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Appendix
A. Additional empirical results
We include in this section the detailed label ranking results on the same 21 datasets as considered by Hüllermeier et al.
(2008) as well as Cheng et al. (2009).

For entropic regularization E, in addition to rE , we also consider an alternative formulation. Since ρ is already strictly
positive, instead of using the log-projection onto P(eρ), we can directly use the projection onto P(ρ). In our notation, this
can be written as r̃εE(θ) = r̃E(θ/ε), where

r̃E(θ) := argmin
µ∈P(ρ)

KL(µ, e−θ) = ePE(−θ,log ρ).

Spearman’s rank correlation coefficient for each method, averaged over 5 runs, is shown in the table below.

rQ (L2) rE (log-KL) r̃E (KL) No projection
Dataset

fried 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
wine 0.96 ± 0.03 (-0.01) 0.95 ± 0.04 (-0.02) 0.96 ± 0.03 (-0.01) 0.97 ± 0.02
authorship 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
pendigits 0.96 ± 0.00 (+0.02) 0.96 ± 0.00 (+0.02) 0.96 ± 0.00 (+0.02) 0.94 ± 0.00
segment 0.95 ± 0.01 (+0.02) 0.95 ± 0.00 (+0.02) 0.95 ± 0.01 (+0.02) 0.93 ± 0.01
glass 0.89 ± 0.04 (+0.03) 0.88 ± 0.05 (+0.02) 0.89 ± 0.04 (+0.03) 0.87 ± 0.05
vehicle 0.88 ± 0.02 (+0.04) 0.88 ± 0.02 (+0.03) 0.89 ± 0.02 (+0.04) 0.85 ± 0.03
iris 0.89 ± 0.07 (+0.06) 0.87 ± 0.07 (+0.04) 0.87 ± 0.07 (+0.05) 0.83 ± 0.09
stock 0.82 ± 0.02 (+0.04) 0.81 ± 0.02 (+0.03) 0.83 ± 0.02 (+0.05) 0.78 ± 0.02
wisconsin 0.79 ± 0.03 (+0.01) 0.77 ± 0.03 (-0.01) 0.79 ± 0.03 (+0.01) 0.78 ± 0.03
elevators 0.81 ± 0.00 (+0.04) 0.81 ± 0.00 (+0.04) 0.81 ± 0.00 (+0.04) 0.77 ± 0.00
vowel 0.76 ± 0.03 (+0.03) 0.77 ± 0.01 (+0.05) 0.78 ± 0.02 (+0.05) 0.73 ± 0.02
housing 0.77 ± 0.03 (+0.07) 0.78 ± 0.02 (+0.08) 0.77 ± 0.03 (+0.07) 0.70 ± 0.03
cpu-small 0.55 ± 0.01 (+0.05) 0.56 ± 0.01 (+0.05) 0.54 ± 0.01 (+0.04) 0.50 ± 0.02
bodyfat 0.35 ± 0.07 (-0.01) 0.34 ± 0.07 (-0.02) 0.34 ± 0.08 (-0.02) 0.36 ± 0.07
calhousing 0.27 ± 0.01 (+0.01) 0.27 ± 0.01 0.27 ± 0.01 (+0.01) 0.26 ± 0.01
diau 0.26 ± 0.02 0.26 ± 0.02 0.26 ± 0.02 0.26 ± 0.02
spo 0.18 ± 0.02 0.19 ± 0.02 (+0.01) 0.18 ± 0.02 0.18 ± 0.02
dtt 0.15 ± 0.04 0.16 ± 0.04 0.14 ± 0.04 (-0.01) 0.15 ± 0.04
cold 0.09 ± 0.03 0.09 ± 0.03 0.10 ± 0.03 (+0.01) 0.09 ± 0.04
heat 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.02

Table 1. Detailed results of our label ranking experiment. Blue color indicates better Spearman rank correlation coefficient compared to
using no projection. Red color indicates worse coeffcient.
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B. Proofs
B.1. Proof of Lemma 1 (Discrete optimization formulation)

For the first claim, we have for all w ∈ Rn such that w1 > w2 > · · · > wn

σ(θ) = argmax
σ∈Σ

〈θσ,w〉 (11)

and in particular for w = ρ. The second claim follows from

σ(θ) = argmax
σ∈Σ

〈θ,wσ−1〉 = argmax
π−1∈Σ

〈θ,wπ〉 =

(
argmax
π∈Σ

〈θ,wπ〉
)−1

.

