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Abstract

Deep neural networks are typically initialized
with random weights, with variances chosen to fa-
cilitate signal propagation and stable gradients. It
is also believed that diversity of features is an im-
portant property of these initializations. We con-
struct a deep convolutional network with identical
features by initializing almost all the weights to 0.
The architecture also enables perfect signal prop-
agation and stable gradients, and achieves high
accuracy on standard benchmarks. This indicates
that random, diverse initializations are not neces-
sary for training neural networks. An essential
element in training this network is a mechanism
of symmetry breaking; we study this phenomenon
and find that standard GPU operations, which are
non-deterministic, can serve as a sufficient source
of symmetry breaking to enable training.

1. Introduction

Random, independent initialization of weights in deep neu-
ral networks is a common practice across numerous architec-
tures and machine learning tasks (He et al., 2016; Vaswani
etal., 2017; Szegedy et al., 2015). When backpropagation
was first proposed (Rumelhart et al., 1986), neural networks
were initialized randomly with the goal of breaking symme-
try between the learned features. Empirically, it had been
established that the method used to initialize the weights of
each layer can have a significant effect on the accuracy of
the trained model, and common initialization schemes (Glo-
rot & Bengio, 2010; He et al., 2015) are generally motivated
by ensuring that the variance of the neurons does not grow
rapidly with depth at initialization.

Neural networks with random features (Rahimi & Recht,

2008) have been thoroughly studied, and such models admit
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a detailed analysis of their dynamics and generalization
properties. Unlike the features in a neural network, the
randomly initialized features in these models are not trained.
While random features models are known to be limited
compared to ones with learned or hand-designed features
(Yehudai & Shamir, 2019), numerous studies have shown
that classifiers can be trained to good accuracy relying solely
on random, untrained features (Louart et al., 2018; Mei &
Montanari, 2019).

A possible explanation for the role of random initialization
was implied by the recently proposed "lottery ticket hypoth-
esis" (Frankle & Carbin, 2018). After showing that sparse
networks could be trained as effectively as dense networks
if certain subsets of the weights were initialized with the
same values, the authors suggest that neural networks con-
tain trainable sub-networks, characterized by their unique
architecture and initialization. These sparse sub-network
can be extracted by first training dense neural networks and
selecting weights with large magnitudes. Additionally, (Ra-
manujan et al., 2019) has shown that randomly initialized
neural network contain sub-networks that achieve relatively
high accuracy without any training. However, more recent
studies of this topic (Frankle et al., 2019b;a) has put the sig-
nificance of the initial sub-networks back into question. It
was suggested that in the case of deeper models, the Lottery
Ticket method is more effective when relying on the val-
ues of the weights in a dense network at advanced training
epochs, and not the randomly initialization values.

While this may indicate that feature diversity is an important
property of the network initialization, there is evidence to
the contrary as well. Calculations of signal propagation in
random neural networks (Poole et al., 2016; Schoenholz
et al., 2016), applied in (Xiao et al., 2018) to convolutional
networks, led the authors to suggest the Delta Orthogonal
initialization, which they have used to successfully train a
10,000 layer convolutional network without skip connec-
tions on the CIFAR-10 dataset. The resulting initialization
is relatively sparse, with only a single non-zero entry per
convolution filter. When studying residual neural networks
with a similar approach, as was done in (Yang & Schoen-
holz, 2017), it is apparent that signal propagation is opti-
mized when the entire signal passes through the residual
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connection at initialization, which can be achieved by sim-
ply initializing all weights that can be bypassed to zero.
This approach is supported, to some extent by (Zhang et al.,
2019), where the authors suggest the Fixup initialization in
which the final layer of the residual block (a block which
can be bypassed by a single skip connection) is initialized
to zero.

The inevitable side-effect of these "sparse" initializations
is that the variety of the sub-networks at initialization is
limited, as zero-initialized parameters do not contribute new
sub-networks to the grand total.

