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Provable Guarantees for Decision Tree Induction: 
The Agnostic Setting 

* 1Guy Blanc Jane Lange * 1 Li-Yang Tan * 1 

Abstract now that they build a decision tree T for a binary classifer 

We give strengthened provable guarantees on the 
performance of widely employed and empirically 
successful top-down decision tree learning heuris-
tics. While prior works have focused on the real-
izable setting, we consider the more realistic and 
challenging agnostic setting. We show that for all 
monotone functions f and s ∈ N, these heuristics 

Õ((log s)/ε2 
construct a decision tree of size s ) that 
achieves error ≤ opt + ε, where opt denotess s 
the error of the optimal size-s decision tree for f . 
Previously such a guarantee was not known to be 
achievable by any algorithm, even one that is not 
based on top-down heuristics. We complement 
our algorithmic guarantee with a near-matching 
˜ 

sΩ(log s) lower bound. 

1. Introduction 
This paper is motivated by the goal of establishing strong 
provable guarantees for the class of popular and empiri-
cally successful top-down decision tree learning heuris-
tics. This includes well-known instantiations such as 
ID3 (Quinlan, 1986), its successor C4.5 (Quinlan, 1993), 
and CART (Breiman, 2017), all widely employed in every-
day machine learning applications. These simple heuristics 
are also at the heart of more sophisticated decision-tree-
based algorithms such as random forests (Breiman, 2001) 
and XGBoost (Chen & Guestrin, 2016), which have quickly 
gained prominence in Kaggle and other data science compe-
titions, and achieve state-of-the-art performance for diverse 
tasks. 

We will soon formally describe the learning-theoretic frame-
work within which we study these heuristics, mentioning for 

*Equal contribution 1Stanford University. Corre-
spondence to: Guy Blanc <gblanc@stanford.edu>, 
Jane Lange <jlange20@stanford.edu>, Li-Yang Tan 
<liyang@cs.stanford.edu>. 

Proceedings of the 37 th International Conference on Machine 
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s). 

f : Rn → {0, 1} in a greedy, top-down fashion: 

1. Query 1[xi ≥ θ] at the root of T , where xi and θ are 
chosen to maximize the purity gain 

G (E[f ]) − Pr[xi ≥ θ] · G (E[fxi≥θ])� 
+ Pr[xi < θ] · G (E[fxi<θ]) 

with respect to an impurity function G : [0, 1] → [0, 1]. 
This carefully chosen function G encapsulates the split-
ting criterion of the heuristic. 

2. Build the left and right subtrees of T by recursing on 
fxi≥θ and fxi<θ respectively. 

Different instantiations of this simple approach are distin-
guished by different impurity functions G , which determine 
the order in which the recursive calls are made. For exam-
ple, ID3 and C4.5 uses the binary entropy function G (p) = 
H(p); CART uses the Gini criterion G (p) = 4p(1 − p); 
Kearns and Mansour proposed and analyzed the functionp
G (p) = 2 p(1 − p) (Kearns & Mansour, 1999; Dietterich 
et al., 1996). 

Even without specifying the impurity function G , it is 
well known and easy to see that any such heuristic can 
fare poorly even for simple functions f , in the sense of 
building a decision tree that is much larger than the opti-
mal one. Consider the most basic setting of binary fea-
tures, the uniform distribution over inputs, and f being the 
parity of two variables f(x) = x1 ⊕ x2. This function 
can be computed by a decision tree of size 4, but since 
E[f ] = E[fxi≥θ] = E[fxi<θ] = 0 for all xi and θ, any 
top-down heuristic—regardless of the impurity function 
G —may build a tree of size Ω(2n) before achieving any 
non-trivial accuracy. 