B.2. Proof of Proposition 1 (Linear programming formulations)

Let us prove the first claim. The key idea is to absorb θσ in the permutahedron. Using (11), we obtain for all θ ∈ Rn and
for all w ∈ Rn such that w1 > · · · > wn

θσ(θ) = argmax
θσ : σ∈Σ

〈θσ,w〉 = argmax
y∈Σ(θ)

〈y,w〉 = argmax
y∈P(θ)

〈y,w〉,

where in the second equality we used P(θ) = conv(Σ(θ)) and the fundamental theorem of linear programming (Dantzig
et al., 1955, Theorem 6). For the second claim, we have similarly

wr(θ) = argmax
wπ : π∈Σ

〈θ,wπ〉 = argmax
y∈P(w)

〈θ,y〉.

Setting w = ρ and using ρr(θ) = ρσ−1(θ) = σ−1(−θ) = r(−θ) proves the claim.

B.3. Proof of Proposition 2 (Properties of soft sorting and ranking operators)

Differentiability. Let C be a closed convex set and let µ?(z) := argmaxµ∈C〈µ, z〉 −Ψ(z). If Ψ is strongly convex over
C, then µ?(z) is Lipschitz continuous. By Rademacher’s theorem, µ?(z) is differentiable almost everywhere. Furthermore,
since PΨ(z,w) = ∇Ψ(µ?(z)) with C = P(∇Ψ−1(w)), PΨ(z,w) is differentiable a.e. as long as Ψ is twice differentiable,
which is the case when Ψ ∈ {Q,E}.

Order preservation. Proposition 1 of Blondel et al. (2019) shows that µ?(z) and z are sorted the same way. Furthermore,
since PΨ(z,w) = ∇Ψ(µ?(z)) with C = P(∇Ψ−1(w)) and since∇Ψ is monotone, PΨ(z,w) is sorted the same way as
z, as well. Let s = sεΨ(θ) and r = rεΨ(θ). From the respective definitions, this means that s is sorted the same way as ρ
(i.e., it is sorted in descending order) and r is sorted the same way as −θ, which concludes the proof.

Asymptotic behavior. We will now characterize the behavior for sufficiently small and large regularization strength ε.
Note that rather than multiplying the regularizer Ψ by ε > 0, we instead divide s by ε, which is equivalent.

Lemma 3. Analytical solutions of isotonic optimization in the limit regimes

If ε ≤ εmin(s,w) := mini∈[n−1]
si−si+1

wi−wi+1
, then

vQ(s/ε,w) = vE(s/ε,w) = s/ε−w.

If ε > εmax(s,w) := maxi<j
si−sj
wi−wj , then

vQ(s/ε,w) =
1

n

n∑
i=1

(si/ε− wi)1 and vE(s/ε,w) = (LSE(s/ε)− LSE(w))1,

where LSE(x) := log
∑
i e
xi .
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Proof. We start with the ε ≤ εmin(s,w) case. Recall that s is sorted in descending order. Therefore, since we chose ε
sufficiently small, the vector v = s/ε−w is sorted in descending order as well. This means that v is feasible, i.e., it belongs
to the constraint sets in Proposition 3. Further, note that vi = γQ({i}; s/ε,w) = γE({i}; s/ε,w) = si/ε− wi so that v is
the optimal solution if we drop the constraints, which completes the argument.

Next, we tackle the ε > εmax(s,w) case. Note that the claimed solutions are exactly γQ([n]; s,w) and γE([n]; s,w),
so the claim will immediately follow if we show that [n] is an optimal partition. The PAV algorithm (cf. §B.6) merges
at each iteration any two neighboring blocks B1, B2 that violate γΨ(B1; s/ε,w) ≥ γΨ(B2; s/ε,w), starting from the
partitions consisting of singleton sets. Let k ∈ {1, . . . , n − 1} be the iteration number. We claim that the two blocks,
B1 = {1, 2, . . . , k} and B2 = {k + 1}, will always be violating the constraint, so that they can be merged. Note that in the
quadratic case, they can be merged only if

k∑
i=1

(si/ε− wi)/k < sk+1/ε− wk+1,

which is equivalent to
k∑
i=1

si − sk+1

kε
<

k∑
i=1

(wi − wk+1),

which is indeed satisfied when ε > εmax(s,w). In the KL case, they can be merged only if

log

k∑
i=1

esi/ε − log

k∑
i=1

ewi < sk+1/ε− wk+1 ⇐⇒ log

k∑
i=1

esi/ε − sk+1/ε < log

k∑
i=1

ewi − wk+1

⇐⇒ log

k∑
i=1

esi/ε − log esk+1/ε < log

k∑
i=1

ewi − log ewk+1

⇐⇒ log

k∑
i=1

e(si−sk+1)/ε < log

k∑
i=1

ewi−wk+1

⇐⇒
k∑
i=1

e(si−sk+1)/ε <

k∑
i=1

ewi−wk+1 .

