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1. Clebsch-Gordan (CG) coefficients
Here we provide further details on the Clebsch-Gordan de-
compositions for SU(2) and SL(2,C) and their computer
implementation. A good reference for this material is the
book by Gelfand et al. (1963), however that book contains
some errors that lead to an incorrect expression for the CG
coefficients of the Lorentz group. Since we are not aware
of a reference with the correct formulas, we re-derive them
here.

We first make a note about the inverse CG mapping for
SU(2). By orthogonality of the CG mapping, we have its
inverse

B−1 = BT : Rl1 ⊗ Rl2 →
l1+l2⊕

l= |l1−l2 |
R̃l,

so its components, defined by the formula

el1,m1 ⊗ el2,m2 =
∑
(B−1)l,m

l1,m1;l2,m2
ẽl,m,

are given by

(B−1)l,m
l1,m1;l2,m2

= Bl1,m1;l2,m2
l,m

.

Thus the inverse transformation of the components of vec-
tors (which is the one we actually need in the network)
reads

ṽl,m =
∑

Bl1,m1;l2,m2
l,m

vl1,m1;l2,m2 .

This replaces the incorrect formula obtained in (Gelfand
et al., 1963, I.§10.4 (p. 152)), which also propagated into
their derivation for the Lorentz group. Now, following the
derivation in (Gelfand et al., 1963, II.§6.2) with the help of
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the corrected formula (1), we find the formula presented in
the body of this paper:

H(k1,n1),l1,m1;(k2,n2),l2,m2
(k,n),l,m =

∑
m′1,m

′
2

B
k
2 ,m

′
1+m

′
2; n2 ,m−m′1−m

′
2

l,m
B

k1
2 ,m

′
1; k2

2 ,m
′
2

k
2 ,m

′
1+m

′
2

B
n1
2 ,m1−m′1; n2

2 ,m2−m′2
n
2 ,m−m′1−m

′
2

×

× B
k1
2 ,m

′
1; n1

2 ,m1−m′1
l1,m1

B
k2
2 ,m

′
2; n2

2 ,m2−m′2
l2,m2

.

For computational purposes, it is convenient to store an ele-
ment v(k,n) of an irrep T (k,n) as a single column-vector with
the combined index M = (l,m) where l = |k−n |

2 , . . . , k+n2
with indices sorted over l first and over m last. We can thus
work with vectors

v ∈ T (k,n) has components vM, M = 1, . . . , (k+1)(n+1).

Similarly, the CG matrix corresponding to the (k, n) sector
of the (k1, n1) ⊗ (k2, n2) product is a rectangular matrix of
size (k1 + 1)(n1 + 1)(k2 + 1)(n2 + 1) × (k + 1)(n + 1) which
can be stored as a rank 3 tensor of size (k1 + 1)(n1 + 1) ×
(k2 + 1)(n2 + 1) × (k + 1)(n + 1):

(k1,n1),(k2,n2)
(k,n)H : T (k,n) → T (k1,n1) ⊗ T (k2,n2)

Components of H :
(
(k1,n1),(k2,n2)

(k,n)H
)M1,M2

M
.

2. Lorentz D-matrices
As was described in the paper, the irreps of SL(2,C) can be
constructed as tensor products of pairs of irreps of SU(2),
that is, of pairs of Wigner-D matrices:

Dk/2(α, β, γ) ⊗ Dn/2(−α, β,−γ).

However, as written these matrices act on the space T (k,0) ⊗
T (0,n) and not T (k,n). Since we actually want to represent
these matrices in the canonical basis of the T (k,n) irrep, we
need to conjugate the tensor product with a matrix of CG
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coefficients:

D(k,n)(α, β, γ) =
(
(k,0),(0,n)

(k,n)H
)T
·

·
(
Dk/2(α, β, γ) ⊗ Dn/2(−α, β,−γ)

)
·

·
(
(k,0),(0,n)

(k,n)H
)
.

We are not aware of a conventional name for these matrices,
so for lack of a better term we call them the Lorentz D-
matrices. On T (1,1) � R4, these are the familiar 4×4 Lorentz
matrices, i.e. the standard representation of SO+(1, 3).

