

�

Provable Guarantees for Decision Tree Induction:
The Agnostic Setting

* 1Guy Blanc Jane Lange * 1 Li-Yang Tan * 1

Abstract now that they build a decision tree T for a binary classifer

We give strengthened provable guarantees on the
performance of widely employed and empirically
successful top-down decision tree learning heuris-
tics. While prior works have focused on the real-
izable setting, we consider the more realistic and
challenging agnostic setting. We show that for all
monotone functions f and s ∈ N, these heuristics

Õ((log s)/ε2
construct a decision tree of size s) that
achieves error ≤ opt + ε, where opt denotess s
the error of the optimal size-s decision tree for f .
Previously such a guarantee was not known to be
achievable by any algorithm, even one that is not
based on top-down heuristics. We complement
our algorithmic guarantee with a near-matching
˜

sΩ(log s) lower bound.

1. Introduction
This paper is motivated by the goal of establishing strong
provable guarantees for the class of popular and empiri-
cally successful top-down decision tree learning heuris-
tics. This includes well-known instantiations such as
ID3 (Quinlan, 1986), its successor C4.5 (Quinlan, 1993),
and CART (Breiman, 2017), all widely employed in every-
day machine learning applications. These simple heuristics
are also at the heart of more sophisticated decision-tree-
based algorithms such as random forests (Breiman, 2001)
and XGBoost (Chen & Guestrin, 2016), which have quickly
gained prominence in Kaggle and other data science compe-
titions, and achieve state-of-the-art performance for diverse
tasks.

We will soon formally describe the learning-theoretic frame-
work within which we study these heuristics, mentioning for

*Equal contribution 1Stanford University. Corre-
spondence to: Guy Blanc <gblanc@stanford.edu>,
Jane Lange <jlange20@stanford.edu>, Li-Yang Tan
<liyang@cs.stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

f : Rn → {0, 1} in a greedy, top-down fashion:

1. Query 1[xi ≥ θ] at the root of T , where xi and θ are
chosen to maximize the purity gain

G (E[f]) − Pr[xi ≥ θ] · G (E[fxi≥θ])�
+ Pr[xi < θ] · G (E[fxi<θ])

with respect to an impurity function G : [0, 1] → [0, 1].
This carefully chosen function G encapsulates the split-
ting criterion of the heuristic.

2. Build the left and right subtrees of T by recursing on
fxi≥θ and fxi<θ respectively.

Different instantiations of this simple approach are distin-
guished by different impurity functions G , which determine
the order in which the recursive calls are made. For exam-
ple, ID3 and C4.5 uses the binary entropy function G (p) =
H(p); CART uses the Gini criterion G (p) = 4p(1 − p);
Kearns and Mansour proposed and analyzed the functionp
G (p) = 2 p(1 − p) (Kearns & Mansour, 1999; Dietterich
et al., 1996).

Even without specifying the impurity function G , it is
well known and easy to see that any such heuristic can
fare poorly even for simple functions f , in the sense of
building a decision tree that is much larger than the opti-
mal one. Consider the most basic setting of binary fea-
tures, the uniform distribution over inputs, and f being the
parity of two variables f(x) = x1 ⊕ x2. This function
can be computed by a decision tree of size 4, but since
E[f] = E[fxi≥θ] = E[fxi<θ] = 0 for all xi and θ, any
top-down heuristic—regardless of the impurity function
G —may build a tree of size Ω(2n) before achieving any
non-trivial accuracy.

Monotonicity and the conjectures of Fiat, Pechyony,
and Lee. In light of such examples, a question suggests
itself: can we identify natural and expressive classes of
functions for which strong provable guarantees on the per-
formance of these top-down heuristics can be obtained?

mailto:liyang@cs.stanford.edu
mailto:jlange20@stanford.edu
mailto:gblanc@stanford.edu
mailto:liyang@cs.stanford.edu
mailto:jlange20@stanford.edu
mailto:gblanc@stanford.edu

Provable Guarantees for Decision Tree Induction

The frst results in this direction were given by Fiat and
Pechyony (Fiat & Pechyony, 2004; Pechyony, 2004), who
considered the case of binary features (i.e. f : {±1}n →
{0, 1}) and showed a strong positive result for halfspaces
and read-once DNF formulas. For such functions f , they
showed that these heuristics build a decision tree of optimal
size that compute f exactly. Furthermore, and most rele-
vant to our work, they raised the intriguing possibility that
monotonicity is the key property shared by these functions
that enables such a guarantee.1 They conjectured that for all
monotone functions f , these heuristics build a decision tree
of size “not far from minimal” that compute f exactly.

Subsequently, Lee (Lee, 2009) formulated a relaxation
of Fiat and Pechyony’s conjecture, allowing for an ap-
proximate representation rather than an exact represen-
tation. Lee conjectured that for all monotone functions
f : {±1}n → {0, 1} computable by size-s decision trees,
these heuristics construct a decision tree of size poly(s, 1/ε)
that achieves error ε with respect to the uniform distribution
over inputs. (The author further remarked that even a bound
that is poly(s) for constant values of ε “would be a huge
advance.”)