The initialization schemes proposed above suggest that fea-
ture diversity may not be necessary. In this work, we address
the fundamental question: Does deviating from the stan-
dard of independent, random initialization of weights
have negative effects on training? We do so by taking the
idea of feature diversity to the extreme, and design networks
where all the initial features are identical, while the require-
ments of signal propagation are maintained. We present
surprising evidence that some networks are capable of fully
recovering from these naive initializations during training,
given some trivial requirements. We characterize the pro-
cess where the features’ symmetry is broken, distinguish
between different levels of symmetry, and suggest criteria
for the overall feature diversity in the network, which is
shown to be tied with the success of the model.

2. Feature Diversity

When considering the function implemented by a neural
network, the hidden state at every layer can be seen as a col-
lection of features, extracted from the input by the preceding
computational logic in the network. In a classification task,
the subsequent logic in the network uses these features to
classify the input to the target label. Features are a function
of the inputs and therefore two features will be considered
identical only if their respected neurons are equal for all
possible inputs. As mentioned in the introduction, there are
reasons to believe that identical features at initialization will
be detrimental to training. Symmetries between parameters
will, in general, induce symmetries on the features at ini-
tialization, though the manner in which the two are related
will depend on the architecture. In a fully-connected layer
for example, a sufficient condition for equality between two
features is equality of the two corresponding rows of the
weight matrix.

2.1. Shallow Networks with Identical Features

Before delving into deep models, it worthwhile to start by
examining the effect of identical features in a simple toy
model. For this task, we use a fully-connected single hidden
layer with ReLU activations. Additional details are provided
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Figure 1. Test error of a 2-layers fully connected network, for net-
works with hidden layer of width # initialized with replicated
features. The network performance degrades as the number of
unique features declines, unless a small amount of noise is intro-
duced during initialization.

in Appendix E.

The initial symmetry between features in this model can the-
oretically be broken by back-propagation alone. We test it by
training the neural network over the MNIST dataset, while
changing the width of the network n and the number of
copies (replicas) we initialized for each unique row/feature.

As shown in figure 1, the test accuracy of the network de-
grades as the number of unique features at initialization
decreases. Additional results, shown in the Appendix in
figure 5, even suggest that initializing features with replicas
of existing features may result in worse accuracy than re-
moving those features altogether. Nevertheless, the negative
effect of feature replication can be ameliorated by the ad-
dition of a small random independent ’noise’ to the initial
values of each replica. This suggests that the diversity of
features at initialization can have long-term implications
on the success of training, yet this effect appears to vanish
quickly when minor stochastic elements are introduced.

2.2. ConstNet - A Convolutional Network with
Identical Features at Initialization

In order to explore whether networks with identical fea-
tures can be trained on more challenging tasks, we intro-
duce ConstNet, an architecture based on the Wide-ResNet
model (Zagoruyko & Komodakis, 2016). Apart of standard
computation operations, residual networks contain skip con-
nections, which can be described as an addition of identity
operators to the operation performed by one or more lay-
ers. We provide full details of the design of ConstNet, in
Appendix A. The ConstNet network, as used in the experi-
ments, includes:
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* An initial convolutional layer, initialized to average the
input channels to identical copies.

* A variable number of "skip-able" convolutions, with
3 layers where the number of features is increased
(referred to as widening layers). See figure 2 for illus-
tration.

 All skip connections bypass a single ReLU + convolu-
tion block, with its weights initialized to 0.

¢ Values of the residual convolutions, used for network
widening, are initialized to a constant.

» Skip section ends with a 2D pooling operation, fol-
lowed by a fully connected layer initialized to zero.

» Optional batch-norm before each activation layer.
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Figure 2. Convolutional architectures with reduced feature diver-
sity. While a standard ResNet (He et al., 2016) is initialized with
i.i.d. random weights, the Fixup initialization (Zhang et al., 2019)
initializes one convolutional layer at 0 while the Delta-Orthogonal
initialization (Xiao et al., 2018) factorized the weight tensors, ini-
tializing the filter matrix deterministically and hidden state matrix
with a random orthogonal initialization. ConstNet and LeakyNet
by constrast are completely deterministic at initialization with sym-
metrical features as a result. In ConstNet all convolutional layers
are initialized at 0 while the LeakyNet initialization is identical to
Delta-Orthogonal, with the random orthogonal matrix replaced by
an identity that is multiplied by a negative factor at every odd layer.
Both ConstNet and LeakyNet blocks implement an identity func-
tion at initialization. Batch-norm in ConstNet is optional, and we
omit additional layers in Fixup that have no effect at initialization.

