
Deep Coordination Graphs

A. Appendix
A.1. Baseline algorithms

All discussed algoorithms are implemented in the PyMARL
framework (Samvelyan et al., 2019) and can be found at
https://github.com/wendelinboehmer/dcg.

IQL Independent Q-learning (Tan, 1993) is a straightfor-
ward approach of value decentralization that allows efficient
maximization by modeling each agent as an independent
DQN qiθ(a

i|τ it ). The value functions can be trained without
any knowledge of other agents, which are assumed to be
part of the environment. This violates the stationarity as-
sumption of P and can become therefore instable (see e.g.
Foerster et al., 2017). IQL is nonetheless widely used in
practice, as parameter sharing between agents can make it
very sample efficient.

Note that parameter sharing requires access to privileged
information during training, called centralized training and
decentralized execution (Foerster et al., 2016). This is partic-
ularly useful for actor-critic methods like MADDPG (Lowe
et al., 2017), Multi-agent soft Q-learning (Wei et al., 2018),
COMA (Foerster et al., 2018) and MACKRL (Schröder de
Witt et al., 2019), where the centralized critic can condition
on the underlying state st and the joint action at ∈ A.

VDN Another way to exploit centralized training is value
function factorization. For example, value decomposition
networks (VDN, Sunehag et al., 2018) perform centralized
deep Q-learning on a joint Q-value function that factors as
the sum of independent utility functions f i, for each agent i:

qVDN
θ (τt,a) :=

n∑
i=1

f iθ(a
i|τ it ) . (8)

This value function qVDN can be maximized by maximizing
each agent’s utility f iθ independently.

QMIX (Rashid et al., 2018) improves upon this concept
by factoring the value function as

qQMIX
θφ (st, τt,a) := ϕφ

(
st, f

1
θ (a1|τ1

t ), . . . , fnθ (an|τnt )
)
.

Here ϕφ is a monotonic mixing hypernetwork with non-
negative weights that retains monotonicity in the inputs
f iθ. Maximizing each utility f iθ therefore also maximizes
the joint value qQMIX, as in VDN. The mixing parameters
are generated by a neural network, parameterized by φ,
that condition on the state st, allowing different mixing of
utilities in different states. QMIX improves performance
over VDN, in particular in StarCraft II micromanagement
tasks (SMAC, Samvelyan et al., 2019).

QTRAN Recently Son et al. (2019) introduced QTRAN,
which learns the centralized critic of a greedy policy w.r.t. a

VDN factorized function, which in turn is distilled from the
critic by regression under constraints. The algorithm defines
three value functions qVDN, q and v, where q(τt,a) is the
centralized Q-value function, as in Section 2.1, and

v(τt) := max q(τt, ·)−max qVDN(τt, ·) . (9)

They prove that the greedy policies w.r.t. q and qVDN are
identical under the constraints:

qVDN(τt,a)− q(τt,a) + v(τt) ≥ 0 , (10)

∀a ∈ A ,∀τt ∈ {(Oi ×Ai)t ×Oi}ni=1, with strict equality
if and only if a = arg max qVDN(τt, ·) . QTRAN mini-
mizes the parameters φ of the centralized asymmetric value
qiφ(ai|τt,a−i), a−i := (a1, . . . , ai−1, ai+1, . . . , an), for
each agent (which is similar to Foerster et al., 2018) with
the combined loss LTD:

LTD := IE
[

1
nT

T−1∑
t=0

n∑
i=1

(
rt + γ ȳit+1 − qiφ(ait|τt,a−it )

)2 ]
,

where ȳit := qi
φ̄
(āit|τt, ā−it ) denotes the centralized asym-

metric value and āt+1 := arg max qVDN
θ (τt+1, ·),∀t, de-

notes what a greedy decentralized agent would have chosen.
The decentralized value qVDN

θ and the greedy difference vψ,
with parameters θ and ψ respectively, are distilled by re-
gression of the each qiφ in the constraints. First the equality
constraint:

LOPT := IE
[

1
n(T+1)

T∑
t=0

n∑
i=1

(
qVDN
θ (τt, āt)−⊥ȳit+vψ(τt)

)2 ]
,

where the ‘detach’ operator ⊥ stops the gradient flow
through qiφ. The inequality constraints are more compli-
cated. In principle one would have to compute a loss for
every action which has a negative left hand side in (10). Son
et al. (2019) suggest to only constraint executed actions at:

LNOPT :=IE
[

1
n(T+1)

T∑
t=0

n∑
i=1

(
min

{
0, (11)

qVDN
θ (τt,at)−⊥qiφ(ait|τt,a−it ) + vψ(τt)

})2 ]
.