These conjectures of (Fiat & Pechyony, 2004) and (Lee,
2009) are especially appealing because monotonicity, be-
yond just being a natural assumption that excludes parity and
“parity-like” functions, is an independently important and
intensively-studied property in both the theory and practice
of machine learning. Many real-world data sets are natu-
rally monotone in their features. In learning theory, even
restricting our attention just to uniform-distribution learn-
ing, there is a large body of work on learning monotone
functions (Hancock & Mansour, 1991; Kearns & Valiant,
1994; Kearns et al., 1994; Bshouty, 1995; Bshouty & Tamon,
1996; Blum et al., 1998; Verbeurgt, 1998; Sakai & Maruoka,
2000; Servedio, 2004; O’Donnell & Servedio, 2007; Sellie,
2008; Dachman-Soled et al., 2009; Lee, 2009; Jackson et al.,
2011; O’Donnell & Wimmer, 2013; Dachman-Soled et al.,
2015). Partly responsible for this popularity is the fact that
monotonicity allows one to sidestep the well-known statis-
tical query lower bounds (Blum et al., 1994) that hold for
many simple concept classes.

The work of (Blanc et al., 2020). Recent work of Blanc,
Lange, and Tan established a weak version of (Lee, 2009)’s
conjecture. For all monotone functions f : {±1}n →
{0, 1} that are computable by size-s decision trees, they
showed that a close variant of these top-down heuristics√

O(constructs a decision tree of size s log s/ε) that achieves
error ε with respect to the uniform distribution over inputs.

1We consider a function to be monotone if it is either non-
decreasing or non-increasing in every coordinate; we do not require
the direction to be the same for all coordinates. (Such functions
are sometimes also called “unate.”) See Defnition 5.

(Blanc et al., 2020) also showed that the dependence on
‘s’ cannot be made polynomial, thereby disproving (Lee,
2009)’s actual conjecture (and (Fiat & Pechyony, 2004)’s

˜ even stronger conjecture): for all sizes s ≤ 2O(n 4/5) and
1error parameters ε ∈ (0,), they exhibited a monotone2

function f that is computable by a size-s decision tree, and
showed that all top-down impurity-based heuristics have to √

Ω(4build a decision tree of size s ˜ log s) in order to achieve
error ε.

Our contributions. We give strengthened provable guar-
antees on the performance of top-down decision tree learn-
ing heuristics. The three main contributions of our work
are:

1. We consider the more realistic and challenging agnos-
tic setting, where f is an arbitrary monotone function.
Prior works focused on the realizable setting, and their
results relied on assumptions about the computational
complexity of f (i.e. that f is computable by a small de-
cision tree, or a halfspace, or a read-once DNF formula,
etc.).

2. We establish provable guarantees that apply to
all top-down heuristics, including ID3, C4.5, and
CART. (Blanc et al., 2020)’s analysis, on the other
hand, dealt with a specifc variant of these heuristics,
one whose splitting criterion does not correspond to
any impurity function G . (As a secondary contribution,
we further show that (Blanc et al., 2020)’s guarantees in
the realizable setting also hold for all top-down heuris-
tics.)

3. Our analysis extends to classifers for real-valued fea-
tures (i.e. f : Rn → {0, 1}) and arbitrary product dis-
tributions over inputs, whereas prior works dealt with
classifers for binary features (i.e f : {±1}n → {0, 1})
and mostly focused on the uniform distribution over
inputs. Trees for real-valued features branch on queries
of the form 1[xi ≥ θ] for some θ ∈ R, whereas
trees for binary features branch on queries of the form
1[xi = 1].

Our main result is as follows:

Theorem 1 (Our main result; informal). Let f : Rn →
{0, 1} be a monotone function and D be a product distri-
bution over Rn . For s ∈ N, let opt denote the error ofs
the best size-s balanced decision tree for f with respect to

Õ((log s)/ε2)D. 2 Let G be any impurity function. For t ≤ s ,

2A balanced decision tree of size s is one that has depth
O(log s). This technical assumption is not necessary in the case of
binary features and the uniform distribution over inputs (see Theo-
rem 2); it is only necessary for the general setting of real-valued
features and arbitrary product distributions.

Provable Guarantees for Decision Tree Induction

the size-t decision tree for f constructed by the top-down
heuristic with G as its splitting criterion achieves error
≤ opt + ε with respect to D.s

Previously, such a guarantee was not known to be achievable
by any algorithm, even one that is not based on top-down
heuristics (i.e. Theorem 1 represents the frst algorithm for
properly learning decision trees in an agnostic setting).

We complement Theorem 1 with a near-matching lower √˜bound. We show that for all s ≤ 2O(n), there is a mono-
tone function f such that opt ≤ 0.01, and yet any top-down s

˜heuristic has to grow a tree of size sΩ(log s) to even achieve
error ≤ 0.49 with respect to f . Taken together with (Blanc√

O(log s)et al., 2020)’s s upper bound in the realizable set-
ting, this exhibits a separation between the realizable and
agnostic settings.