In order to motivate this architecture, we first show that
due to the structure of the blocks in ConstNet, signals can
propagate in a depth-independent manner from inputs to
outputs, and gradients do not grow exponentially with depth.
These are generally considered necessary conditions for
trainabiliy of a neural network.

3. Signal Propagation at Initialization

Signal propagation in wide neural networks has been the sub-
ject of recent work for fully-connected (Poole et al., 2016;
Schoenholz et al., 2016; Pennington et al., 2017; Yang &
Schoenholz, 2017), convolutional (Xiao et al., 2018) and re-
current architectures (Chen et al., 2018; Gilboa et al., 2019).
These works study the evolution of covariances between the
hidden states of the network and the stability of the gradi-
ents. At the wide-networks limit, the covariance evolution
depends only on the leading moments of the weight dis-
tributions and the nonlinearities at the infinite width limit,
greatly simplifying analysis. They identify critical initial-
ization schemes that allow training of very deep networks
(or recurrent networks on long time sequence tasks) without
performing costly hyperparameter searches.

We briefly review standard approaches to the study of signal
propagation in neural networks, before specializing to Con-
stNet. To begin, we consider a fully-connected feed-forward
network f(x) given by

a®(x)=x
@) =wOal D) +p® [=1,...,L-1
aO@=¢p@?x) I=1,..,L-1

f(x) — W(L)a(Lfl) (x) + b(L*l)‘

with W) ¢ Rxne-1 pl&) ¢ R™ initialized according to
Wi(f) ~.N(0,09) iid., b;m =0, and ¢ is a nonlinearity that
acts element-wise on vectors. Here a“; ) (x) € R™ is a vector
of forward features at layer £. We denote the scalar loss by

ZL(f(x)).

Common initialization schemes are motivated by guarantee-

ing stability of signals propagating from the inputs to the

outputs by ensuring that the variance of the forward features

does not change with depth (He et al., 2016; Vaswani et al.,

2017; Szegedy et al., 2015). For example, if we take ¢ to

be the ReLU activation function, since ZWi(f) ay_l) |a¢-D
J
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Additionally, one can ensure that not only the variances of
features are insensitive to depth but also the covariances

between features given different inputs (Poole et al., 2016;
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Schoenholz et al., 2016; Xiao et al., 2018). For the forward
features, these are given by

)
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where the expectations are taken over the weight distribu-
tion. At the wide network limit with random weights under
weak moment assumptions, the above equation reduces to a
deterministic dynamical system since the pre-activations are
jointly Gaussian as a consequence of the Central Limit The-
orem (Poole et al., 2016; Schoenholz et al., 2016; Matthews
et al., 2018). As a result, at this limit the signals propagated
through the network can be described completely in terms of
these covariances, which are also independent of the neuron
index j. Additionally, for a sufficiently wide network (typi-
cally once the width is few hundred neurons) the ensemble
average above has proven to be predictive of the behavior
of individual networks.
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By studying this dynamical system one can obtain initializa-
tion schemes that allow signals to propagate stably, even in
very deep networks, enabling them to be trained (Schoen-
holz et al., 2016; Xiao et al., 2018)!.

In order to facilitate trainability with gradient descent, one
can also study the variance of the backward features

ﬁ(-[ ) ()= ———

J ) d;[ ) (x)
which are of interest, since the gradients take the form
0% (x)

(3]
ow !