This will be true if the ith term on the left-hand side is smaller than the ith term on the right-hand side, i.e., when
(si − sk+1)/ε < wi − wk+1, which again is implied by the assumption.

We can now directly characterize the behavior of the projection operator PΨ in the two regimes ε ≤ εmin(s(z),w) and
ε > εmax(s(z),w). This in turn implies the results for both the soft ranking and sorting operations using (5) and (6).

Proposition 5. Analytical solutions of the projections in the limit regimes

If ε ≤ εmin(s(z),w), then
PΨ(z/ε,w) = wσ−1(z).

If ε > εmax(s(z),w), then

PQ(z/ε,w) = z/ε− mean(z/ε−w)1, and

PE(z/ε,w) = z/ε− LSE(z/ε)1 + LSE(w)1.

Therefore, in these two regimes, we do not even need PAV to compute the optimal projection.
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B.4. Proof of Proposition 3 (Reduction to isotonic optimization)

Before proving Proposition 3, we need the following three lemmas.

Lemma 4. Technical lemma

Let f : R→ R be convex, v1 ≥ v2 and s2 ≥ s1. Then, f(s1 − v1) + f(s2 − v2) ≥ f(s2 − v1) + f(s1 − v2).

Proof. Note that s2 − v2 ≥ s2 − v1 ≥ s1 − v1 and s2 − v2 ≥ s1 − v2 ≥ s1 − v1. This means that we can express s2 − v1

and s1 − v2 as a convex combination of the endpoints of the line segment [s1 − v1, s2 − v2], namely

s2 − v1 = α(s2 − v2) + (1− α)(s1 − v1) and s1 − v2 = β(s2 − v2) + (1− β)(s1 − v1).

Solving for α and β gives α = 1− β. From the convexity of f , we therefore have

f(s2 − v1) ≤ αf(s2 − v2) + (1− α)f(s1 − v1) and f(s1 − v2) ≤ (1− α)f(s2 − v2) + αf(s1 − v1).

Summing the two proves the claim.

Lemma 5. Dual formulation of a regularized linear program

Let µ? = argmaxµ∈C〈µ, z〉 − Ψ(µ), where C ⊆ Rn is a closed convex set and Ψ is strongly convex. Then, the
corresponding dual solution is u? = argminu∈Rn Ψ∗(z − u) + sC(u), where sC(u) := supy∈C〈y,u〉 is the support
function of C. Moreover, µ? = ∇Ψ∗(z − u?).

Proof. The result is well-known and we include the proof for completeness. Let us define the Fenchel conjugate of a
function Ω: Rn → R ∪ {∞} by

Ω∗(z) := sup
µ∈Rn

〈µ, z〉 − Ω(µ).

Let Ω := Ψ + Φ, where Ψ is strongly convex and Φ is convex. We have

Ω∗(z) = (Ψ + Φ)∗(z) = inf
u∈Rn

Φ∗(u) + Ψ∗(z − u),

which is the infimal convolution of Φ∗ with Ψ∗. Moreover, ∇Ω∗(z) = ∇Ψ∗(z − u?). The results follows from choosing
Φ(µ) = IC(µ) and noting that I∗C = sC .

For instance, with Ψ = Q, we have Ψ∗ = Q, and with Ψ = E, we have Ψ∗ = exp.

The next lemma shows how to go further by choosing C as the base polytope B(F ) associated with a cardinality-based
submodular function F , of which the permutahedron is a special case. The polytope is defined as (see, e.g., Bach (2013))

B(F ) :=

{
µ ∈ Rn :

∑
i∈S

µi ≤ F (S) ∀S ⊆ [n],

n∑
i=1

µi = F ([n])

}
.