We use this loss, called QTRAN-base, which performed
better in our experiments than QTRAN-alt (see Son et al.,
2019). The losses are combined to LQTRAN := LTD +
λOPT LOPT + λNOPT LNOPT , with λOPT, λNOPT > 0.

CG To compare the effect of parameter sharing and restric-
tion to local information in DCG, we evaluate a variation of
Castellini et al. (2019) that can solve sequential tasks. In this
baseline all agents share a RNN encoder of their belief over
the current global state ht := hψ(·|ht−1,ot,at−1) with
h0 := hψ(·|0,o0,0), as introduced in Section 2.1. How-
ever, the parameters of the utility or payoff functions are
not shared, that is, θ := {θi}ni=1 and φ := {φij |{i, j} ∈ E}.
Each set of parameters θi and φij represents one linear layer

https://github.com/wendelinboehmer/dcg
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Figure 6. Low-rank approximation of the joint value function
(LRQ) in the relative overgeneralization task of Section 5.1 for
varying numbers of factors K ∈ {1, 4, 16, 64, 256, 1024}.

from ht toAi andAi×Aj outputs, respectively. Other wise
the baseline uses the same code as DCG, that is, Algorithms
1, 2 and 3.

LRQ As DCG uses low-rank approximation of the payoff
outputs, it is a fair question how a low-rank approximation
of the full joint value function (LRQ) would perform (akin
to one hyper-edge shown in Figure 1c). This approach
is similar to FQL (Chen et al., 2018), but we drop here
the homogeneity assumptions between agents. Instead, we
define the joint value function as a sum of K factors, which
each are the product of n factor functions f̄ ik, one for each
agent:

qLRQ1(τt,a) :=

K∑
k=1

n∏
i=1

f̄ ikθ (ai |τt) . (12)

The joint histories of all agents τt are encoded with a com-
mon RNN with 512 hidden neurons. In difference to DCG,
LQR cannot be maximized by message passing. Instead
we perform coordinate ascend by choosing a random joint
action ā0 and iterating, ∀i ∈ {1, . . . , n},

āil+1 := arg max
a′∈Ai

K∑
k=1

f̄ ik(a′|τt)
∏
j 6=i

f̄ jk(ājl |τt) . (13)

The iteration finishes if the value qLRQ1(τt, āl) no longer
increases of after a maximum of l = 8 iterations.

Experiments on the predator-prey tasks with K ∈
{1, 4, 16, 64, 256, 1024} revealed that, due to the large input
space of τt, the above approximation did not learn anything.
To allow a better comparison, we use the same input re-
strictions and parameter sharing tricks as DCG, that is, we

restrict the input of each factor function to the history of the
corresponding agent and share all agents’ parameters:

hi0 := 0 , hit := hψ(·|hit−1, o
i
t, a

i
t−1) (14)

qLRQ2(τt,a) :=

K∑
k=1

n∏
i=1

f̄kθ (ai |hit) . (15)

Figures 3 and 4 show that this architecture learns the task
with K = 64, albeit slowly. Figure 6 demonstrates the
effect of the number of factors K on the solution of the rela-
tive overgeneralization task of Section 5.1. Given enough
factors, LRQ learns the task, albeit slowly and with a lot
of variance between seeds, probably due to imperfect maxi-
mization by coordinate ascend.

A.2. DCG Algorithms

All algorithms defined in this paper are given in pseudo-
code on Page 16: Algorithm 1 computes the utility and
payoff tensors, which are used by Algorithm 2 to com-
pute the joint Q-value and by Algorithm 3 to return the
joint actions that greedily maximize the joint Q-value. An
open-source python implementation within the PyMARL
framework (Samvelyan et al., 2019) can be found online at
https://github.com/wendelinboehmer/dcg.

A.3. Hyper-parameters

All algorithms are implemented in the PYMARL framework
(Samvelyan et al., 2019). We aimed to keep the hyper-
parameters close to those given in the framework and con-
sistent for all algorithms.

All tasks used discount factor γ = 0.99 and ε-greedy explo-
ration, which was linearly decayed from ε = 1 to ε = 0.05
within the first 50, 000 time steps. Every 2000 time steps we
evaluated 20 greedy test trajectories with ε = 0. Results are
plotted by first applying histogram-smoothing (100 bins) to
each seed, and then computing the mean and standard error
between seeds.