=0 (x)a}"-“(x). )

In the case of convolutional networks, where W ¢
RKxnexne-1 p€) e Rie | the backward and forwards features
are tensors a'¥ (x) € Rs(fjxnf,ﬁw) (x) € stx"f where S
is the space of spatial dimensions (pixels) at layer ¢. We
will denote by y (or other Greek letters) a vector denoting
the spatial location and K denotes the dimensions of the
kernel. We denote the convolution with respect to the kernel

I These works in fact study closely related covariances defined
for the pre-activations instead since these are jointly Gaussian at the
infinite width limit and thus the evolution of the covariances obeys
a simple closed form equation. See Appendix B of (Blumenfeld
et al., 2019) for details of the relation between the two.

and a summation over the feature index by %. The features
are updated according to

a(O) (x) = x,
d(yfj) (;?j [W”)%a”‘”(x)]yj +b;l)
= e
a@(x) =@ x)),
fx) =PV (x).

where P is a function independent of depth (typically a
composition of a pooling operation and an affine map). For
simplicity of exposition we also assume periodic boundary
conditions in the spatial dimensions. The covariances above
can then be generalized to a tensor Z;’;},jj, (x,x") that can be
analyzed in a similar manner to the fully-connected case
(Xiao et al., 2018). Analogously to eq. 2, the gradients are
related to the features by

oW Y4

= Zﬁ(f} @al”V (). 3)
xij 7

At the infinite width it was shown that using smooth activa-
tions, stable gradients at initialization can be obtained with
careful hyper-parameter tuning, inducing a dependence be-
tween the weight variance and the depth (Pennington et al.,
2017). In (Burkholz & Dubatovka, 2019) it was recently
shown that weight sharing at initialization enables signal
propagation in feed-forward networks with ReL.U activa-
tions. In Appendix B we show that this approach can also be
extended to convolutional networks by constructing a ran-
dom initialization that guarantees signal propagation surely
(and not just in expectation over the weights). As a con-
sequence, the result is applicable to networks of arbitrary
width.

We also note that the FixUp initialization (Zhang et al.,
2019) does not exhibit stable backwards signal propagation
since the gradients to certain layers within each block are
zero at initialization (see figure 2 for details).

3.1. Depth-independent signal propagation with
constant weights and skip connections

We now consider a class of neural networks that exhibit
perfect forward signal propagation to arbitrary depth at ini-
tialization, and depth-independent backwards signal propa-
gation by dispensing with randomness at initialization and
utilizing skip connections. ConstNet is a member of this
class.

Given a hidden state tensor a € R"*%W*" where h, w are
spatial dimensions and 7 is the number of filters, we define
for some integer s such that # mods = w mods=0a
widening block by

WBWb .thwxn_)Rh/sxw/sxsn
yo,8,n - ’
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1Z o
[WBw,b,5,n(@)],; EZ‘ Aoy, + [Wrg@],,; +bi.
where g : RP*wxn _ Rixwxn jg g differentiable func-

tion such as a composition of a non-linearity and batch-
normalization, and W € RK*S"*" b e RS"are initialized as
0. This is equivalent at initialization to a convolution with a
1 x 1 identity filter, stride s and a constant matrix acting on
the channels.

We define a ConstNet block function as a map

CBW,b,n . th wxn _ th wxn’

[CBw,bn(@],; = @y + [Wig@],,; +bi

where W € RK*"*1 b e R™ gre initialized as 0.

Considering inputs x € RS xna , we define a depth L Const-
Net function by
0@ ). 4

f(x,B)=P(Or-1(0r-2(...

where O; is either a ConstNet block or a widening block,
P is a differentiable operation (typically a composition of
pooling and an affine map) and B is a batch of datapoints
containing x. We define a9 (x,B) € [R?Sm)x”“ to be a func-
tion of B (but dropping the B dependence to lighten nota-

tion), that obeys a(m (x) = ~(0) (x) and normalized so that
> ¥ d(o)(x]) =0and Y Z ( (0)(x] ) =1 (which can
yeS(O)]GB ygs ) jEB T

be achieved by applying a convolution and batch normal-
ization operation to x for instance). We assume the stride
parameter s and S are chosen such that the spatial dimen-
sion remains larger than 0 throughout.

We consider translation invariant inputs, meaning for any
© s
x,x' € RS" *Ma drawn from the data distribution we have
d
Kyk = Xyrk
d e e

where = denotes equality in distribution and y,y’ are vectors
denoting spatial location. A local invariance to translation
is a well-studied property of natural images and is believed

to be key to the widespread use of convolutional networks
in image classification tasks.