1.1. Formal Statements of our Results

We defne a partial tree to be a decision tree with unlabeled
leaves, and write T ◦ to denote such trees. We refer to any
decision tree T obtained from T ◦ by a labeling of its leaves
as a completion of T ◦ . Given a tree a partial tree T ◦ and
a function f , there is a canonical completion of T ◦ that
minimizes the approximation error with respect to f :

Defnition 1 (f -completion of a partial tree). Let T ◦ be
a partial tree and f : → {0, 1}. Consider the fol-Rn

lowing completion of T ◦: for every leaf ` in T ◦ , label it
round(E[f`]), where f` denotes the restriction of f by the
path leading to ` and round(p) = 1 if p ≥ 1 and 0 other-2
wise. This completion minimizes the approximation error
Pr[T (x) 6= f(x)]; we refer to it as the f -completion of T ◦

◦and denote it as Tf .

Defnition 2 (Impurity functions and strong concavity). An
impurity function G : [0, 1] → [0, 1] is a concave function
that is symmetric around 1 , and satisfes G (0) = G (1) = 02
and G (1) = 1. We say that G is κ-strongly concave if for 2
all a, b ∈ [0, 1], � �

G (a) + G (b) a + b κ ≤ G − · (b − a)2 .
2 2 2

Remark 1 (κ values of common impurity functions). ID3
and C4.5 use binary entropy as their impurity function,
which is κ-strongly concave for κ = 1/ ln(2), or ≈ 1.4.
Gini impurity, which is used by CART, is strongly con-
cave for κ = 2, and (Kearns & Mansour, 1999)’s impurity
function is strongly concave for κ = 1.

We now formally defne the top-down heuristics that we
study.

Defnition 3 (G -impurity of a partial tree). Let G : [0, 1] →
[0, 1] be an impurity function and D be a distribution over

Rn . For f : Rn → {0, 1} and a partial tree T ◦ , the G -
impurity of T ◦ with respect to f is defned to be

G -impurityf,D(T ◦)X
:= Pr [x reaches `] · G (E[f`]).

x∼D
leaves ` ∈ T ◦

If T ◦ is a partial tree and ̀ is a leaf of T ◦, we write T ◦
`,1[xi≥θ]

to denote the extension of T ◦ obtained by splitting ` with a
query to 1[xi ≥ θ]. The following algorithm captures the
top-down decision tree learning heuristics that we study in
this work:

BUILDTOPDOWNDTG ,D(f, t):

Initialize T ◦ to be the empty tree.

while (size(T ◦) < t) {

Grow T ◦ by splitting leaf ` with a query to
1[xi ≥ θ], where ` and 1[xi ≥ θ] maximize:

G -impurityf,D(T ◦)

−G -impurityf,D(T ◦
`,1[xi≥θ]),

the purity gain with respect to G and D.
}
Output the f -completion of T ◦ .

Figure 1. Top-down heuristic for building a size-t decision tree
approximation of a function f : Rn → {0, 1}, using the impurity
function G as its splitting criterion.

We write TOPDOWNERRORG ,D(f, t) to denote the error
Pr[T (x) 6= f(x)], where T is the size-t tree constructed by
BUILDTOPDOWNDTG ,D(f, t).
Defnition 4 (opt). For a function f : Rn → {0, 1}, as
distribution D over Rn , and an integer s ∈ N, we write

1optf,D,s ∈ [0,] to denote the error of the best size-s deci-2
sion tree for f :

optf,D,sn o
:= min Pr [T (x) 6= f(x)] : T is a size-s decision tree .

x∼D

When f and D are clear from context, we simply write opt .s

Our main algorithmic guarantee. We frst state and prove
our results in the setting of binary features and the uniform
distribution over inputs. As alluded to in the introduction,
in Section 2.2 we will show how our results in this special-
ized setting extend to the more general setting of real-valued
features and arbitrary product distributions over inputs.

Provable Guarantees for Decision Tree Induction

Theorem 2 (Our main algorithmic guarantee for binary
features and the uniform distribution). Let f : {±1}n →
{0, 1} be a monotone function, U be the uniform distribu-
tion over {±1}n , and G : [0, 1] → [0, 1] be an κ-strongly

1concave impurity function. For all s ∈ N and ε ∈ (0,),2

TOPDOWNERRORG ,U (f, s
O(log s)/κε2

) ≤ opt + ε.s

In words, Theorem 2 says that for s ∈ N, the decision
tree of size sO(log s) constructed by BUILDTOPDOWNDT
achieves error that nearly matches that of the best size-s
decision tree for f .

A near-matching lower bound. We contrast Theorem 2
with (Blanc et al., 2020)’s result in the realizable setting:
if f is a monotone function that is computable by a size-
s decision tree (i.e. opt = 0), then a variant of thes √
top-down heuristics grows a tree of size sO(log s) that
achieves error ε.3 With this in mind, it is natural to won-
der if the parameters of Theorem 2 can be improved to√

log s))TOPDOWNERRORG ,U (f, sOκ,ε (≤ opt + ε. We s
complement Theorem 2 with a lower bound that rules out
such an improvement. We show that the dependence on ‘s’
in Theorem 2 is in fact near-optimal:

√
Õ(n)Theorem 3 (Our main lower bound). For all s ≤ 2 ,

there is a monotone function f : {±1}n → {0, 1} such that
opt ≤ 0.01 with respect to the uniform distribution over s

Ω̃(log s)) ≥ 0.49 forinputs, and TOPDOWNERRORG ,U (f, s
any impurity function G .

