β, 0, 0) then the Lorentz transformation between these
two frames is the matrix

©­­­«
γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

ª®®®¬ .
In the limit of speeds much lower than the speed of light,
β→ 0, γ → 1, and this matrix becomes the identity matrix,
returning us to Galilean mechanics. Therefore the appear-
ance of the boost factor γ is a signature of relativistic physics.
Lorentz boosts are sometimes called “hyperbolic rotations”
because their components can be expressed as γ = coshα
and γβ = sinhα in terms of a rapidity α. However, note
that Lorentz boosts with more than one spatial dimension
do not form a subgroup.

Representations Recall that a finite-dimensional repre-
sentation of a Lie group G is a finite-dimensional vector
space V with an action of the group via invertible matrices,
that is, a smooth homomorphism ρ : G→ GL(V) (for some
introductions to representations see (Barut & Rączka, 1977;
Hall, 2015), or (Diaconis, 1988) for a more applied focus).
All activations in our neural network will belong to vari-
ous finite-dimensional representations of the Lorentz group.
Importantly, such representations are completely reducible,
which means that they are isomorphic to direct sums of
irreducible representations (the isomorphism may not be
unique). An irreducible representation (“irrep”) is one with-
out any invariant subspaces, i.e. subspaces W ⊂ V such that
ρ(g) · w ∈ W for all g ∈ G and w ∈ W . Writing the decom-
position of V as V �

⊕
α R⊕ταα , where Rα’s for different α

are non-isomorphic irreps of G, we call τα the multiplicity
of Rα in V . Written in terms of the subspaces Vα � R⊕ταα ,
this decomposition V =

⊕
α Vα is called the isotypic de-

composition of V . Complete reducibility provides a natural
basis for storing arbitrary representation vectors, therefore
we will now review the classification of finite-dimensional
irreps of SO+(1, 3).
The representation theory of the Lorentz group becomes

slightly simpler if we pass to its universal covering group.
For SO(3) the universal covering group is SU(2), also
known as the 3-dimensional spin group, and for SO+(1, 3),
which is isomorphic to the projective special linear group
PSL(2,C), it is SL(2,C). Both of these are double cov-
ers, i.e. we have SO(3) � SU(2)/{±I} and SO+(1, 3) �
SL(2,C)/{±I}. Each irrep of the original group can be
extended to an irrep of its double cover, but the double
cover generally has more irreps (Gelfand et al., 1963). In
physics, the extra “double-valued” irreps obtained by pass-
ing to the double cover are called spinor representations.
Since SL(2,C) is the complex form of SU(2), the finite-
dimensional representations of these two groups are very
closely related. These labels of the irreps are also known
as highest weights in representation theory. The irreps of
SU(2) are indexed by the half-integer l ∈ N/2 known as
spin in physics. We will denote these (2l + 1)-dimensional
irreps by Rl . Only the integer-spin Rl’s descend to irreps of
SO(3).
The finite-dimensional irreps of the Lorentz group, or
more generally the real irreps of its double cover SL(2,C),
are up to isomorphisms exactly the tensor products of
representations of SU(2):

T (k,n) = T (k,0) ⊗ T (0,n) B Rk/2 ⊗ R̄n/2,

where k, n are non-negative integers and the bar over Rn/2

indicates that this factor is acted upon by SL(2,C) via the
conjugated representation (explicitly shown below). The
dimensions of these spaces are dim T (k,n) = (k + 1)(n + 1).
The irreps of the Lorentz group are those T (k,n) for which
k + n is even.

Recall that the action of SU(2) on its spin l irrep is realized
by the Wigner D-matrices Dl(g), g ∈ SU(2). Due to the re-
lation between SL(2,C) and SU(2), it is easy to parametrize
the group elements using Euler angles. Introduce

α = ϕ + iκ, β = θ + iε, γ = ψ + i<,
ϕ ∈ [0, 2π), θ ∈ [0, π], ψ ∈ [0, 2π), κ, ε, < ∈ R

(β and γ should not be confused with the velocity and boost
factors from special relativity). These variables provide non-
degenerate coordinates on SL(2,C), identifying it with the
space S3 × R3. Any unimodular matrix a ∈ SL(2,C) can be
factorized as

a(α, β, γ) =(
eiα/2 0

0 e−iα/2

) (
cos β

2 i sin β
2

i sin β
2 cos β

2

) (
eiγ/2 0

0 e−iγ/2

)
,

which is the complexification of the Euler factorization.
Real angles parametrize the SU(2) subgroup, whereas the
imaginary parts are essentially the rapidities parametrizing
Lorentz boosts. This formula also expresses the so called
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fundamental, or defining, representation of SL(2,C) acting
on T (1,0) � C2.