Claim. Let f be an L-layer ConstNet function as in eq. 4
and denote the scalar loss by £. Then forany 0< ¢ <L—-1
we have

(B9, pON) (B V), pLV ()

ny nr-1

0L _
we

Cijcos(y, )

6$(x) /
a0 =G
1

where C;j,C; > 0 are constants that are independent of L
(but depend on the functions P, g in the definition of the
ConstNet function and on £ ). 0y ¢ are constants that can
depend on L.

Additionally, for translation invariant inputs, if we denote
the spatial dimensions at layer ¢ by S©) we have for any
Y, ,y/ € S([)

~([) (x) (0) (x)

<d(l)(x)'@(l)(xl)> a (aw)(x),d“”(x’))
[SO]n, [S©] ng

Proof: See Appendix C

The claim shows that angles between forward and backward
features are preserved by ConstNet (the former only in dis-
tribution), and that the gradients cannot grow exponentially
with depth. The stability of angles between inputs is known
to be predictive of trainability and generalization in many
architectures (Schoenholz et al., 2016; Pennington et al.,
2017; Xiao et al., 2018). In networks where angles are not
preserved, training tends to fail. Note that the stability con-
ditions in the above claim hold for arbitrary width, unlike
similar results that only apply to wide networks.

One can ask whether the depth-independent signal propaga-
tion in ConstNet is a sufficient condition for it to be trainable.
Indeed, this property is often considered a necessary but in-
sufficient condition for trainability. The answer turns out to
be negative due to the symmetry between features at all lay-
ers (which is also not surprising, given the results in Section
2.1), yet there happens to be a simple solution to this issue.

4. Feature Symmetry and Symmetry
Breaking

Two different features of the same hidden layer, which were
initialized to present an identical function of the input, are
still expected to diverge during back-propagation if their
connection to the output is weighted differently. However,
in the case when the their respective connection to the fol-
lowing layer is also symmetrical, the two features become
interchangeable, and are expected to get the same updates
in a deterministic process. This is the case for all the initial
features in ConstNet as well. It stands to reason that some
form of stochasticity must be introduced into the training
process, in order for the initial symmetry to be broken. This
could be achieved by a deliberate injection of noise to the
parameters or gradients, or by relying on existing training
mechanisms, such as Dropout.

One additional source of stochasticity that is often over-
looked is the computation process itself. For example, the
order of execution when parallelizing GEMM (General Ma-
trix Multiplication) operations is often non-deterministic,
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Model Init Variant Accuracy [%]
Wide-ResNet | He - 95.77+0.05
ConstNet He - 95.40+0.07
ConstNet 0 1% Dropout 95.46+0.13
ConstNet 0 - 95.37+0.06
ConstNet 0 | Deterministic | 24.79 +0.58

Table 1. Stochastic GPU computations enables training with iden-
tical features. Test accuracy on CIFAR-10, with 300 epochs. A
minimal mechanism of symmetry breaking (e.g small dropout or
non-deterministic GPU operations) is sufficient for ConstNet with
almost all weights initialized at 0 to train, matching the test accu-
racy achieved with standard random initialization. Training fails
without such a mechanism (the "Deterministic" variant).

resulting a stochastic output for non-commutative opera-
tions (including the addition of floating point values). It
is therefore one of the mechanisms that may enable train-
ing with gradient descent to break the symmetry between
the features at initialization. In our experiments, we used
Nvidia GTX-1080 GPUs and the cudNN library, which is
non-deterministic by default?.

Results of training ConstNet with different symmetry break-
ing mechanisms, as well as comparison with the baseline of
He random initialization, can be seen in figure 1. Surpris-
ingly, the effect of identical features at initialization appears
to be minor whenever any form of symmetry breaking was
allowed, and even negligible when non-deterministic com-
putation noise is allowed. Not only was the training process
capable of breaking features symmetry, but the overall test
accuracy was not affected when compared to runs where
the initial features were diverse (when "He’ initialization
was used). Our immediate conclusion is that the fixed point
where networks features are identical is extremely unstable.
When no mechanism of symmetry breaking is present (the
deterministic run with no Dropout) training fails.