√
O(log s)Taken together with (Blanc et al., 2020)’s s up-

per bound in the realizable setting, Theorem 3 exhibits a
separation between the realizable and agnostic settings.

1.2. Related Work

Kearns and Mansour (Kearns, 1996; Kearns & Mansour,
1999) were the frst to study top-down decision tree learning
heuristics using the framework of learning theory. They
showed that these heuristics can be viewed as boosting algo-
rithms, where one views the functions queried at the internal
nodes of the tree (single variables in our case) as weak hy-
potheses. As is standard in results on boosting, their results
are conditional in nature: they assume the existence of
weak hypotheses for fltered-and-rebalanced versions of the
original distribution (what they call “The Weak Hypothesis
Assmption”), and they show how these top-down heuristics
build a decision tree that combines these weak hypotheses

3The heuristic that (Blanc et al., 2020) analyzes does not corre-
spond to any impurity function G . As mentioned in the introduc-
tion, in Appendix C we show that (Blanc et al., 2020)’s guarantees
on their variant of the top-down heuristics in fact hold for all
top-down heuristics.

into a strong one. Dietterich, Kearns, and Mansour (Di-
etterich et al., 1996) gave an experimental comparison of
the impurity functions used by ID3, C4.5, and CART, along
with a new impurity function that (Kearns & Mansour, 1999)
had proposed.

Fiat and Pechyony (Fiat & Pechyony, 2004; Pechyony,
2004) studied functions f that are computable by linear
threshold functions or read-once DNF formulas, and showed
that these heuristics build a decision tree of optimal size that
compute f exactly. Recent work of Brutzkus, Daniely, and
Malach (Brutzkus et al., 2019a) studies functions f that are
conjunctions and read-once DNF formulas, and gives theo-
retical and empirical evidence showing that for such func-
tions, the variant of ID3 proposed by (Kearns & Mansour,
1999), when run for t iterations, grows a tree that achieves
accuracy that matches or nearly matches that of the best size-
t tree for f . Concurrent work by the same authors (Brutzkus
et al., 2019b) shows that ID3 learns (log n)-juntas in the
setting of smoothed analysis.

Learning algorithms not based on top-down heuris-
tics: improper algorithms for learning decision trees.
O’Donnell and Servedio (O’Donnell & Servedio, 2007)

1/ε2
gave a poly(n, s)-time uniform-distribution algorithm
for learning monotone functions computable by size-s de-
cision trees. This remains the fastest algorithm for the real-
izable setting. (O’Donnell & Servedio, 2007)’s algorithm
is not based on the top-down heuristics that are the focus
of our work (and the others discussed above); indeed, their
algorithm does not output a decision tree as its hypothe-
sis (i.e. it is not a proper learning algorithm). For the ag-
nostic setting, the results of Kalai, Klivans, Mansour, and
Servedio (Kalai et al., 2008) can be used to give a uniform-

O(log(s/ε)) anddistribution algorithm that runs in time n
outputs a hypothesis that achieves error opt + ε. Compareds
to Theorem 2, this algorithm does not require f to be mono-
tone, but like (O’Donnell & Servedio, 2007)’s algorithm it
is also improper. The work of (Gopalan et al., 2008) gives a
uniform-distribution algorithm that runs in poly(n, s, 1/ε)
time; however, their algorithm requires the use of mem-
bership queries, and is also improper. Furthermore, all the
results discussed in this paragraph only hold in the setting of
binary features and with respect to the uniform distribution
over inputs.

1.3. Preliminaries

We use boldface (e.g. x ∼ Rn) to denote random vari-
ables. Given two functions f, g : Rn → {0, 1}, we write
dist(f, g) := Pr[f(x) 6= g(x)] to denote the distance be-
tween f and g. We write bias(f) := min{Pr[f(x) =
0], Pr[f(x) = 1]} to denote the distance of f to the clos-
est constant function; equivalently, bias(f) = Pr[f(x) =6
round(E[f])], where round(p) = 1 if p ≥ 1 and 0 other-2

Provable Guarantees for Decision Tree Induction

wise. If ` is a leaf in a decision tree, we write |`| to denote
the depth of ` within the tree.

Defnition 5 (Monotone functions). We say that a function
f : Rn → {0, 1} is monotone if for all coordinates i ∈ [n],
either

◦ f is non-decreasing in the i-th direction: f(x) ≤ f(y)
for all x, y ∈ Rn such that xi ≤ yi, or

◦ f is non-increasing in the i-th direction: f(x) ≥ f(y)
for all x, y ∈ Rn such that xi ≤ yi.

Organization of this paper. We give the complete proof
of Theorem 2 in the next section. Due to space constraints,
proofs of the extension of Theorem 2 to Theorem 1 (from
the specifc setting of binary features and the uniform dis-
tribution over inputs, to the general setting of real-valued
features and arbitrary product distributions over inputs), and
that of Theorem 3 (a lower bound showing that Theorem 1
is nearly optimal) are deferred to the appendix.