All methods are based on agents’ histories, which were in-
dividually summarized with hψ by conditioning a linear
layer of 64 neurons on the current observation and pre-
vious action, followed by a ReLU activation and a GRU
(Chung et al., 2014) of the same dimensionality. Both lay-
ers’ parameters are shared amongst agents, which can be
identified by a one-hot encoded ID in the input. For the
CG baseline, the linear layer and the GRU had 64n = 512
neurons. This allows a fair comparison with DCG and also
had the best final performance amongst tested dimension-
alities {64, 256, 512, 1024} in the task of Figure 4. Inde-
pendent value functions qiθ (for IQL), utility functions fvθ
(for VDN/QMIX/QTRAN/DCG) and payoff functions feφ
(for DCG) are linear layers from the GRU output to the cor-
responding number of actions. The hyper-network ϕφ of

https://github.com/wendelinboehmer/dcg
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Figure 7. Illustrations of the relative overgeneralization task (left,
Sec. 5.1) and the artificial decentralization task (right, Sec. 5.2).

QMIX produces a mixing network with two layers connected
with an ELU activation function, where the weights of each
mixing-layer are generated by a linear hyper-layer with 32
neurons conditioned on the global state, that is, the full
grid-world. For QTRAN, the critic qiφ computes the Q-value
for an agent i by taking all agents’ GRU outputs, all other
agents’ one-hot encoded actions, and the one-hot encoded
agent ID i as input. The critic contains four successive
linear layers with 64 neurons each and ReLU activations
between them. The greedy difference vψ also conditions
on all agents’ GRU outputs and uses three successive linear
layers with 64 neurons each and ReLU activations between
them. After some coarse hyper-parameter exploration for
QTRAN with λOPT, λNOPT ∈ {0.1, 1, 10}, we chose the loss
parameters λOPT = 1, λNOPT = 10. The LRQ results in the
main text used the state-encoding from CG and K = 64.

All algorithms were trained with one RMSprop gradient step
after each observed episode based on a batch of 32 episodes,
which always contains the newest, from a replay buffer
holding the last 500 episodes. The optimizer uses learning
rate 0.0005, α = 0.99 and ε = 0.00001. Gradients with a
norm ≥ 10 were clipped. The target network parameters
were replaced by a copy of the current parameters every 200
episodes.

A.4. StarCraft II details

We kept all hyper-parameters the same and evaluated the
six maps in Table 2. All maps are from SMAC (Samvelyan
et al., 2019), except micro focus, which was provided
to us by the SMAC authors. The results for DCG-S, DCG,
QMIX and VDN are given in Figure 8 on Page 17, where both
DCG variants use a rank-1 payoff approximation. Note that
our results differ from those in Samvelyan et al. (2019), due
to slightly different parameters and an update after every
episode. The latter differs from the original publication
because we use the the episode runner instead of the
parallel runner of PYMARL. These choices ended up
improving the performance of QMIX significantly.

As expected, a direct comparison with the state-of-the-
art method QMIX depends strongly on the StarCraft II
map. On the one hand, DCG-S clearly outperforms QMIX
on MMM2 (Figure 8a), which is classified as super hard
by SMAC. We also learn much faster on the easy map
so many baneling (Figure 8b). On the other hand,
QMIX performs better on the hard map 3s vs 5z (Fig-
ure 8d), which might be due to the low number of 3 agents.
For that amount of agents, the added representational ca-
pacity of DCG may not improve the task as much as the
non-linear state-dependent mixing of QMIX. It is hard to
pin-point why state dependent mixing is an advantage here,
though. However, given that DCG-S and VDN-S perform
equally well on all maps except so many baneling in-
dicates that the SMAC benchmark probably does not suffer
much from the relative overgeneralization pathology.

Name Agents Enemies Diff.

so many baneling 7 Zealots 32 Banelings easy

8m vs 9m 8 Marines 9 Marines hard

3s vs 5z 3 Stalker 5 Zealots hard

3s5z
3 Stalker
5 Zealots

3 Stalker
5 Zealots hard

MMM2
1 Medivac
2 Marauders
7 Marines

1 Medivac
3 Marauders
8 Marines

super
hard

micro focus 6 Hydralisks 8 Stalker
super
hard

Table 2. Types of agents, enemies and difficulty of all tested Star-
Craft II maps for SMAC (Samvelyan et al., 2019).