It should be noted that ’0’ initialization does have its
flaws, which were not captured in this experiment. The
loss/accuracy curves of training when ’0’-init was used,
were typically few epochs behind the curves of its random
initialization counterparts. On some occasions, depending
on the hardware specifications, we have identified cases
where the *0’-init runs relying only on hardware noise were
stuck on the initial stages of training (10% accuracy) for
a random number of epochs. This phenomenon can be
avoided by adding dropout as a complementary symmetry
breaking mechanism, and did not significantly affect the
final accuracy, due to the high number of epochs in this

2See https://github.com/NVIDIA/
tensorflow—determinism for additional details.

experiment. More results regarding the effect of different
symmetry breaking mechanisms are detailed in appendix I
and appendix I.1. Furthermore, O-initialized network were
less robust to learning rate changes, and would fail com-
pletely for high learning rates, which could be handled by
’He’ initialized networks.

4.1. Evolution of Weight Correlations

To analyze the phenomena of symmetry breaking, we will
first define macro parameters which can represent the degree
of symmetry in our network. Given a convolution with
the weights W € Rkx*ky*mouxin \e can split the weight
tensor W to either ng, tensors that defines each of our
output channels as Wfi € Rkx*kyxnin 0 < j < ngy, or split
it to n;, tensors, where each tensor, Wtf € Rkxxkyxnow g <
i < njy, contain the weights that operate on a single input
channel. For our macro-parameter, we will look at the mean
correlation between the different tensors (W, or Wy), and
denote them as the forward correlations Cy and backward
correlations Cy, as:

1 Hout Nout Wi . W]
CfEn (Noui— 1) & & if fj ’ )
o (o =1) £ ] [ w7,
1 Nin Nin Wi . W]
Cp b b (6)

" Tin (in— 1) 4 #fm

where A B is an element-wise dot product operations, and
I-ll r is Frobenius norm. For the case of a fully-connected
layer, the operation can be viewed as a convolution where
each of the input’s and output’s channels is of size 1 x 1,
with a kernel of the same size.

The definitions of backward and forward correlations al-
low us to go back and examine the different initializations
presented in section 4:

» For a weight tensor initialized with random, unbiased
initialization, C r=0Cp,=0 in the limit where the
number of input/output channels or kernel dimensions
goes to infinity.

* For an orthogonal initialized weight tensor in the chan-
nel dimensions, Cr=0,Cp=0.

* When the identity operation is expanded to also repli-

cate nj, channels to ngy = P x njp, Cy = ,1’;?_11, Cp=0.
Oul

¢ When all the filters are initialized to a constant C =
1,Cp=1.

* Replicating features affects the forward correlation
only. For d sized output and R replication per feature,
C = %, Cp=0.
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Figure 3. Weight correlations converge to similar values despite
different initializations. The forward correlation (solid) of a
model with zero initialization and full feature symmetry eventu-
ally matches that of a model initialized without feature symmetry
(He). Backward correlations (dashed) also converge to relatively
similar values. When no mechanism for breaking symmetry was
introduced (Green), the tensor remained maximally correlated, and
training fails. Similar behavior is observed in almost all convolu-
tional layers.

¢ For zero initialization, the fraction is undefined, but
will be considered as fully correlated, Cr=1,Cp=1.

In the case of ConstNet with ’0’ init, all layers had been
initialized with C¢ = 1, Cp, = 1. In contrast, standard random
initialization will result in near-zero correlations. Correla-
tions at a specific layer will be denoted by C f(é), Cp(f).

A characteristic example for the evolution of the forward and
backward correlations of a single tensor in ConstNet, during
training, can be seen in figure 3, and the full results can
be see in figure 7. An interesting finding when comparing
random and constant initialization is that in almost all layers,
the forward correlations appear to converge to similar values
for both initializations (He or ConstNet). Due to the highly
nonconvex optimization landscape, one might expect the
properties of the solutions that gradient descent finds to
depend on the initialization in some way. At least with
respect to feature correlations this appears to not be the
case.