Furthermore, it is clear that the action of SL(2,C) on the
irrep T (k,0) is given exactly by the analytically continued
Wigner D-matrix of SU(2) spin k/2. Similarly, the action
on T (0,n) is given by the conjugate representation of spin
n/2. The conjugate representation of SL(2,C) of spin 1/2
(the conjugate fundamental one) is given by a 7→ ε a ε−1

where ε is the 2D Levi-Civita tensor. It is easy to check that

ε a(α, β, γ) ε−1 = a(−α, β,−γ)
(here the bar denotes complex conjugation). Combining
these, we see that the action on T (k,n) corresponds to the
tensor product of two Wigner D-matrices:

Dk/2(α, β, γ) ⊗ Dn/2(−α, β,−γ).
For instance, on the fundamental representation of
SO+(1, 3), for which k=n=1, these matrices are exactly the
4 × 4 Lorentz transformations (the defining representation
of SO+(1, 3)).

4. Principles of Equivariant Networks
Equivariant Universal Approximation Given two rep-
resentations (V, ρ) and (V ′, ρ′) of a group G, a map F :
V → V ′ is called equivariant if it intertwines the two repre-
sentations, that is:

F(ρ(g) · v) = ρ′(g) · F(v), v ∈ V, g ∈ G.

Our goal is to design an architecture that can learn arbi-
trary equivariant maps between finite-dimensional represen-
tations of the Lorentz group. Even though the application
described below requires only invariant outputs, the general
way to achieve this is with an internally equivariant structure.
First and foremost, this means having activations that are
elements of linear representations of the group.

It was shown in (Yarotsky, 2018) that an arbitrary equivari-
ant map between two completely reducible representations
can be approximated by linear combinations of copies of a
non-polynomial function σ applied to linear functions of G-
invariants, with coefficients from a basis of G-equivariants
(see Supplementary Material Section 4 for more details). Im-
portantly, these polynomial invariants and equivariants are
multiplicatively generated by a finite basis. This approxima-
tion theorem reduces our task to generating arbitrary poly-
nomial invariants and equivariants for finite-dimensional
representations of SL(2,C). In the Supplementary Material
we show an extended version of the G-equivariant universal
approximation theorem from (Yarotsky, 2018), which we
paraphrase in simple terms here.

Theorem 4.1. Given two completely reducible finite-
dimensional representations V and U of a Lie group G,

which can be SU(2), SO(3), SL(2,C), or SO+(1, 3), any
equivariant map f̃ : V → U (including invariant maps
for which U � R) can be approximated by a feed-forward
neural network with vector activations belonging to finite-
dimensional representations of G that can iteratively per-
form the following operations:

1. Take tensor products of elements of representations of
G;

2. Decompose tensor representations into isotypic com-
ponents using the Clebsch-Gordan decomposition;

3. Apply equivariant linear maps between representations
of G (as detailed in Section 4), including projections
onto specific isotypic components;

4. Apply arbitrary sub-networks (such as multilayer per-
ceptrons) to any G-invariants appearing after any of
the above operations.

Note that this theorem is a “Fourier space” statement (i.e. re-
garding networks based on irreps) extending the “real-space”
characterization theorem proven in (Kondor & Trivedi,
2018).