Monotonicity and the conjectures of Fiat, Pechyony, 
and Lee. In light of such examples, a question suggests 
itself: can we identify natural and expressive classes of 
functions for which strong provable guarantees on the per-
formance of these top-down heuristics can be obtained? 

mailto:liyang@cs.stanford.edu
mailto:jlange20@stanford.edu
mailto:gblanc@stanford.edu
mailto:liyang@cs.stanford.edu
mailto:jlange20@stanford.edu
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Provable Guarantees for Decision Tree Induction 

The frst results in this direction were given by Fiat and 
Pechyony (Fiat & Pechyony, 2004; Pechyony, 2004), who 
considered the case of binary features (i.e. f : {±1}n → 
{0, 1}) and showed a strong positive result for halfspaces 
and read-once DNF formulas. For such functions f , they 
showed that these heuristics build a decision tree of optimal 
size that compute f exactly. Furthermore, and most rele-
vant to our work, they raised the intriguing possibility that 
monotonicity is the key property shared by these functions 
that enables such a guarantee.1 They conjectured that for all 
monotone functions f , these heuristics build a decision tree 
of size “not far from minimal” that compute f exactly. 

Subsequently, Lee (Lee, 2009) formulated a relaxation 
of Fiat and Pechyony’s conjecture, allowing for an ap-
proximate representation rather than an exact represen-
tation. Lee conjectured that for all monotone functions 
f : {±1}n → {0, 1} computable by size-s decision trees, 
these heuristics construct a decision tree of size poly(s, 1/ε) 
that achieves error ε with respect to the uniform distribution 
over inputs. (The author further remarked that even a bound 
that is poly(s) for constant values of ε “would be a huge 
advance.”) 

These conjectures of (Fiat & Pechyony, 2004) and (Lee, 
2009) are especially appealing because monotonicity, be-
yond just being a natural assumption that excludes parity and 
“parity-like” functions, is an independently important and 
intensively-studied property in both the theory and practice 
of machine learning. Many real-world data sets are natu-
rally monotone in their features. In learning theory, even 
restricting our attention just to uniform-distribution learn-
ing, there is a large body of work on learning monotone 
functions (Hancock & Mansour, 1991; Kearns & Valiant, 
1994; Kearns et al., 1994; Bshouty, 1995; Bshouty & Tamon, 
1996; Blum et al., 1998; Verbeurgt, 1998; Sakai & Maruoka, 
2000; Servedio, 2004; O’Donnell & Servedio, 2007; Sellie, 
2008; Dachman-Soled et al., 2009; Lee, 2009; Jackson et al., 
2011; O’Donnell & Wimmer, 2013; Dachman-Soled et al., 
2015). Partly responsible for this popularity is the fact that 
monotonicity allows one to sidestep the well-known statis-
tical query lower bounds (Blum et al., 1994) that hold for 
many simple concept classes. 

The work of (Blanc et al., 2020). Recent work of Blanc, 
Lange, and Tan established a weak version of (Lee, 2009)’s 
conjecture. For all monotone functions f : {±1}n → 
{0, 1} that are computable by size-s decision trees, they 
showed that a close variant of these top-down heuristics√ 

O(constructs a decision tree of size s log s/ε) that achieves 
error ε with respect to the uniform distribution over inputs. 

1We consider a function to be monotone if it is either non-
decreasing or non-increasing in every coordinate; we do not require 
the direction to be the same for all coordinates. (Such functions 
are sometimes also called “unate.”) See Defnition 5. 

(Blanc et al., 2020) also showed that the dependence on 
‘s’ cannot be made polynomial, thereby disproving (Lee, 
2009)’s actual conjecture (and (Fiat & Pechyony, 2004)’s 

˜ even stronger conjecture): for all sizes s ≤ 2O(n 4/5) and 
1error parameters ε ∈ (0, ), they exhibited a monotone2 

function f that is computable by a size-s decision tree, and 
showed that all top-down impurity-based heuristics have to √ 

Ω( 4build a decision tree of size s ˜ log s) in order to achieve 
error ε. 

Our contributions. We give strengthened provable guar-
antees on the performance of top-down decision tree learn-
ing heuristics. The three main contributions of our work 
are: 

1. We consider the more realistic and challenging agnos-
tic setting, where f is an arbitrary monotone function. 
Prior works focused on the realizable setting, and their 
results relied on assumptions about the computational 
complexity of f (i.e. that f is computable by a small de-
cision tree, or a halfspace, or a read-once DNF formula, 
etc.). 