In our network, these matrices are used only to test Lorentz
equivariance, but they can also be key elements of other
similar architectures.

3. Orthogonality
Wigner D-matrices are unitary, but Lorentz D-matrices are
neither unitary nor orthogonal (in fact it is known that the
Lorentz group doesn’t have any unitary finite-dimensional
irreps). Therefore it is instructive to find a Lorentz-invariant
bilinear form on all irreps. Clearly on T (1,1) it is the
Minkowski dot product, and on other integer-spin irreps
it can be induced from T (1,1) via tensor powers. However,
invariant forms actually exist on all irreps of SL(2,C). There
is a prototype of a Lorentzian metric on the 2-dimensional
space R1/2 � C

2 of spinors:

g1/2 =

(
0 1
−1 0

)
.

It is not Hermitian because we will be using it as a bilinear
form and not as a sesquilinear form, that is, no complex
conjugation is used in its definition:

〈ψ, ψ ′〉 = ψ+ψ ′− − ψ−ψ ′+.

Here, ψ = (ψ+, ψ−) ∈ C2. Thus the form can be equally
viewed either as an exterior 2-form ω1/2 or as a pseudo-
Hermitian metric iω1/2(ψ̄, ψ ′). This form naturally induces
invariant forms/metrics on all higher spin irreps of SU(2)
(these forms are symmetric on integer-spin irreps). The
isomorphism of representations

Rl �
(
R⊗2l

1/2

)
sym

induces the forms

gl =
(
g⊗2l

1/2

)
sym

,

where the symmetrization is done separately over the two
2l-tuples of indices. It is easy to see that in the canonical
basis

(gl)m,m′ = (−1)l+mδm+m′,0.

For example, g1 is exactly the negative of the standard Eu-
clidean metric on R3.

Similarly, on the 2-dimensional irreps (1, 0) and (0, 1) of
SL(2,C), we choose the same form g(1,0) = g(0,1) B g1/2.

Now the tensor product decomposition T (k,n) �
(
T (1,0)

) ⊗k
⊗(

T (0,1)
) ⊗n

induces the form

g(k,n) =
(
g1/2

) ⊗k
sym ⊗

(
g1/2

) ⊗n
sym .

Another CG map can be applied to represent this product in
the canonical basis, and the result is exactly the same as for
SU(2) on each fixed-l subspace:(

g(k,n)
)
(l,m),(l′,m′) = (−1)l+mδl,l′δm+m′,0.

For instance, g(1,1) is precisely the standard Lorentzian met-
ric on R4.

CG products and D-matrices respect these forms in the
sense that tensor products of two such forms generate the
same forms, and D-matrices are orthogonal with respect to
them (here we write this out for SL(2,C) since SU(2) can
be considered a special case by setting n = 0):

g(k1,n1) ⊗ g(k2,n2) =
⊕
(k,n)

g(k,n),

DT
(k,n)g(k,n)D(k,n) = g(k,n).

Note that we use transposition instead of Hermitian conju-
gation because we treat the metric as C-bilinear.

4. Equivariant Universal Approximation
This section provides more details on the derivation of the
equivariant universal approximation theorem stated in the
body of the paper.

Recall that a polynomial f : V → R is called a polyno-
mial G-invariant if f (g · v) = f (v) for all g ∈ G, v ∈ V .
Similarly, a map f̃ : V → U between two representations
is called a polynomial equivariant if it is equivariant and
l ◦ f̃ is a polynomial for any linear functional l : U → R.
Hilbert’s finiteness theorem (Hilbert, 1890; 1893) states that
for completely reducible representations V and U, the ring
of polynomial invariants f : V → R is finitely generated by
a set { f1, . . . , fNinv }. Similarly, all polynomial equivariants
f̃ : V → U constitute a finitely generated module over the
ring of invariants by a basis set { f̃ 1, . . . , f̃ Neq } (Worfolk,
1994). By an extension of a standard universal approxi-
mation theorem, it was shown in (Yarotsky, 2018) that for
completely reducible representations, any continuous equiv-
ariant map can be approximated by a single-layer perceptron
with a non-polynomial activation function σ, with the in-
variant generators as inputs and the equivariant generators
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as coefficients of the outputs. That is, there is a complete
system consisting of the functions

f̃ i(v) · σ
©­«
Ninv∑
j=1

wi j fj(v) + bi
ª®¬ , i = 1, . . . , Neq,

where each of the weights wi j, bi spans the real line.