Equivariant Linear Maps Now that we have established
that tensor products are sufficient as the equivariant nonlin-
earity, we need to specify the form of equivariant learnable
linear operations. Given a completely reducible represen-
tation V of G, we first find a linear isomorphism on V that
represents it as a direct sum of its isotypic components:
V =

⊕
α Vα (the sum is taken over the labels α of all finite-

dimensional irreps). Typically for us this isomorphism will
be given by a Clebsch-Gordan operator. Each component Vα
is itself isomorphic to a direct sum of zero or more copies
of an irrep Rα: Vα = R⊕ταα . We call τα the multiplicity of
the irrep Rα in V . Now suppose the target representation
can be similarly decomposed as U =

⊕
α R⊕τ

′
α

α . Then, as
was proven in (Kondor & Trivedi, 2018) by an extension of
Schur’s Lemma, all linear equivariant maps W : V → U are
parametrized by a collection of τ′α × τα matrices

Wα ∈ Mat(τ′α, τα),

each of which acts on the list of irreducible components
within an isotypic component Vα. This characterization
(but not Wα’s themselves) is independent of the choice of
decompositions of the Vα’s into irreducible components.

As demonstrated in (Cohen & Welling, 2016), the restric-
tion to equivariant linear layers, compared to a general fully
connected linear layer, leads to significantly fewer learnable
parameters (depending on the representations at hand). Per-
haps most importantly, the loss function itself is G-invariant.
This means that if we transform the training samples (xi, yi)
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by group elements gi ∈ G, the trained weights W of an
equivariant network will remain the same. In this sense,
the weights are G-invariant, which makes them potentially
interpretable as physical quantities.

Particle Interactions. As an elementary example of learn-
able Lorentz-invariant quantities in particle physics, the
electron-muon scattering matrix element for initial and fi-
nal 4-momenta p1, p3 of the electron, and initial and final
4-momenta p2, p4 of the muon, is given by

M2 ∝
g4
c

[
p1 · p3 + m2

e

] [
p2 · p4 + m2

µ

]
((p1 − p3)2 − m2

γ)2
.

Here the dot products are taken with respect to the
Minkowski metric, m2

e = p2
1 and m2

µ = p2
2 are the masses,

and gc is an interaction strength parameter. Dot products are
the invariant parts in the isotypic decompositions of tensor
products of two 4-vectors, therefore a quantity of this kind
can be very efficiently learned by an equivariant network
if physically appropriate nonlinear activation functions are
chosen. More complicated processes would involve higher
nonlinearities like (pµ1 pν2−p1 ·p2η

µν)2, which require several
tensor products to be generated.

When a particle decay event produces hundreds of observed
particles, generating all relevant Lorentz invariants (and
even more so equivariants) up to a fixed polynomial degree
quickly becomes an intimidating task that begs for a proce-
dural solution. This is exactly the goal of our architecture.

5. Clebsch-Gordan product
The main nonlinearity in our equivariant architecture
is the tensor product followed by a decomposition into
irreducibles. This decomposition is known as the Clebsch-
Gordan (CG) decomposition, and its coefficients in a certain
canonical basis are called CG coefficients. We introduce
the notation for the coefficients and a final formula for the
CG coefficients of the Lorentz group here, but leave the
details and derivations to the Supplementary Material. A
reference for this material as regards SU(2) and the Lorentz
group is (Gelfand et al., 1963).

Rotation group Let Rl1 and Rl2 be irreps of SU(2) of
half-integer weights (spins) l1 and l2, respectively. Their
product Rl1 ⊗ Rl2 decomposes via an isomorphism into a
direct sum

⊕
l R̃l , where R̃l are also copies of irreps of

SU(2) and l ranges from |l1 − l2 | to l1 + l2 with unit step.
This isomorphism is called the Clebsch-Gordan map

B :
l1+l2⊕

l= |l1−l2 |
R̃l → Rl1 ⊗ Rl2 .

Since SU(2) is compact, its finite-dimensional represen-
tations can be assumed to be unitary with respect to the

Euclidean norms on Cn (the resulting representation matri-
ces are called Wigner D-matrices), therefore we can always
choose B so that it is orthogonal.

For an arbitrary representation of SU(2)we define the canon-
ical basis in it by el,m where l ranges over the weights of
the irreps contained in the representation, and for each l, the
index m ranges over −l,−l + 1, . . . , l. Therefore the prod-
uct space Rl1 ⊗ Rl2 has a basis induced from the respective
canonical bases of the factors,

el1,m1 ⊗ el2,m2, m1 = −l1, . . . , l1, m2 = −l2, . . . , l2,

and the space
⊕

l R̃l naturally has the canonical basis

ẽl,m, l = |l1 − l2 |, . . . , l1 + l2, m = −l, . . . , l .