2. We establish provable guarantees that apply to 
all top-down heuristics, including ID3, C4.5, and 
CART. (Blanc et al., 2020)’s analysis, on the other 
hand, dealt with a specifc variant of these heuristics, 
one whose splitting criterion does not correspond to 
any impurity function G . (As a secondary contribution, 
we further show that (Blanc et al., 2020)’s guarantees in 
the realizable setting also hold for all top-down heuris-
tics.) 

3. Our analysis extends to classifers for real-valued fea-
tures (i.e. f : Rn → {0, 1}) and arbitrary product dis-
tributions over inputs, whereas prior works dealt with 
classifers for binary features (i.e f : {±1}n → {0, 1}) 
and mostly focused on the uniform distribution over 
inputs. Trees for real-valued features branch on queries 
of the form 1[xi ≥ θ] for some θ ∈ R, whereas 
trees for binary features branch on queries of the form 
1[xi = 1]. 

Our main result is as follows: 

Theorem 1 (Our main result; informal). Let f : Rn → 
{0, 1} be a monotone function and D be a product distri-
bution over Rn . For s ∈ N, let opt denote the error ofs 
the best size-s balanced decision tree for f with respect to 

Õ((log s)/ε2)D. 2 Let G be any impurity function. For t ≤ s , 

2A balanced decision tree of size s is one that has depth 
O(log s). This technical assumption is not necessary in the case of 
binary features and the uniform distribution over inputs (see Theo-
rem 2); it is only necessary for the general setting of real-valued 
features and arbitrary product distributions. 



  
 

     

   

    
  

   
   

  

   

    

  

  

    

    

  
       

     

 
 

       
        

     
    

       
       

  

 

   

 
 

      
   

         
   

  

        
 

    

      
 

   
  

  

  

    

   
      

   

    

 

  

 
    

 

   
     

  

      
    

      

        
 

    

Provable Guarantees for Decision Tree Induction 

the size-t decision tree for f constructed by the top-down 
heuristic with G as its splitting criterion achieves error 
≤ opt + ε with respect to D.s 

Previously, such a guarantee was not known to be achievable 
by any algorithm, even one that is not based on top-down 
heuristics (i.e. Theorem 1 represents the frst algorithm for 
properly learning decision trees in an agnostic setting). 

We complement Theorem 1 with a near-matching lower √˜bound. We show that for all s ≤ 2O( n), there is a mono-
tone function f such that opt ≤ 0.01, and yet any top-down s 

˜heuristic has to grow a tree of size sΩ(log s) to even achieve 
error ≤ 0.49 with respect to f . Taken together with (Blanc√ 

O( log s)et al., 2020)’s s upper bound in the realizable set-
ting, this exhibits a separation between the realizable and 
agnostic settings. 

1.1. Formal Statements of our Results 

We defne a partial tree to be a decision tree with unlabeled 
leaves, and write T ◦ to denote such trees. We refer to any 
decision tree T obtained from T ◦ by a labeling of its leaves 
as a completion of T ◦ . Given a tree a partial tree T ◦ and 
a function f , there is a canonical completion of T ◦ that 
minimizes the approximation error with respect to f : 

Defnition 1 (f -completion of a partial tree). Let T ◦ be 
a partial tree and f : → {0, 1}. Consider the fol-Rn 

lowing completion of T ◦: for every leaf ` in T ◦ , label it 
round(E[f`]), where f` denotes the restriction of f by the 
path leading to ` and round(p) = 1 if p ≥ 1 and 0 other-2 
wise. This completion minimizes the approximation error 
Pr[T (x) 6= f(x)]; we refer to it as the f -completion of T ◦ 

◦and denote it as Tf . 