Lemma 6. Reducing dual formulation to isotonic regression

Let F (S) = g(|S|) for some concave g. Let B(F ) be its corresponding base polytope. Let σ be a permutation of [n]
such that z ∈ Rn is sorted in descending order, i.e., zσ1 ≥ zσ2 ≥ · · · ≥ zσn . Assume Ψ(µ) =

∑n
i=1 ψ(µi), where ψ

is convex. Then, the dual solution u? from Lemma 5 is equal to v?σ−1 , where

v? = argmin
v1≥···≥vn

Ψ∗(zσ − v) + 〈fσ,v〉

= − argmin
v′1≤···≤v′n

Ψ∗(v′σ + z)− 〈fσ,v′〉.



Fast Differentiable Sorting and Ranking

Proof. The support function sB(F )(u) is known as the Lovász extension of F . For conciseness, we use the standard notation
f(u) := sB(F )(u). Applying Lemma 5, we obtain

u? = argmin
u∈Rn

Ψ∗(z − u) + f(u).

Using the “greedy algorithm” of Edmonds (1970), we can compute f(u) as follows. First, choose a permutation σ that
sorts u in descending order, i.e., uσ1 ≥ uσ2 ≥ · · · ≥ uσn . Then a maximizer f ∈ B(F ) ⊆ Rn is obtained by forming
fσ = (fσ1

, . . . , fσn), where
fσi := F ({σ1, . . . , σi})− F ({σ1, . . . , σi−1}).

Moreover, 〈f ,u〉 = f(u).

Let us fix σ to the permutation that sorts u?. Following the same idea as from (Djolonga & Krause, 2017), since the Lovász
extension is linear on the set of all vectors that are sorted by σ, we can write

argmin
u∈Rn

Ψ∗(z − u) + f(u) = argmin
uσ1
≥···≥uσn

Ψ∗(z − u) + 〈f ,u〉.

This is an instance of isotonic optimization, as we can rewrite the problem as

argmin
v1≥···≥vn

Ψ∗(z − vσ−1) + 〈f ,vσ−1〉 = argmin
v1≥···≥vn

Ψ∗(zσ − v) + 〈fσ,v〉, (12)

with u?σ = v? ⇔ u? = v?σ−1 .

Let s := zσ. It remains to show that s1 ≥ · · · ≥ sn, i.e., that s and the optimal dual variables v? are both in descending
order. Suppose sj > si for some i < j. Let s′ be a copy of s with si and sj swapped. Since ψ∗ is convex, by Lemma 4,

Ψ∗(s− v?)−Ψ∗(s′ − v?) = ψ∗(si − v?i ) + ψ∗(sj − v?j )− ψ∗(sj − v?i )− ψ∗(si − v?j ) ≥ 0,

which contradicts the assumption that v? and the corresponding σ are optimal. A similar result is proven by Suehiro et al.
(2012, Lemma 1) but for the optimal primal variable µ?.

We now prove Proposition 3. The permutahedron P(w) is a special case of B(F ) with F (S) =
∑|S|
i=1 wi and w1 ≥ w2 ≥

· · · ≥ wn. In that case, fσ = (fσ1
, . . . , fσn) = (w1, . . . , wn) = w.

For P(∇Ψ∗(w)), we thus have fσ = ∇Ψ∗(w). Finally, note that if Ψ is Legendre-type, which is the case of both Q and E,
then∇Ψ∗ = (∇Ψ)−1. Therefore,∇Ψ(µ?) = z − u?, which concludes the proof.

B.5. Relaxed dual linear program interpretation

We show in this section that the dual problem in Lemma 6 can be interpreted as the original dual linear program (LP) with
relaxed equality constraints. Consider the primal LP

max
y∈B(F )

〈y, z〉. (13)

As shown by Bach (2013, Proposition 3.2), the dual LP is

min
λ∈C

∑
S⊆V

λSF (S) (14)

where

C :=

{
λ ∈ R2V : λS ≥ 0 ∀S ⊂ V, λV ∈ R, zi =

∑
S : i∈S

λS ∀i ∈ [n]

}
.

Moreover, let σ be a permutation sorting z in descending order. Then, an optimal λ is given by (Bach, 2013, Proposition
3.2)

λS =

 zσi − zσi+1
if S = {σ1, . . . , σi}

zσn if S = {σ1, . . . , σn}
0 otherwise.
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Now let us restrict to the support of λ and do the change of variable

λS =

{
vi − vi+1 if S = {σ1, . . . , σi}

vn if S = {σ1, . . . , σn}.