The CG coefficients Bl1,m1;l2,m2
l,m

are defined as the compo-
nents of the CG map in these two bases:

B : ẽl,m 7→
∑
m1,m2

Bl1,m1;l2,m2
l,m

el1,m1 ⊗ el2,m2 .

The summation is taken over all free indices occurring twice
(and we will often omit mentioning them) over the ranges
|m1 | 6 l1, |m2 | 6 l2, however Bl1,m1;l2,m2

l,m
vanishes whenever

m1 + m2 , m (see e.g. (Vilenkin & Klimyk, 1995, Ch. 4)
for more on representation theory and CG coefficients of
some classical groups).

Lorentz group The proper orthochronous Lorentz group
SO(1, 3)+ is isomorphic to the projective special complex
linear group PSL(2,C). The Clebsch-Gordan map in this
case is the isomorphism

H :
⊕
k,n

T̃ (k,n) → T (k1,n1) ⊗ T (k2,n2),

where the sum on the left is over

k = |k1 − k2 |, |k1 − k2 | + 2, . . . , k1 + k2,

n = |n1 − n2 |, |n1 − n2 | + 2, . . . , n1 + n2.

When an irrep T (k,n) of SL(2,C) is viewed as a representa-
tion of its subgroup SU(2), it decomposes into the direct sum
of irreps (with unit multiplicities) T (k,n) �

⊕(k+n)/2
l= |k−n |/2 Rl .

This way, T (k,n) admits a canonical basis

e(k,n)
l,m

, l = |k − n|/2, . . . , (k + n)/2; m = −l, . . . ,m.

In this basis, we define the CG coefficients for the Lorentz
group by

H : ẽ(k,n)
l,m
7→

∑
H(k1,n1),l1,m1;(k2,n2),l2,m2
(k,n),l,m e(k1,n1)

l1,m1
⊗ e(k2,n2)

l2,m2
.
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In
...

Out

Figure 1. An elementary flow chart of LGN with Lorentz-invariant outputs. Win is the linear input layer. It is followed by iterated CG
layers LCG defined in (2) alternated with perceptrons MLPinv acting only on Lorentz invariants. The output layer projects onto invariants
using Pinv, sums over particles for permutation invariance, and applies a linear layer. Win, MLPinv and Pinv act on each particle separately,
but have the same values of parameters across all particles.

The CG coefficients can be expressed in terms of the well
known coefficients for SU(2) introduced above:

H(k1,n1),l1,m1;(k2,n2),l2,m2
(k,n),l,m =

∑
m′1,m

′
2

B
k
2 ,m

′
1+m

′
2; n2 ,m−m′1−m′2

l,m
B

k1
2 ,m

′
1; k2

2 ,m
′
2

k
2 ,m

′
1+m

′
2

B
n1
2 ,m1−m′1; n2

2 ,m2−m′2
n
2 ,m−m′1−m′2

×

× B
k1
2 ,m

′
1; n1

2 ,m1−m′1
l1,m1

B
k2
2 ,m

′
2; n2

2 ,m2−m′2
l2,m2

, (1)

where the sum is taken over the following range of indices:

− k
2
6 m′1 + m′2 6

k
2
, m − n

2
6 m′1 + m′2 6 m +

n
2
,

|m′1 | 6
k1
2
, m1 −

n1
2
6 m′1 6

n1
2
+ m1,

|m′2 | 6
k2
2
, m2 −

n2
2
6 m′2 6

n2
2
+ m2.

As always, the CG coefficients vanish when m1 + m2 , m.
We provide more details on the derivation and computational
implementation of this important formula in the Supplemen-
tary Material.

6. Equivariant Architecture (LGN)
We now describe the specific architecture that we applied
to the problem outlined in Section 7. We call it the Lorentz
Group Network (LGN).