Therefore our network, aside from including traditional non-
linear layers acting on polynomial invariants, has to gener-
ate the basis of polynomial invariants { fi} and equivariants
{ f̃ j}.

To talk about neural networks, we adopt the definition
of feed-forward neural networks from (Kondor & Trivedi,
2018):

Definition 4.1. Let J0, . . . , JL be a sequence of index
sets, V0, . . . ,VL vector spaces, φ0, . . . , φL linear maps φk :
VJk−1
k−1 → VJk

k
, and σk : Vk → Vk appropriate potentially

nonlinear functions (acting pointwise in the sense that they
are independent of the index in Jk). The corresponding
multilayer feed-forward neural network is then a sequence
of maps f0, f1, . . . , fL , where fk = σk ◦ φk ◦ fk−1.

Now we define an equivariant analog of a feed-forward
neural network.

Definition 4.2. Let G be a group. Let V0, . . . ,V2L be finite-
dimensional vector spaces that are also linear representa-
tions of G, σk : Vk → Vk+1, k = 0, 2, . . . , 2(L − 1), – poten-
tially nonlinear G-equivariant maps, and φk : Vk → Vk+1,
k = 1, 3, . . . , 2L − 1, – G-equivariant linear maps. Then
the corresponding G-equivariant multilayer feed-forward
neural network is the sequence of maps f0, . . . , fL , where
fk = φ2k+1 ◦ σ2k ◦ fk−1.

Definition 4.3. A polynomial G-equivariant feed-forward
neural network is a G-equivariant one in the sense of
Def. 4.2 in which all nonlinearities σk are polynomial.
Specifically, all such σk can be expressed using tensor prod-
ucts and G-equivariant linear maps. A minimal example
with a quadratic nonlinearity is σk(v) = v ⊕ (v ⊗ v).
Lemma 4.1. If σ : V → U is a polynomial G-equivariant
map of degree d between two completely reducible finite-
dimensional representations V,U of G, then there exist G-
equivariant maps αp : V ⊗p → U, p = 0, . . . , d, such that

σ =

d∑
p=0

αp

(
v⊗p

)
. (1)

Proof. Decompose σ into homogeneous components σ =∑d
i=0 pi . Since the action of G is linear, each pi separately is

G-equivariant: pi(ρV (g) · v) = ρU (g) · pi(v). Thus, without
loss of generality, we can assume that σ is homogeneous.

If σ is homogeneous of degree d, it can be written as

σ(v) = p(v, . . . , v︸  ︷︷  ︸
d

)

for some symmetric d-multilinear map p : Vd → U. Such
a multilinear map is identified with an element of the tensor
product space

t ∈ Sd(V∗) ⊗ U, (2)

where Sd(V∗) = (V∗)⊗dSym is the symmetric tensor power of
V∗. Therefore all polynomial equivariants on V are indeed
tensor polynomials, i.e. p can be viewed as a linear equiv-
ariant map p : V ⊗d → U. Since this tensor is symmetric,
this proves the existence of a linear equivariant αd such that
σ(v) = αd

(
v⊗d

)
.

Lemma 4.2. Given two completely reducible finite-
dimensional representations of a group G, the space of
polynomial G-equivariant maps from V to U is isomorphic
to the subspace of invariants in the tensor product S(V∗)⊗U,
where S(V∗) is the symmetric tensor algebra over V∗:

PolG(V,U) � ((S(V∗) ⊗ U)G .

Proof. As shown in the proof of Lemma 4.1, there is an
isomorphism with the space of G-equivariant linear maps
mapping S(V∗) → U:

PolG(V,U) � HomG(S(V),U).

Since the hom-functor is the adjoint of the tensor product
functor, we have

HomG(S(V),U) � HomG(S(V) ⊗ U∗,R) = (S(V∗) ⊗ U)G .