Defnition 2 (Impurity functions and strong concavity). An 
impurity function G : [0, 1] → [0, 1] is a concave function 
that is symmetric around 1 , and satisfes G (0) = G (1) = 02 
and G ( 1 ) = 1. We say that G is κ-strongly concave if for 2 
all a, b ∈ [0, 1], � � 

G (a) + G (b) a + b κ ≤ G − · (b − a)2 . 
2 2 2 

Remark 1 (κ values of common impurity functions). ID3 
and C4.5 use binary entropy as their impurity function, 
which is κ-strongly concave for κ = 1/ ln(2), or ≈ 1.4. 
Gini impurity, which is used by CART, is strongly con-
cave for κ = 2, and (Kearns & Mansour, 1999)’s impurity 
function is strongly concave for κ = 1. 

We now formally defne the top-down heuristics that we 
study. 

Defnition 3 (G -impurity of a partial tree). Let G : [0, 1] → 
[0, 1] be an impurity function and D be a distribution over 

Rn . For f : Rn → {0, 1} and a partial tree T ◦ , the G -
impurity of T ◦ with respect to f is defned to be 

G -impurityf,D(T ◦)X 
:= Pr [ x reaches ` ] · G (E[f`]). 

x∼D 
leaves ` ∈ T ◦ 

If T ◦ is a partial tree and ̀  is a leaf of T ◦, we write T ◦ 
`,1[xi≥θ] 

to denote the extension of T ◦ obtained by splitting ` with a 
query to 1[xi ≥ θ]. The following algorithm captures the 
top-down decision tree learning heuristics that we study in 
this work: 

BUILDTOPDOWNDTG ,D(f, t): 

Initialize T ◦ to be the empty tree. 

while (size(T ◦) < t) { 

Grow T ◦ by splitting leaf ` with a query to 
1[xi ≥ θ], where ` and 1[xi ≥ θ] maximize: 

G -impurityf,D(T ◦) 

−G -impurityf,D(T ◦ 
`,1[xi≥θ]), 

the purity gain with respect to G and D. 
}
Output the f -completion of T ◦ . 

Figure 1. Top-down heuristic for building a size-t decision tree 
approximation of a function f : Rn → {0, 1}, using the impurity 
function G as its splitting criterion. 

We write TOPDOWNERRORG ,D(f, t) to denote the error 
Pr[T (x) 6= f(x)], where T is the size-t tree constructed by 
BUILDTOPDOWNDTG ,D(f, t). 
Defnition 4 (opt ). For a function f : Rn → {0, 1}, as 
distribution D over Rn , and an integer s ∈ N, we write 

1optf,D,s ∈ [0, ] to denote the error of the best size-s deci-2 
sion tree for f : 

optf,D,sn o 
:= min Pr [T (x) 6= f(x)] : T is a size-s decision tree . 

x∼D 

When f and D are clear from context, we simply write opt .s 

Our main algorithmic guarantee. We frst state and prove 
our results in the setting of binary features and the uniform 
distribution over inputs. As alluded to in the introduction, 
in Section 2.2 we will show how our results in this special-
ized setting extend to the more general setting of real-valued 
features and arbitrary product distributions over inputs. 



    
   

        
       

     

     

  
  

 

 
    

   

 
 

          

    
     

    
        

 
 

   

 

 

 
 

 

 
 

 
  

 

  
   

 

   

  
     

      
    

     
   

      

Provable Guarantees for Decision Tree Induction 

Theorem 2 (Our main algorithmic guarantee for binary 
features and the uniform distribution). Let f : {±1}n → 
{0, 1} be a monotone function, U be the uniform distribu-
tion over {±1}n , and G : [0, 1] → [0, 1] be an κ-strongly 

1concave impurity function. For all s ∈ N and ε ∈ (0, ),2 

TOPDOWNERRORG ,U (f, s
O(log s)/κε2 

) ≤ opt + ε.s 

In words, Theorem 2 says that for s ∈ N, the decision 
tree of size sO(log s) constructed by BUILDTOPDOWNDT 
achieves error that nearly matches that of the best size-s 
decision tree for f . 