Permutation Invariance Since the physics is indepen-
dent of the labeling we put on the observed particles, the
output of the network must also be invariant with respect
to the permutations of the inputs. For our architecture this
means that all learnable weights must be independent of the
index of the input, and the simplest way to achieve it is with
sums over that index at appropriate stages in the network.
These sums are a key part of the architecture described here.

Input layer The inputs into the network are 4-momenta of
Nobj particles from a collision event, and may include scalars
associated with them (such as label, charge, spin, etc.). That

is, the input is a set of vectors living in a
(
T (0,0)

) ⊕τ0 ⊕ T (1,1)

representation of the Lorentz group. Here, τ0 is the number
of input scalars. In this case, τ0 = 2 and the corresponding

scalars are the mass of the particle and a label distinguishing
observed decay products from the collider beams.

The input layer is simply a fully-connected linear layer act-
ing on the inputs and producing N (0)ch (number of “channels”
at layer 0) vectors in each irreducible component. This layer
acts on each input separately but the weights are shared
between them to enforce permutation invariance.

CG Layers At the end of the input layer, we have
Nobj activations F (0)i , i = 1, . . . , Nobj, living in(
T (0,0) ⊕ T (1,1)

)
⊕N (0)ch . We then apply a CG layer, iterated

NCG times, that performs tensor products, Clebsch-Gordan
decompositions, and a learnable linear operation.

Assume that at the start of the p-th CG layer (starting with
p = 0) we have Nobj activations F (p)i living in some rep-
resentations of the Lorentz group (in fact our architecture
guarantees that the representation is independent of i). The
CG layer updates these activations F (p)i 7→ F (p+1)

i accord-
ing to the update rule

F (p+1)
i = LCG

(
F (p)

)
i
= W ·

(
F (p)i ⊕ CG

[
F (p)i

] ⊗2
⊕

⊕CG

[∑
j

f (p2
i j)pi j ⊗ F (p)j

])
. (2)

The Clebsch-Gordan operator CG follows every tensor prod-
uct, and we are able to keep only the first few isotypic
components to control memory usage. The last term mod-
els two-particle interactions via the pair-wise differences
pi j = pi − pj while ensuring permutation invariance. The
scalar coefficients f (p2

i j) in this sum involve a function
f : R→ R with some learnable parameters, which weights
the interactions of the i’th particle with other particles. The
second term models a self-interaction of the i’th particle,
and the first term simply stores the activation from the pre-
vious layer. W (also independent of i to ensure permutation
invariance) is the equivariant learnable operator described
earlier, and it mixes each isotypic component to a specified
number N (p+1)

ch of channels. This choice controls the size of
resulting vectors without breaking permutation invariance
or Lorentz equivariance. To minimize computations, tensor
products are performed channel-wise, which doesn’t affect
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expressive ability due to the presence of learnable linear
operators mixing the channels.

MLP Layers Since Lorentz invariants can be freely trans-
formed by arbitrary nonlinear functions without fear of
breaking Lorentz symmetry, we can use traditional scalar
neural networks each time any invariants are generated in
our equivariant network. Namely, at the end of each CG

layer we apply a multilayer perceptron to the
(
T (0,0)

) ⊕Nch
(p)

isotypic component. It takes N (p)ch scalar inputs and pro-
duces the same number of outputs. The parameters of this
perceptron are shared across all Nobj nodes in the CG layer.
Adding these layers ensures that the layers of the network
are non-polynomial.

Output Layer For permutation invariance, the output
layer must take an arithmetic sum of the Nobj activations pro-
duced after the last CG layer. For a classification task, we
are only interested in Lorentz-invariant outputs, therefore
the output layer extracts the invariant isotypic component
of this sum, and applies a final fully connected linear layer
Wout to the N (NCG)

ch scalars, producing 2 scalar weights for
binary classification:

®wout = Wout ·
(∑

i

F (NCG)
i

)
(0,0)

,

where ()(0,0) denotes a projection onto the spin-0 isotypic
component (i.e. Lorentz invariants).

7. Experiments
We have tested the covariant LGN architecture on the prob-
lem of top tagging. This is a classification task that aims
to identify top quark “jets” among a background of lighter
quarks. Since the classification task is independent of the
inertial frame of the observer, the outputs of the classifier
should be Lorentz invariants.