Since perfectly correlated features during inference are
equivalent to a single neuron, it is tempting to interpret
the dissimilarity 1+ (ny —1)1/1—Cy(¢)? as an "effective
width" of a layer. The convergence of the correlations in
figure 3 despite different initializations indicate that gradient
descent is biased towards solutions with a certain effective
width regardless of the initial degree of feature diversity, as
long as there is a symmetry breaking mechanism present.
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Figure 4. The early evolution of backward and forward correlations
is group dependent (larger values are less correlated). This figure
describe the forward correlations (solid) and backward correlations
(dashed) members of different groups in ConstNet with ’0’ init,
at the first 3 epochs of training (1 Epoch = 391 Steps). Different
colors indicate different groups, as explained in section 4.2. A
more detailed view of the individual correlations is available on
figure 6 in the Appendix.

4.2. Group behaviour of symmetry breaking

When observing the the behaviour of the correlations in
different layers in ConstNet at the initial stages of training,
we identify a group behaviour. The forward and backward
correlations of the members of each group appears to be-
have in a similar manner. We identify several distinct groups
in ConstNet, corresponding to the different widths of the
hidden layers. We hypothesize that the layers between the
the different widths, where we have a highly correlated av-
eraging operation, are responsible for this phenomena. An
example of this can be seen in figure 4. While the number of
those groups in ConstNet is limited and depth independent
(such operations are done only when the network width is
increased), we suspect that an intensive use of this initializa-
tion, and thus a greater amount of individual groups required
to break symmetry, could result a failure to train, despite the
naive conservation of signal in depth.

5. Propagation of Signals that Break
Symmetry

In the previous sections, we have shown that networks with
identical features can be trained if they i) enable signal prop-
agation and ii) possess a mechanism for symmetry breaking.
It appears that even when these conditions are satisfied, sym-
metry breaking can still be hindered if the signals that break
symmetry cannot propagate through the network. This is a
novel type of signal that is not considered in standard analy-
ses of signal propagation. We illustrate this phenomenon by
designing a convolutional network that satisfies the above
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conditions (as shown in Appendix H), yet still cannot be
trained without additionally ensuring symmetry breaking
signal propagation.

5.1. LeakyNet

Rather than using the skip connection as a means of signal
propagation, we can suggest alternative methods to initial-
ize networks to represent identity at initialization, for the
signal to be preserved. The main obstacle is the activation
functions, being non-linear. We can overcome this limita-
tion by replacing the ReLU activation with the Leaky ReLU:
0P (x) =LReLU(x,p) = px+ (1 — p)ReLU(x). In the limit
p — 0, both activations are identical, and we can use invert-
ibility of leaky ReLU to form an identity. More specifically,
we will use the equality: ap(—%lap(lx)) = —x. Simply put,
we initialize all layers so that every neuron swaps sign after
each activation, making the composition of two nonlinear
computation blocks linear (see figure 2).

To enforce identical features, it is sufficient to ensure that the
first layer’s features are identical, which we do by averaging
the incoming channels, as in ConstNet. On instances when
the network is widened, we map each feature to several
identical copies. Apart of the computational block, all other
components of network are similar to these presented in
ConstNet. We train LeakyNet with the same configuration
used for training ConstNet, and a default parameter p =
0.01 for the leaky ReLUs. In all runs, the final layer was
initialized to zero.

The benefit of this architecture is that after factorizing the
weight tensors into kernel matrices and matrices that act
on the channels, we can choose between initializing these
as an identity (denoted by ’I’), and a matrix %llT which
we denote by *T’. As seen in section 4.1, the two different
initializations will have a dramatically different effect on
feature correlations, even though they both enable perfect
signal propagation at initialization. Since the ’1’ initializa-
tion averages over all channels, its output will be multiple
copies of a single feature, hence they will be perfectly cor-
related. During training, as the symmetry between features
is gradually broken due to some source of non-determinism,
these symmetry breaking signals will decay when passing
through a layer with a ’ 1’ initialization, but not when pass-
ing through a layer with ’ I’ initialization. We discuss this
further in Appendix G.