The non-negativity constraints in C become v1 ≥ v2 ≥ · · · ≥ vn and the equality constraints in C become zσ = v. Adding
quadratic regularization 1

2‖y‖
2 in the primal problem (13) is equivalent to relaxing the dual equality constraints in (14) by

smooth constraints 1
2‖zσ − v‖

2 (this can be seen by adding quadratic regularization to the primal variables of Bach (2013,
Eq. (3.6))). For the dual objective (14), we have

∑
S⊆V

λSF (S) =

n−1∑
i=1

(vi − vi+1)F ({σ1, . . . , σi}) + vnF ({σ1, . . . , σn})

=

n∑
i=1

(F ({σ1, . . . , σi})− F ({σ1, . . . , σi−1}))vi

= 〈fσ,v〉,

where in the second line we used (Bach, 2013, Eq. (3.2)). Altogether, we obtain minv1≥···≥vn
1
2‖zσ − v‖

2 + 〈fσ,v〉, which
is exactly the expression we derived in Lemma 6. The entropic case is similar.

B.6. Pool adjacent violators (PAV) algorithm

Let g1, . . . , gn be convex functions. As shown in (Best et al., 2000; Lim & Wright, 2016),

argmin
v1≥···≥vn

n∑
i=1

gi(vi)

can be solved using a generalization of the PAV algorithm (note that unlike these works, we use decreasing constraints for
convenience). All we need is a routine for solving, given some set B of indices, the “pooling” sub-problem

argmin
γ∈R

∑
i∈B

gi(γ).

Thus, we can use PAV to solve (12), as long as Ψ∗ is separable. We now give the closed-form solution for two special cases.
To simplify, we denote s := zσ and w := fσ .

Quadratic regularization. We have gi(vi) = 1
2 (si − vi)2 + viwi. We therefore minimize∑

i∈B
gi(γ) =

∑
i∈B

1

2
(si − γ)2 + γ

∑
i∈B

wi.

The closed-form solution is
γ?Q(s,w;B) =

1

|B|
∑
i∈B

(si − wi).

Entropic regularization. We have gi(vi) = esi−vi + vie
wi . We therefore minimize∑

i∈B
gi(γ) =

∑
i∈B

esi−γ + γ
∑
i∈B

ewi .

The closed-form solution is

γ?E(s,w;B) = − log

∑
i∈B wi∑
i∈B e

si
= LSE(sB)− LSE(wB),

where LSE(x) := log
∑
i e
xi .

Although not explored in this work, other regularizations are potentially possible, see, e.g., (Blondel et al., 2019).
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B.7. Proof of Proposition 4 (Jacobian of isotonic optimization)

Let B1, . . . ,Bm be the partition of [n] induced by v := vΨ(s,w). From the PAV algorithm, for all i ∈ [n], there is a unique
block Bl ∈ {B1, . . . ,Bm} such that i ∈ Bl and vi = γΨ(Bl; s,w). Therefore, for all i ∈ [n], we obtain

∂vi
∂sj

=

{
∂γΨ(Bl;s,w)

∂sj
if i, j ∈ Bl

0 otherwise.

Therefore, the Jacobian matrix is block diagonal, i.e.,

∂v

∂s
=

B
Ψ
1 0 0

0
. . . 0

0 0 BΨ
m

 .
For the block Bl, the non-zero partial derivatives form a matrixBΨ

l ∈ R|Bl|×|Bl| such that each column is associated with
one sj and contains the value ∂γΨ(Bl;s,w)

∂sj
(all values in a column are the same). For quadratic regularization, we have

∂vi
∂sj

=

{ 1
|Bl| if i, j ∈ Bl
0 otherwise.

For entropic regularization, we have

∂vi
∂sj

=

{
esj∑

j′∈B e
s
j′ = softmax(sBl)j if i, j ∈ Bl

0 otherwise.

The multiplication with the Jacobian uses the fact that each block is constant column-wise.

Remark. The expression above is for points s where v is differentiable. For points where v is not differentiable, we can
take an arbitrary matrix in the set of Clarke’s generalized Jacobians, the convex hull of Jacobians of the form limst→s ∂v/∂st.
The points of non-differentiability occur when a block of the optimal solution can be split up into two blocks with equal
values. In that case, the two directional derivatives do not agree, but are derived for quadratic regularization by Djolonga &
Krause (2017).