Jets As explained in (Salam, 2010), high energy quarks
produced in particle collisions lose energy through a cascad-
ing gluon emission process – a so-called parton shower –
due to the structure of Quantum Chromodynamics (QCD),
and eventually form stable hadrons that may be detected
and measured. The lab frame in which those measure-
ments are made may significantly differ from the parent
quark’s center-of-mass frame due to a Lorentz boost. In
such a Lorentz-boosted lab frame, the parton shower pro-
cess forms a collimated spray of energetic hadrons, depicted
in 2, known as a jet. The jet 4-vector is related to that of its
parent quark, as is the spatial and kinematic structure of the
particles contained within the jet. A crucial task in collider
physics is discerning the species of quark that has given

rise to a particular jet. Approaches to this task involve the
use of theory-inspired analytic observables, feed-forward
neural networks, CNNs, recurrent neural networks, point
clouds, and more. For a recent and comprehensive review,
see (Larkoski et al., 2017).

pµ
π+−

pµ
K+−

pµ
K+−

pµ
π+−

pµ
π0

Figure 2. An example jet – as shown, different jet parameters (such
as radius) may result in different clustering.

Dataset We perform top tagging classification experi-
ments using the LGN architecture and the publicly available
reference dataset (Kasieczka et al., 2019). This dataset con-
tains 1.2M training entries, 400k validation entries and 400k
testing entries. Each of these entries represents a single jet
whose origin is either an energetic top quark, or a light quark
or gluon. The events were produced with center-of-mass
energy

√
s = 14 TeV, using the PYTHIA Monte Carlo event

generator (SjÃűstrand et al., 2015). The ATLAS detector re-
sponse was modeled with the DELPHES software package
(de Favereau et al., 2014).

The jets in the reference dataset are clustered using the anti-
kt algorithm (Cacciari et al., 2008), with a radius of R = 1,
where R is measured in (η, φ) coordinates. For each jet, the
energy-momentum 4-vectors are saved in Cartesian coor-
dinates (E, px, py, pz) for up to 200 constituent particles se-

lected by the highest transverse momentum pT =
√

p2
x + p2

y ,
where the colliding particle beams are aligned along the
z-axis. Each jet contains an average of 50 particles, and
events with less than 200 are zero-padded.

The 4-momenta in the dataset are all scaled by a uniform
factor at the input to the network to avoid overflows and
losses. As an extra pre-processing step, we add the proton
beams to the list of particles as two 4-momenta of the form
(2, 0, 0,±1)GeV1. The purpose of this is to fix an axis in
each sample event, thus establishing a symmetry-breaking
relationship between different samples. The energy (chosen
to be 2 GeV) of these beams is somewhat arbitrary. Since
these beams are distinct from the actual decay products in
the dataset, we add a label to each particle, equal to +1 for
the proton beams and −1 for all other particles. These labels
are treated as Lorentz scalars.

1Special thanks to Jesse Thaler for this suggestion.
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Hyperparameters For training, we performed a manual
grid search. The main parameters are the number of CG
layers, the highest irrep kept after each tensor product, and
the numbers of channels. For top tagging, we found it
sufficient to keep T (k,n) with k, n 6 2, which means that the
highest irrep is the 9-dimensional T (2,2) and the remaining
irreps are T (0,0), T (2,0), T (0,2), and T (1,1). There were 3 CG
layers, and the numbers of channels were chosen as N (0)ch = 2,
N (1)ch = 3, N (2)ch = 4, N (3)ch = 3. The internals of the network
are based on complex arithmetic, so these numbers should
be doubled to count the number of real components.

The MLP layer after the p-th CG layer had 3 hidden layers
of width 2N (p)ch each and used the “leaky ReLU” activation
function. The scalar function f in 2 was a learnable linear
combination of 10 basis “Lorentzian bell”-shaped curves
a+1/(1+c2x2)with learnable parameters a, b, c (each taking
10 values). The input 4-momenta were scaled by a factor of
0.005 to ensure that the mean values of the components of
all activations would be order 1.