See also (Miller, 1971).

Remark 4.1. The computation of this space clearly comes
down to finding an isotypic decomposition of the tensor
algebra over V (we expand on this in Remark 4.2). The iso-
typic decomposition of the symmetric tensor algebra S(V∗)
thus provides a complete system of polynomial equivariants.
Namely, assuming without loss of generality that U is irre-
ducible, any σ ∈ PolG(V,U) can be written as in (1), where
each αp is a composition αp = βp ◦ Pp

U of the projector
Pp
U : V ⊗p → Uτ onto the U-type isotypic component of

V ⊗p and a G-equivariant linear map βp : Uτ → U.

These lemmas imply that the seemingly nonlinear problem
of constructing all polynomial equivariants on V can be
reduced to the linear problem of computing the isotypic
decompositions of tensor powers of V . We now state more
precisely our equivariant approximation theorem.
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Theorem 4.1. Let G be a classical Lie group and V,U two
completely reducible finite-dimensional representations of
G. Then any continuous equivariant map F : V → U can be
uniformly approximated by equivariant feed-forward neural
networks in the sense of Def. 4.2, in which all nonlinearities
are based on tensor products, except perhaps when acting on
G-invariants. For example, given a non-polynomial function
σ̃k : R→ R, we can have

σk(v) = σ̃k (Pinv(v)) ⊕ v ⊕ (v ⊗ v), (3)

where Pinv is the projector onto invariants and the action of
σ̃k on the vector of invariants is component-wise.

Proof. This theorem follows immediately from Remark 4.1.
Indeed, Yarotsky (2018) showed that, given a basis of poly-
nomial invariants and equivariants, a conventional neural
network can uniformly approximate an equivariant func-
tion. We have further demonstrated that such a basis can be
generated up to an arbitrary polynomial degree by an equiv-
ariant feed-forward neural network which can construct all
possible tensors of the inputs and compute the isotypic com-
ponents of these tensors. A nonlinearity such as (3) iterated
sufficiently many times constructs a basis for all tensors of
v and applies scalar nonlinearities to all G-invariants.

Remark 4.2. Here we further specify the form of the equiv-
ariant tensors constructed above. Since V admits a decom-
position into a direct sum V �

⊕
i Vαi of irreps Rαi labeled

by their highest weight αi , then an equivariant f̃ : V → U
viewed as a function of several vectors f (v1, v2, . . .) with
vi ∈ Vαi , has to be a homogeneous polynomial of some
degree ki in each vi . As shown in the Lemmas above, this
allows one to view f̃ as a multilinear U-valued function t
of

∑
i ki vectors, where each vi is repeated ki times:

f̃ (v1, v2, . . .) = t(v1, . . . , v1︸     ︷︷     ︸
k1 times

v2, . . . , v2︸     ︷︷     ︸
k2 times

, . . .).

Just like in the proof of Lemma 4.1, this multilinear function
can be interpreted as an element of the symmetric tensor
product

t ∈
(⊗

i

(
R∗αi

) ⊗ki
Sym

)
⊗ U. (4)

Assuming without loss of generality that U = Rα is an irrep,
the problem of constructing all equivariants V → Rα is
reduced to computing the Rα-isotypic component of this
tensor algebra.

More information on these constructions in classical in-
variant theory can be found in e.g. (Goodman & Wallach,
2009) and (Weyl, 1946). As a side note, we restate the
following classical theorem (Goodman & Wallach, 2009,
Thm. 5.5.21):

Theorem. If G is a classical Lie group, say, SU(2),
SL(2,C), SO(3), or SO+(1, 3), and V is its fundamental rep-
resentation (of dimension 2, 2, 3, and 4, respectively), then
any finite-dimensional irrep of G occurs as a G-invariant
subspace of the tensor power V ⊗k for a sufficiently high k.

Considering the case of the Lorentz group, taking all pos-
sible tensor products of input 4-vectors and decomposing
into irreducibles we will generate tensors that transform
under arbitrary irreps of the group. Therefore there are no
restrictions on the type of equivariant outputs that our archi-
tecture can produce. In fact, the dimensions of the spaces of
equivariants mapping a set of 4-vectors to an irrep U = Rα
of the Lorentz group are known (Miller, 1971).