2. Our Main Algorithmic Result: Theorem 2
Recall that Theorem 2 is concerned with the special case
of binary features and the uniform distribution over inputs.
Therefore the trees that we reason about in the proof of The-
orem 2 split on queries of the form 1[xi = 1] (rather than
queries of the form 1[xi ≥ θ] as in the general setting of
real-valued features). Also, all probabilities and expecta-
tions in this proof are with respect to the uniform distribution
over inputs.

Defnition 6 (Infuence). Given a function f : {±1}n →
{0, 1}, the infuence of coordinate i ∈ [n] on f is defned to
be

Infi(f) := Pr[f(x) =6 f(x ⊕i)],

where x⊕i denotes x with its i-coordinate fipped, and x ∼
{±1} is uniform random. The total infuence of f is defned Pnto be Inf(f) := Infi(f).i=1

A key technical ingredient in our proof will be an in-
equality of Jain and Zhang (Jain & Zhang, 2011), a ro-
bust version of the powerful O’Donnell–Saks–Schramm–
Servedio inequality from the Fourier analysis of boolean
functions (O’Donnell et al., 2005). The following is a spe-
cial case of Corollary 1.4 of (Jain & Zhang, 2011):

Theorem 4 (Robust OSSS inequality). Let f : {±1}n →
{0, 1} be any function, and g : {±1}n → {0, 1} be a size-s
decision tree. Then

bias(f) − dist(f, g)
max{Infi(f)} ≥ .
i∈[n] log s

Remark 2 (Context for Theorem 4). The original OSSS
inequality essentially corresponds to the special case of The-
orem 4 where f ≡ g: if f is a size-s decision tree, then

Var(f)
max{Infi(f)} ≥ .
i∈[n] log s

The OSSS inequality can be viewed as a variant of the
famed Kahn–Kalai–Linial inequality (Kahn et al., 1988),
one that takes into account the computational complexity
of f . In (O’Donnell et al., 2005) the authors also gave a
robust version of their inequality that is qualitative simi-
lar to Theorem 4 (see the discussion following Theorem
3.2 of (O’Donnell et al., 2005)): under the assumptions
of Theorem 4,

Var(f) − 2 · dist(f, g)
max{Infi(f)} ≥ .
i∈[n] log s

This inequality can be used in place of Theorem 4 to prove
a statement that is qualitatively similar to Theorem 2, but
with a weaker error bound of O(opt) + ε rather than the s
opt + ε of Theorem 2.s

Fact 2.1 (Infuence ≡ correlation for monotone functions).
Let f : {±1}n → {0, 1} be a monotone function. Then
Infi(f) = 2 · | E[f(x)xi]| for all i ∈ [n].

Proposition 2.2 (Infuence and purity gain). For all κ-
strongly concave impurity heuristics G , all monotone func-
tions f : {±1}n → {0, 1}, and all coordinates i ∈ [n],

E [G (E[fxi =b])] ≤ G (E[f]) −
κ · Infi(f)2 .

b∼{±1} 32

Proof. Note that:

1E[f(x)xi] = (E[fxi=1] − E[fxi=−1])2

and that:

1E[f] = (E[fxi=1] + E[fxi =−1]).2

The desired result therefore holds as a direct consequence
of the κ-strong concavity of G and Fact 2.1.

2.1. Proof of Theorem 2

Let f : {±1}n → {0, 1} be a monotone function and g be a
size-s decision tree for which dist(f, g) = opt . Fix somes
κ-strongly concave impurity heuristic G . Given a partial
tree T ◦ (which we should think of as the approximator for f
that is being built by BUILDTOPDOWNDTG ,U), we defne
the potential function: X

2−|`|G -impurityf (T ◦) := · G (E[f`]).
leaves ` ∈ T ◦

The next lemma records a few useful properties of this po-
tential function G -impurityf . (This lemma can be viewed

Provable Guarantees for Decision Tree Induction

as our analogue of (Blanc et al., 2020)’s Lemma 5.1. (Blanc
et al., 2020) worked with a potential function that is a variant
of ours which has Inf(f`) in place of G (E[f`]).)

Defnition 7 (Purity gain). Let f : {±1}n → {0, 1} be a
function and G be an impurity heuristic. For a partial tree
T ◦ and a leaf ` of T ◦, we write T ◦ to denote the extension `,xi

of T ◦ obtained by splitting ` with a query to xi. The purity
gain associated with splitting ` with a query to xi is defned
as

G -purity-gainf (T ◦, ̀ , xi)

:= G -impurityf (T ◦) − G -impurityf (T ◦).`,xi

It is easy to verify that given a leaf `, the variable associ-
ated with the largest purity gain is exactly one that is most
correlated with f`:

Proposition 2.3 (Proposition 7.7 from (Blanc et al., 2020)).
For any leaf ` of T ◦, let xi? be the variable that maximizes
G -purity-gainG (`, xi) among all i ∈ [n]. Then,

E[f`(x)xi?] ≥ E[f`(x)xj] for all j ∈ [n].

Lemma 2.4 (Useful properties of G -impurityf).