All weights were initialized from the standard Gaussian
distribution. To ensure that activations stay of order one
on average, the weights W were scaled down by a factor
N (p)ch /τ(k,n), where τ(k,n) is the multiplicity of the T (k,n) irrep
in the input to W . This ensures that W does not distort the
values of the activations in higher irreps by orders of magni-
tude, making the contributions of various irreps unbalanced.

Performance and Cost The architecture was coded up
using PyTorch and trained on two clusters with GeForce
RTX 2080 GPU’s. Each training session used one GPU and
with the hyperparameters listed above it used about 3700MB
of GPU memory with a mini-batch size of 8 samples. The
wallclock time was about 7.5 hours per epoch, and our
models were trained for 53 epochs each.

We compare the performance of our network to some of the
other competitors (for a review see (Butter et al., 2019)).
For each of these binary classifiers, we report four charac-
teristics: the accuracy, the Area Under the Curve (AUC)
score, the background rejection 1/εB at the signal efficiency
of εS = 0.3 (εB, εS are also known as the false positive
and the true positive rates, respectively), and the number
of trainable parameters. Higher accuracy, AUC and 1/εB
are considered better. The mean and standard deviation in
these metrics for LGN are reported based on 4 independent
trained instances of the model.

The references for the algorithms listed here are: ParticleNet
(Qu & Gouskos, 2020), P-CNN (CMS Collaboration, 2017),
ResNeXt (Xie et al., 2017), EFP (Komiske et al., 2018),
EFN and PFN (Komiske et al., 2019), TopoDNN (Pearkes
et al., 2017). We should highlight EFP which constructs a
special linear basis of polynomial observables that satisfy

Table 1. Performance comparison between LGN and other top tag-
gers that were measured in (Butter et al., 2019). Each performance
metric is an average over an ensemble of networks, with the uncer-
tainty given by the standard deviation.

Architecture Accuracy AUC 1/εB #Param

ParticleNet 0.938 0.985 1298 ± 46 498k
P-CNN 0.930 0.980 732 ± 24 348k
ResNeXt 0.936 0.984 1122 ± 47 1.46M
EFP 0.932 0.980 384 1k
EFN 0.927 0.979 633 ± 31 82k
PFN 0.932 0.982 891 ± 18 82k
TopoDNN 0.916 0.972 295 ± 5 59k

LGN 0.929 0.964 435 ± 95 4.5k
± .001 ± 0.018

the so-called IRC-safety requirement in particle physics,
and EFN which extends this idea to deep neural networks.

While our results do not match the state of the art, our model
uses between 10 − 1000× fewer parameters. More analysis
of training and performance is provided in the Supplemen-
tary Material.

Figure 3. A comparison of an averaged ROC for LGN, against a
sample of other top taggers. Higher is considered better. The ROC
for LGN was sampled over the 4 trained instances of the model,
with the error band width given by the standard deviation.

8. Conclusion
We have developed and successfully applied a Lorentz-
equivariant architecture for a classification task in parti-
cle physics, top tagging. We believe this is the first ap-
plication of a fully Fourier space equivariant architecture
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in physics, following an chemistry application in (Ander-
son et al., 2019), and an important early step in building
a family of physics-informed machine learning algorithms
based on group theory. Symmetries have always been a
central part of model-building in physics, and this work
only further demonstrates the sharp need for symmetry- and
geometry-based approaches to machine learning for scien-
tific applications.

The performance of our neural network shines especially in
terms of the number of learnable parameters. The trade-off
is that an equivariant architecture takes more time to develop
and its evaluation is more computationally intensive. How-
ever, once developed for a specific symmetry group, such
as the Lorentz group or SL(2,C) in our case, it is broadly
applicable to many problems with the same symmetry at a
very low development cost.

This network allows for many promising extensions in the
context of particle physics. Future work will explore ad-
ditional particle information such as charge and spin. The
parameters of the model, which are Lorentz-invariant by
construction, should be interpreted as physical quantities
describing the particle decays. Permutation invariance can
be further extended to permutation covariance. Another
exciting problem is applying the network to regression tasks
such as measuring masses of particles, or even 4-momenta.
Finally, one could combine multiple symmetries such as the
symmetry group of the Standard Model of physics (which
includes U(1), SU(2) and SU(3)).
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