5. Equivariance Tests
We have conducted experiments to verify Lorentz invariance
of our neural network. The network itself had exactly the
same values of hyper-parameters as in the main application,
but the inputs were replaced by random 4-momenta, whose
components are drawn uniformly from [−1, 1], with 20 par-
ticles in each event and 20 events in a batch. The outputs of
the network are then arrays w of shape 2 × 20. We compute
the outputs for the same 4-momentum inputs with and with-
out a Lorentz matrix applied to them at the start. Calling
these two outputs w and w̃, we define the relative deviation
as mean(w − w̃)/mean(w). We computed these quantities
for a number of Lorentz boosts with varying Lorentz factor
γ and averaged the results over 10 sets of random inputs
and random initializations of the model (60 events with 20
particles each in total). The computations here are done
using double precision and the relative error remains within
0.1% up to gamma factors of about 5000, which well covers
the physically relevant domain of about [10, 200]. When
using 32 bit precision, the error remains this low only up to
γ ∼ 70 and grows to over 10% after γ ∼ 200.

Similarly we have tested rotational invariance, however the
error is remains strictly of the order 10−16 when using dou-
ble precision (the Euler angle of the rotation ranged from
0 to 10), so we are not showing a separate plot for it. It is
clear that the source of the error is just the rounding errors
in float arithmetic, so larger inputs produce larger relative
errors. That is why applying large boosts increases the error,
but rotations do not have the same effect.

Finally, the internal equivariance of the network was tested
as well by applying Lorentz matrices to the inputs and com-
paring the values of the resulting activations of the network
to an application of corresponding Lorentz D-matrices to
them. The errors are similarly small, so we do not show
separate statistics for them.
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Figure 1. Relative deviation of the outputs of the network as a
function of the boost factor γ applied to its inputs.

6. Computational Cost
Here we present the plots of the GPU memory (Fig. 2) and
the number of parameters (Fig. 3) as functions of the number
of channels (which here is uniform across all layers). These
numbers correspond to the same model as the one trained
for our main experiment, except for the modified number of
channels. We note that the usage of GPU memory is much
more efficient when the sizes of all tensors are multiples of
32. The size of most tensors is 2 × B × Ns

obj × Nch × d with
B being the batch size, Nobj the number of particles (202
for the top-tagging dataset), the power s = 1 or 2, and d the
dimension of an irrep. The number of model parameters
grows roughly quadratically with the number of channels.
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M
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Figure 2. GPU memory usage as a function of the number of chan-
nels per layer, with 3 layers.

Since the sizes of some of the tensors involved grow quadrat-
ically with the number of particles Nobj, and we take tensor
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Figure 3. The number of network parameters as a function of the
number of channels per layer, with 3 layers.

products of them, the evaluations of this model take a much
longer time than simpler models. This can be mitigated
by optimizing the tensor product operation. Namely, since
Clebsch-Gordan coefficients satisfy several symmetry rela-
tions and “conservation laws”, one may replace the tensor
product followed by the CG operation with a single oper-
ation performed efficiently on the GPU. A custom CUDA
kernel for this purpose is under development.

7. Network Metrics
Lastly, we display the evolution of some of the metrics
of the network with the number of epochs – these were
measured from the ensemble of networks from our main
experiment. The accuracy (Fig 4) and AUC (Fig 5) score
appear to reach a rough ceiling partway through training,
whereas the background rejection (Fig 6) and loss (Fig 7)
continue to improve throughout.

8. Source Code
The source code is available at https://github.com/
fizisist/LorentzGroupNetwork. It requires Py-
Torch and CUDA for training on a GPU (not yet paral-
lelized across multiple GPU’s). It also uses NumPy and
Scikit-Learn for some diagnostics, and H5py for reading
data from HDF datasets.

https://github.com/fizisist/LorentzGroupNetwork
https://github.com/fizisist/LorentzGroupNetwork
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Figure 4. The average network accuracy as a function of epoch
number, sampled over 4 independent trained instances. The two
data series correspond with results from the training and validation
subsets of the dataset (Kasieczka et al., 2019). The error bar width
is given by the standard deviation.
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Figure 5. The average area under the ROC curve (AUC), as a func-
tion of epoch number. The error bar width is given by the standard
deviation.