1. G -impurityf (empty tree) = G (E[f]) ≤ 1.

2. dist(f, T ◦) ≤ G -impurityf (T ◦).f

3. For any leaf ` of T ◦ and variable i ∈ [n],

G -purity-gainf (T ◦, ̀ , xi) ≥ 2−|`| · κ · Infi(f`)2 .
32

Proof. The frst claim follows from the defnition of
G -impurityf . For the second claim, we have that X
dist(f, Tf

◦) = Pr[x reaches `] · bias(f`)
leaves ` ∈ T ◦ X

2−|`|= · bias(f`)
leaves ` ∈ T ◦ X

2−|`|≤ · G (E[f`]) (Defnition 2)
leaves ` ∈ T ◦

= G -impurityf (T ◦).

As for the third claim, we have that

G -purity-gainf (T ◦, ̀ , xi)� �
= 2−|`| G (E[f`]) − E [G (E[(f`)xi =b])

b∼{±1}

≥ 2−|`|
κ · · Infi(f`)2 ,
32

where the fnal inequality is by Proposition 2.2.

The following simple fact states that the error of the f -
completion of a partial tree T ◦ cannot increase with further
splits:
Fact 2.5 (Splits cannot increase error). Let T ◦ be a partial
tree, and Te◦ be the partial tree that results from splitting a
leaf of T ◦ . Then dist(f, Te◦) ≤ dist(f, T ◦).f f

We are now ready to prove Theorem 2. By Fact 2.5, it
suffces to show that error opt + ε is achieved after at most s
O(log s)/ε2
s iterations/splits. We do so by lower bounding
the score of the leaf that is split by BUILDTOPDOWNDT in
each iteration before error opt +ε is achieved. Let T ◦ be the s
size-(j+1) partial tree that is built by BUILDTOPDOWNDT
after j iterations. Suppose dist(f, T ◦) > opt + ε, and let f s

?`? , x be the leaf and variable of T ◦ that is split in thei
(j + 1)-st iteration. We claim that

κ · ε2
G -purity-gainf (T ◦ , `? , xi?) > . (1)

32 · (j + 1)(log s)2

Writing xi(`) to denote variable with the highest correlation
with f`, we have that X

G -purity-gainf (T ◦, ̀ , xi(`))
leaves ` ∈ T ◦ X

2−|`|
κ ≥ · · Infi(`)(f`)2 (Lemma 2.4)
32

leaves ` ∈ T ◦ � �2X
2−|`|

κ bias(f`) − dist(f`, g`)≥ · ·
32 size(g`)

leaves ` ∈ T ◦

(Theorem 4)� �2
κ X

2−|`|
bias(f`) − dist(f`, g`)≥ · ·

32 log s
leaves ` ∈ T ◦

(size(g`) ≤ size(g) = s)⎡ ⎤2� �Xκ ⎣ 2−|`|
bias(f`) − dist(f`, g`) ⎦≥ · ·

32 log s
leaves ` ∈ T ◦

(Jensen’s inequality) Xκ 1
2−|`|= · · bias(f`)

32 (log s)2
leaves ` ∈ T ◦ !2X

2−|`|− · dist(f`, g`)
leaves ` ∈ T ◦

κ 1 � �2
= · · dist(f, Tf

◦) − dist(f, g)
32 (log s)2 � �2
κ 1 κ ε2

> · · ((opt + ε) − opt) = · .s s32 (log s)2 32 log s

It follows that there must be at least one leaf and variable
with purity gain greater than κε2/32(j + 1)(log s)2 . Since
BUILDTOPDOWNDT splits the leaf and variable with the
largest purity gain, this establishes Equation (1).

	

Provable Guarantees for Decision Tree Induction

Writing Te◦ to denote the partial tree that is obtained after
BUILDTOPDOWNDT makes the single split with largest
purity gain, we have that

G -impurityf (Te◦)
`? = G -impurityf (T ◦) − G -purity-gainf (T ◦ , , xi?)

κ · ε2 ≤ G -impurityf (T ◦) − .
32 · (j + 1)(log s)2

Combining this with the frst and second claims
of Lemma 2.4, we have the following: the value of the
potential function starts off at at most 1 with T ◦ being the
empty tree, decreases by at least κ · ε2/32j(log s)2 with the
j-th split, and error opt + ε is achieved once this value s
drops below opt + ε. Therefore, we can bound the number s
of splits necessary to ensure error opt + ε by the smallest ts
that satisfes:

tX κε2 ≥ 1 − (opt + ε).s
j=1

32j(log s)2

Since
tX κε2 κε2 log t

j=1
32j(log s)2

≥
32(log s)2

,

O(log s)/κε2
we conclude that t ≤ s suffces. This completes
the proof of Theorem 2.

2.2. Trees for Real-Valued Features

We will prove an extension of Theorem 2 that applies to
functions of real-valued features and arbitrary product dis-
tributions over inputs.