Deep Coordination Graphs

Algorithm 1 Annotates a CG by computing the utility and payoff tensors (rank K approximation).
1: function ANNOTATE({hit−1, a

i
t−1, o

i
t}ni=1, E , {Ai}ni=1,K ∈ IN) // A := | ∪i Ai|

2: fV := 0 ∈ IRn×A // initialize utility tensor
3: fE := 0 ∈ IR|E|×A×A // initialize payoff tensor
4: for i ∈ {1, . . . , n} do // compute batch with all agents
5: hit := hψ(hit−1, o

i
t, a

i
t−1) // new hidden state

6: fV
i ← fvθ (hit) ∈ IRA // compute utility

7: for a ∈ {1, . . . , A} \ Ai do // set unavailable actions ...
8: fV

ia ← −∞ // ... to −∞
9: for e = (i, j) ∈ E do // compute batch with all edges

10: if K = 0 then // if no low-rank approximation
11: fE

e ← 1
2f

e
φ(·, ·|hit,h

j
t ) + 1

2f
e
φ(·, ·|hjt ,hit)> ∈ IRA×A // permutation invariant payoffs

12: else // if low-rank approximation
13: [F̂, F̄] := feφ(·, ·, ·|hit,h

j
t ) ∈ IR2×A×K // compute payoffs “forwards” ...

14: [F̂′, F̄′] := feφ(·, ·, ·|hjt ,hit) ∈ IR2×A×K // ... and “backwards” ...
15: fE

e ← 1
2 F̂F̄

> + 1
2 F̄
′F̂′> ∈ IRA×A // ... for permutation invariance

16: return {hit}ni=1,f
V,fE // return hidden states hit, utility tensor fV and payoff tensor fE

Algorithm 2 Q-value computed from utility and payoff tensors (and potentially global state st).

1: function QVALUE(fV ∈ IR|V|×A,fE ∈ IR|E|×A×A,a ∈ A, st ∈ S ∪ {∅}) // vϕ(∅) = 0

2: return 1
|V|

|V|∑
i=1

fV
iai + 1

|E|
∑

e=(i,j)∈E
fE
eaiaj + vϕ(st) // return the Q-value of the given actions a

Algorithm 3 Greedy action selection with k message passes in a coordination graph.

1: function GREEDY(fV ∈ IR|V|×A,fE ∈ IR|E|×A×A,V, E , {Ai}|V|i=1, k) // A := | ∪i Ai|
2: µ0, µ̄0 := 0 ∈ IR|E|×A // messages forward (µ) and backward (µ̄)
3: q0 := 1

|V|f
V // initialize “Q-value” without messages

4: qmax := −∞; amax :=
[

arg max
a∈Ai

q0
ai

∣∣ i ∈ V] // initialize best found solution

5: for t ∈ {1, . . . , k} do // loop with k message passes
6: for e = (i, j) ∈ E do // update forward and backward messages
7: µte := max

a∈Ai

{
(qt−1
ia − µ̄t−1

ea ) + 1
|E|f

E
ea

}
// forward: maximize sender

8: µ̄te := max
a∈Aj

{
(qt−1
ja − µt−1

ea ) + 1
|E| (f

E
e )>a
}

// backward: maximizes receiver

9: if message normalization then // to ensure converging messages
10: µte ← µte − 1

|Aj |
∑
a∈Aj

µtea // normalize forward message

11: µ̄te ← µ̄te − 1
|Ai|

∑
a∈Ai

µ̄tea // normalize backward message

12: for i ∈ V do // update “Q-value” with messages
13: qti := 1

|V|f
V
i +

∑
e=(·,i)∈E

µte +
∑

e=(i,·)∈E

µ̄te // utility plus incoming messages

14: ati := arg max
a∈Ai

{qtia} // select greedy action of agent i

15: q′ ← QVALUE(fV,fE,at,∅) // get true Q-value of greedy actions
16: if q′ > qmax then {amax ← at; qmax ← q′} // remember only the best actions

return amax ∈ A1 × . . .×A|V| // return actions that maximize the joint Q-value
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Figure 8. Cumulative reward for test episodes on SMAC maps (mean and shaded standard error, [number of seeds]) for QMIX, VDN,
VDN-S and fully connected DCG with rank K = 1 payoff approximation (DCG (rank 1)) and additional state-dependent bias
function (DCG-S (rank 1)).