A near-matching lower bound. We contrast Theorem 2 
with (Blanc et al., 2020)’s result in the realizable setting: 
if f is a monotone function that is computable by a size-
s decision tree (i.e. opt = 0), then a variant of thes √ 
top-down heuristics grows a tree of size sO( log s) that 
achieves error ε.3 With this in mind, it is natural to won-
der if the parameters of Theorem 2 can be improved to√ 

log s))TOPDOWNERRORG ,U (f, sOκ,ε ( ≤ opt + ε. We s 
complement Theorem 2 with a lower bound that rules out 
such an improvement. We show that the dependence on ‘s’ 
in Theorem 2 is in fact near-optimal: 

√
Õ( n)Theorem 3 (Our main lower bound). For all s ≤ 2 , 

there is a monotone function f : {±1}n → {0, 1} such that 
opt ≤ 0.01 with respect to the uniform distribution over s 

Ω̃(log s)) ≥ 0.49 forinputs, and TOPDOWNERRORG ,U (f, s 
any impurity function G . 

√ 
O( log s)Taken together with (Blanc et al., 2020)’s s up-

per bound in the realizable setting, Theorem 3 exhibits a 
separation between the realizable and agnostic settings. 

1.2. Related Work 

Kearns and Mansour (Kearns, 1996; Kearns & Mansour, 
1999) were the frst to study top-down decision tree learning 
heuristics using the framework of learning theory. They 
showed that these heuristics can be viewed as boosting algo-
rithms, where one views the functions queried at the internal 
nodes of the tree (single variables in our case) as weak hy-
potheses. As is standard in results on boosting, their results 
are conditional in nature: they assume the existence of 
weak hypotheses for fltered-and-rebalanced versions of the 
original distribution (what they call “The Weak Hypothesis 
Assmption”), and they show how these top-down heuristics 
build a decision tree that combines these weak hypotheses 

3The heuristic that (Blanc et al., 2020) analyzes does not corre-
spond to any impurity function G . As mentioned in the introduc-
tion, in Appendix C we show that (Blanc et al., 2020)’s guarantees 
on their variant of the top-down heuristics in fact hold for all 
top-down heuristics. 

into a strong one. Dietterich, Kearns, and Mansour (Di-
etterich et al., 1996) gave an experimental comparison of 
the impurity functions used by ID3, C4.5, and CART, along 
with a new impurity function that (Kearns & Mansour, 1999) 
had proposed. 

Fiat and Pechyony (Fiat & Pechyony, 2004; Pechyony, 
2004) studied functions f that are computable by linear 
threshold functions or read-once DNF formulas, and showed 
that these heuristics build a decision tree of optimal size that 
compute f exactly. Recent work of Brutzkus, Daniely, and 
Malach (Brutzkus et al., 2019a) studies functions f that are 
conjunctions and read-once DNF formulas, and gives theo-
retical and empirical evidence showing that for such func-
tions, the variant of ID3 proposed by (Kearns & Mansour, 
1999), when run for t iterations, grows a tree that achieves 
accuracy that matches or nearly matches that of the best size-
t tree for f . Concurrent work by the same authors (Brutzkus 
et al., 2019b) shows that ID3 learns (log n)-juntas in the 
setting of smoothed analysis. 

Learning algorithms not based on top-down heuris-
tics: improper algorithms for learning decision trees. 
O’Donnell and Servedio (O’Donnell & Servedio, 2007) 

1/ε2 
gave a poly(n, s )-time uniform-distribution algorithm 
for learning monotone functions computable by size-s de-
cision trees. This remains the fastest algorithm for the real-
izable setting. (O’Donnell & Servedio, 2007)’s algorithm 
is not based on the top-down heuristics that are the focus 
of our work (and the others discussed above); indeed, their 
algorithm does not output a decision tree as its hypothe-
sis (i.e. it is not a proper learning algorithm). For the ag-
nostic setting, the results of Kalai, Klivans, Mansour, and 
Servedio (Kalai et al., 2008) can be used to give a uniform-

O(log(s/ε)) anddistribution algorithm that runs in time n 
outputs a hypothesis that achieves error opt + ε. Compareds 
to Theorem 2, this algorithm does not require f to be mono-
tone, but like (O’Donnell & Servedio, 2007)’s algorithm it 
is also improper. The work of (Gopalan et al., 2008) gives a 
uniform-distribution algorithm that runs in poly(n, s, 1/ε) 
time; however, their algorithm requires the use of mem-
bership queries, and is also improper. Furthermore, all the 
results discussed in this paragraph only hold in the setting of 
binary features and with respect to the uniform distribution 
over inputs. 