In order to state our result, we need to slightly restrict our
defnition of opt so it only considers “balanced” trees.
Defnition 8 (Balanced tree). A decision tree T of depth d
and size s is balanced if d = O(log s).
Defnition 9 (balanced opt). For a function f : Rn →s
{0, 1}, product distribution D over Rn, and an integer s ∈

1N, we write balanced optf,D,s ∈ [0,] to denote the error 2
of the best balanced size-s decision tree for f : �
balanced optf,D,s := min Prx∼D[T (x) 6= f(x)] :

T is a balanced size-s decision tree ,

When f and D are clear from context, we simply write
balanced opt .s

We can now formally state our main theorem.
Theorem 1. Let f : Rn → {0, 1} be a monotone function
and D be any product distribution over Rn . For any κ-
strongly concave impurity heuristic G and s ∈ N,

Õ((log s)/ε2

TOPDOWNERRORG ,D(f, s))

≤ balanced opt + ε.s

The proof of Theorem 1 will follow the same overall struc-
ture as our proof of Theorem 2. One key new ingredient is
a generalization of Theorem 4 to real-valued features; this
extension could be of independent interest:

Theorem 5 (Extension of (Jain & Zhang, 2011) to trees for
real-valued features). Let f : Rn → {0, 1} be a monotone
function, D be an arbitrary product distribution over Rn ,
and T be a size-s balanced decision tree. Then, there exist

1i? ∈ [n] and θ? ∈ R for which Prx∼D[xi? ≥ θ?] = and2 � �� � ε
E f(x) · 1[xi? ≥ θ?] ≥ Ω

x∼D log(s) log log(s/ε)

where ε := bias(f) − dist(f, T).

where bias(f) and dist(f, T) are also measured with re-
spect to D.

To prove Theorem 1, we apply Theorem 5 in the same way
Theorem 4 is used to prove Theorem 2. The full proof of
Theorem 1 is deferred to the appendix.

3. Conclusion
We have given strengthened provable guarantees on the
performance of widely employed and empirically success-
ful top-down decision tree learning heuristics such as ID3,
C4.5, and CART. Compared to previous works, our guaran-
tees: (1) hold in the more realistic and challenging agnostic
setting; (2) apply to all top-down heuristics and their as-
sociated impurity functions; (3) extend to the setting of
real-valued features and arbitrary product distributions over
the domain. Our main result shows that for all monotone
functions f : Rn → {0, 1} and s ∈ N, these top-down

Õ((log s)/ε2heuristics build a tree of size s) that achieves er-
ror within ε of that of the optimal balanced size-s decision
tree for f . We complement this with a near-matching lower
bound. While our work was primarily motivated by the
goal of understanding top-down heuristics, our results yield
new guarantees that are not known to be achievable by any
other algorithm, even ones that are not based on top-down
heuristics.

There are several concrete avenues for future work:

1. Beyond monotonicity. As mentioned in the introduc-
tion, any top-down heuristic will fare badly on the
parity functions f , in the sense of building a tree that is
much larger than the optimal tree for f . Though broad
and natural, the class of monotone functions is not the
only class that excludes the parity function. Another
fundamental property to consider is noise stability (see
§2.4 of (O’Donnell, 2014)) — what guarantees can be
made about the performance of these top-down heuris-
tics when run on noise-stable functions?

Provable Guarantees for Decision Tree Induction

2. Beyond product distributions. In this work our results
hold for arbitrary product distributions over the domain,
extending previous work that focuses on the uniform
distribution. Could we establish provable distribution-
independent guarantees, or failing that, perhaps prov-
able guarantees for distributions with limited depen-
dencies between coordinates?

3. Polynomial-size approximating trees. Our lower bound
(Theorem 3) shows a monotone function such that
any top-down heuristics has to build a tree of size
˜

sΩ(log s) in order to achieve error ≤ opt + ε. Resultss
of (Blanc et al., 2020) show a similar lower bound of √
Ω̃(4
s log s) in the realizable setting. Are there broad and
natural subclasses of monotone functions that evade
these lower bounds, and for which polynomial size
upper bounds do exist?

Acknowledgements
We thank Michael Kim and the ICML reviewers for their
helpful feedback and suggestions. LYT is supported by
NSF grant CCF-192179 and NSF CAREER award CCF-
1942123.

References
Blanc, G., Lange, J., and Tan, L.-Y. Top-down induction of

decision trees: rigorous guarantees and inherent limita-
tions. In Proceedings of the 11th Innovations in Theoreti-
cal Computer Science Conference (ITCS), 2020. 1, 2, 1,
1.1, 1.1, 3, 2.1, 2.3, 3, A.1, C, 2, C.1, C, 6, C

Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y.,
and Rudich, S. Weakly learning DNF and characterizing
statistical query learning using Fourier analysis. In Pro-
ceedings of the 26th Annual ACM Symposium on Theory
of Computing (STOC), pp. 253–262, 1994. 1

Blum, A., Burch, C., and Langford, J. On learning monotone
boolean functions. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 408–415, 1998. 1

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001. 1

Breiman, L. Classifcation and regression trees. Routledge,
2017. 1

Brutzkus, A., Daniely, A., and Malach, E. On the Optimal-
ity of Trees Generated by ID3. ArXiv, abs/1907.05444,
2019a. 1.2

Brutzkus, A., Daniely, A., and Malach, E. ID3 Learns
Juntas for Smoothed Product Distributions. ArXiv,
abs/1906.08654, 2019b. 1.2

Bshouty, N. Exact learning via the monotone theory. Infor-
mation and Computation, 123(1):146–153, 1995. 1