References
Gelfand, I. M., Minlos, R. A., and Shapiro, Z. Y. Repre-

sentations of the Rotation and Lorentz Groups and Their
Applications. Graduate Texts in Mathematics. Pergamon
Press, 1963. ISBN 9780080100692.

Goodman, R. and Wallach, N. R. Symmetry, representa-
tions, and invariants, volume 255 of Graduate Texts
in Mathematics. Springer, Dordrecht, 2009. ISBN
978-0-387-79851-6. doi: 10.1007/978-0-387-79852-
3. URL https://doi.org/10.1007/978-0-
387-79852-3.

0 10 20 30 40 50
Epoch

0

100

200

300

400

500

600

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n 

@
 3

0%
 S

ig
na

l E
ffi

cie
nc

y

Training
Validation

Figure 6. The average background rejection at 30% signal effi-
ciency, as a function of epoch number. The error bar width is given
by the standard deviation.

0 10 20 30 40 50
Epoch

16

18

20

22

24
Lo

ss
 (%

)
Training
Validation

Figure 7. The average loss, as a function of epoch number. The
error bar width is given by the standard deviation.

Hilbert, D. Ueber die Theorie der algebraischen For-
men. Math. Ann., 36(4):473–534, 1890. ISSN 0025-
5831. doi: 10.1007/BF01208503. URL https://
doi.org/10.1007/BF01208503.

Hilbert, D. Ueber die vollen Invariantensysteme. Math. Ann.,
42(3):313–373, 1893. ISSN 0025-5831. doi: 10.1007/
BF01444162. URL https://doi.org/10.1007/
BF01444162.

Kasieczka, G., Plehn, T., Thompson, J., and Russel, M. Top
quark tagging reference dataset, 2019. URL https:
//zenodo.org/record/2603256.

Kondor, R. and Trivedi, S. On the Generalization
of Equivariance and Convolution in Neural Networks
to the Action of Compact Groups. In Dy, J. and

https://doi.org/10.1007/978-0-387-79852-3
https://doi.org/10.1007/978-0-387-79852-3
https://doi.org/10.1007/BF01208503
https://doi.org/10.1007/BF01208503
https://doi.org/10.1007/BF01444162
https://doi.org/10.1007/BF01444162
https://zenodo.org/record/2603256
https://zenodo.org/record/2603256


Relativistic Equivariant Neural Network for Particle Physics

Krause, A. (eds.), Proceedings of the 35th ICML, vol-
ume 80 of Proceedings of Machine Learning Research,
pp. 2747–2755, Stockholm, Sweden, 7 2018. PMLR.
URL http://proceedings.mlr.press/v80/
kondor18a.html.

Miller, Jr., W. Invariant tensor fields in physics and the
classical groups. SIAM J. Appl. Math., 20:503–519, 1971.
ISSN 0036-1399. doi: 10.1137/0120052. URL https:
//doi.org/10.1137/0120052.

Weyl, H. The Classical Groups. Their Invariants and Rep-
resentations. Princeton University Press, Princeton, N.J.,
2 edition, 1946. ISBN 0-691-07923-4.

Worfolk, P. A. Zeros of equivariant vector fields: algorithms
for an invariant approach. J. Symbolic Comput., 17(6):
487–511, 1994. ISSN 0747-7171. doi: 10.1006/jsco.1994.
1031. URL https://doi.org/10.1006/jsco.
1994.1031.

Yarotsky, D. Universal approximations of invariant maps by
neural networks. CoRR, 2018. URL http://arxiv.
org/abs/1804.10306.

http://proceedings.mlr.press/v80/kondor18a.html
http://proceedings.mlr.press/v80/kondor18a.html
https://doi.org/10.1137/0120052
https://doi.org/10.1137/0120052
https://doi.org/10.1006/jsco.1994.1031
https://doi.org/10.1006/jsco.1994.1031
http://arxiv.org/abs/1804.10306
http://arxiv.org/abs/1804.10306