5.2. Controlling the Effectiveness of Symmetry
Breaking

Consequently, if we hold the total depth fixed and begin with
a network that uses the *I’ initialization at all layers, we can
progressively hinder symmetry breaking by initializing more
of layers with the ’1’ initialization instead. We perform a
series of experiments of this nature. For reference, we also

train this network with random (He) initialization, adjusted
for the gain of the leaky ReLU initialization.

‘When random initialization was used, the correlations have
frequently converged to a higher value, indicating some
degree of features co-adaptation. The relative success of
random initialization, compared with the orthogonal ini-
tialization, implies that feature diversity (in the sense of
maximal forward correlations) have a negative effect as
well, when examining the network in advanced stages of
training. It is possible that it was, in fact, the orthogonal ini-
tializations that failed in the task of features co-adaptation.
The full results regarding forward correlations are presented
in figure 8 in the appendix.

Initialization Ac"lc"es[t% 1 Max Mean
. (# Conv La’ye,rs) _ @ Sée ds) Cr —
otal | He | "I’ | '1 VI—CF
13 13 - - | 95.57+0.12 | 0.21 0.97
13 - 13 | 0 | 94.05+0.23 | 0.27 0.97
13 - 12 1 | 9434+0.12 | 0.25 0.97
13 - 10 | 3 | 93.47+£0.32 | 0.63 0.94
13 - 5 87.85+0.52 1.00 0.79
13 - 7 44.89+£2.52 1.00 0.52
13 - 13 | 29.77+2.47 | 1.00 0.21

Table 2. Test Accuracy of LeakyNet is correlated with dissimilar-
ity between features. Results are on the CIFAR-10 dataset. Each
network is initialized with a different number of 1" and I’ ini-
tialization. The final performance degrades as more 1’ layers are
sent. Th dissimilarity between features ¥ ,/1—C2(¢
presen e mean dissimilarity between features L% f( )

is indicative of final test accuracy, and networks where the maximal
feature correlation m[axC (€) was close to 1 performed poorly.

6. Discussion

In this work, we have shown that random initialization is
not a necessary condition for deep convolutional networks
to be trainable. Depth-independent propagation of signals
through the network can be achieved without recourse to
random initialization through the use of skip connections,
or through artificial initialization methods. In one case,
we show that the initial symmetry forced on a model is so
fragile during training, that non-deterministic computation
is sufficient to bring an otherwise untrainable model to a
final accuracy of 95% on the CIFAR-10 benchmark.

By experimenting with radically uniform, naive initializa-
tions, we identify cases where the lack of feature diversity
and overall symmetry in the network lead to failure of deep
neural networks at classification tasks. Nonetheless, our
ultimate conclusion is that feature diversity should not be a
major factor, when initializing a deep neural network. The
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extent of symmetry we had to enforce over the network at
initialization to disrupt the training process to a distinguish-
able degree, indicates that there is no significant penalty
from subtle adjustments that sacrifice random initialization
to improve the network’s dynamics. Any negative effect we
did encounter, could be easily negated by a small addition of
independent, random values to break the initial symmetry.

While our symmetrically initialized networks are not in-
tended for practical training, their simplicity can prove
useful for the purpose of theoretical analysis. ConstNet,
for example, implements a trivial mapping at initialization
(as shown in Appendix D). On the other hand, there is a
growing theoretical literature analyzing the behavior of deep
networks by linearizing near initialization (Jacot et al., 2018;
Arora et al., 2019; Lee et al., 2019). Our work suggests that
understanding the behaviour of typical networks will likely
require analysis of the nonlinear process of feature learning
from data that happens in later stages of training. This of
course is far from a novel conclusion, yet is made more
palpable when considering that the features in the ConstNet
model at initialization are identical to features of a linear
model, as shown in Appendix D. A relatively complex task
like CIFAR-10 classification cannot be solved using kernel
regression with such features. This is a clear indication
that after training, the network is far from the linear regime
around initialization.
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