Bshouty, N. and Tamon, C. On the Fourier spectrum of
monotone functions. Journal of the ACM, 43(4):747–770,
1996. 1

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016. 1

Dachman-Soled, D., Lee, H. K., Malkin, T., Servedio, R. A.,
Wan, A., and Wee, H. Optimal cryptographic hardness
of learning monotone functions. Theory of Computing,
5(13):257–282, 2009. doi: 10.4086/toc.2009.v005a013.
URL http://www.theoryofcomputing.org/
articles/v005a013. 1

Dachman-Soled, D., Feldman, V., Tan, L.-Y., Wan, A., and
Wimmer, K. Approximate resilience, monotonicity, and
the complexity of agnostic learning. In Proceedings of the
26th Annual Symposium on Discrete Algorithms (SODA),
pp. 498–511, 2015. 1

Dietterich, T., Kearns, M., and Mansour, Y. Applying
the weak learning framework to understand and improve
C4.5. In Proceedings of the 13th International Confer-
ence on Machine Learning (ICML), pp. 96–104, 1996. 1,
1.2

Fiat, A. and Pechyony, D. Decision trees: More theoretical
justifcation for practical algorithms. In Proceedings of
the 15th International Conference on Algorithmic Learn-
ing Theory (ALT), pp. 156–170, 2004. 1, 1.2

Gopalan, P., Kalai, A., and Klivans, A. Agnostically learn-
ing decision trees. In Proceedings of the 40th ACM Sym-
posium on Theory of Computing (STOC), pp. 527–536,
2008. 1.2

Hancock, T. and Mansour, Y. Learning monotone k-µ DNF
formulas on product distributions. In Proceedings of
the 4th Annual Conference on Computational Learning
Theory (COLT), pp. 179–193, 1991. 1

Jackson, J., Lee, H., Servedio, R., and Wan, A. Learning
Random Monotone DNF. Discrete Applied Mathematics,
159(5):259–271, 2011. 1

Jain, R. and Zhang, S. The infuence lower bound via query
elimination. Theory of Computing, 7(1):147–153, 2011.
2, 5

Kahn, J., Kalai, G., and Linial, N. The infuence of variables
on boolean functions. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 68–80, 1988. 2

http://www.theoryofcomputing.org/articles/v005a013
http://www.theoryofcomputing.org/articles/v005a013

Provable Guarantees for Decision Tree Induction

Kalai, A., Klivans, A., Mansour, Y., and Servedio, R. A.
Agnostically learning halfspaces. SIAM Journal on Com-
puting, 37(6):1777–1805, 2008. 1.2

Kearns, M. Boosting theory towards practice: recent devel-
opments in decision tree induction and the weak learning
framework (invited talk). In Proceedings of the 13th Na-
tional Conference on Artifcial intelligence (AAAI), pp.
1337–1339, 1996. 1.2

Kearns, M. and Mansour, Y. On the boosting ability of
top-down decision tree learning algorithms. Journal of
Computer and System Sciences, 58(1):109–128, 1999. 1,
1, 1.2

Kearns, M. and Valiant, L. Cryptographic limitations on
learning Boolean formulae and fnite automata. Journal
of the ACM, 41(1):67–95, 1994. 1

Kearns, M., Li, M., and Valiant, L. Learning Boolean
formulas. Journal of the ACM, 41(6):1298–1328, 1994.
1

Lee, H. On the learnability of monotone functions. PhD
thesis, Columbia University, 2009. 1

O’Donnell, R. Analysis of Boolean Functions. Cam-
bridge University Press, 2014. Available at http:
//analysisofbooleanfunctions.net/. 1, A

O’Donnell, R. and Servedio, R. Learning monotone decision
trees in polynomial time. SIAM Journal on Computing,
37(3):827–844, 2007. 1, 1.2, C

O’Donnell, R. and Wimmer, K. KKL, Kruskal–Katona,
and Monotone Nets. SIAM Journal on Computing, 42(6):
2375–2399, 2013. 1

O’Donnell, R., Saks, M., Schramm, O., and Servedio, R.
Every decision tree has an infuential variable. In Proceed-
ings of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 31–39, 2005. 2, 2

Pechyony, D. Decision trees: More theoretical justifca-
tion for practical algorithms. Master’s thesis, Tel Aviv
University, 2004. 1, 1.2

Quinlan, R. Induction of decision trees. Machine learning,
1(1):81–106, 1986. 1

Quinlan, R. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993. ISBN 1558602402. 1

Sakai, Y. and Maruoka, A. Learning monotone log-term
DNF formulas under the uniform distribution. Theory of
Computing Systems, 33:17–33, 2000. 1

Sellie, L. Learning random monotone DNF under the uni-
form distribution. In Proceedings of the 21st Annual
Conference on Learning Theory (COLT), pp. 181–192,
2008. 1

Servedio, R. On learning monotone DNF under product
distributions. Information and Computation, 193(1):57–
74, 2004. 1

Verbeurgt, K. Learning sub-classes of monotone DNF on
the uniform distribution. In Proceedings of the 9th Con-
ference on Algorithmic Learning Theory (ALT), pp. 385–
399, 1998. 1

http://analysisofbooleanfunctions.net/
http://analysisofbooleanfunctions.net/