1.3. Preliminaries 

We use boldface (e.g. x ∼ Rn) to denote random vari-
ables. Given two functions f, g : Rn → {0, 1}, we write 
dist(f, g) := Pr[f(x) 6= g(x)] to denote the distance be-
tween f and g. We write bias(f) := min{Pr[f(x) = 
0], Pr[f(x) = 1]} to denote the distance of f to the clos-
est constant function; equivalently, bias(f) = Pr[f(x) =6 
round(E[f ])], where round(p) = 1 if p ≥ 1 and 0 other-2 



  
 

     

    

 
  

   

      
  

   

    
    

 
     

     

 
      

        
 

   
  

    

    

 

      
     

 
   

  

        
    

    

  

     
    

  

     
    

  

   
   

    
     

     

    
  

   

    
        

  
     

Provable Guarantees for Decision Tree Induction 

wise. If ` is a leaf in a decision tree, we write |`| to denote 
the depth of ` within the tree. 

Defnition 5 (Monotone functions). We say that a function 
f : Rn → {0, 1} is monotone if for all coordinates i ∈ [n], 
either 

◦ f is non-decreasing in the i-th direction: f(x) ≤ f(y) 
for all x, y ∈ Rn such that xi ≤ yi, or 

◦ f is non-increasing in the i-th direction: f(x) ≥ f(y) 
for all x, y ∈ Rn such that xi ≤ yi. 

Organization of this paper. We give the complete proof 
of Theorem 2 in the next section. Due to space constraints, 
proofs of the extension of Theorem 2 to Theorem 1 (from 
the specifc setting of binary features and the uniform dis-
tribution over inputs, to the general setting of real-valued 
features and arbitrary product distributions over inputs), and 
that of Theorem 3 (a lower bound showing that Theorem 1 
is nearly optimal) are deferred to the appendix. 

2. Our Main Algorithmic Result: Theorem 2 
Recall that Theorem 2 is concerned with the special case 
of binary features and the uniform distribution over inputs. 
Therefore the trees that we reason about in the proof of The-
orem 2 split on queries of the form 1[xi = 1] (rather than 
queries of the form 1[xi ≥ θ] as in the general setting of 
real-valued features). Also, all probabilities and expecta-
tions in this proof are with respect to the uniform distribution 
over inputs. 

Defnition 6 (Infuence). Given a function f : {±1}n → 
{0, 1}, the infuence of coordinate i ∈ [n] on f is defned to 
be 

Infi(f) := Pr[f(x) =6 f(x ⊕i)], 

where x⊕i denotes x with its i-coordinate fipped, and x ∼ 
{±1} is uniform random. The total infuence of f is defned Pnto be Inf(f) := Infi(f).i=1 

A key technical ingredient in our proof will be an in-
equality of Jain and Zhang (Jain & Zhang, 2011), a ro-
bust version of the powerful O’Donnell–Saks–Schramm– 
Servedio inequality from the Fourier analysis of boolean 
functions (O’Donnell et al., 2005). The following is a spe-
cial case of Corollary 1.4 of (Jain & Zhang, 2011): 

Theorem 4 (Robust OSSS inequality). Let f : {±1}n → 
{0, 1} be any function, and g : {±1}n → {0, 1} be a size-s 
decision tree. Then 

bias(f) − dist(f, g) 
max{Infi(f)} ≥ . 
i∈[n] log s 

Remark 2 (Context for Theorem 4). The original OSSS 
inequality essentially corresponds to the special case of The-
orem 4 where f ≡ g: if f is a size-s decision tree, then 

Var(f) 
max{Infi(f)} ≥ . 
i∈[n] log s 

The OSSS inequality can be viewed as a variant of the 
famed Kahn–Kalai–Linial inequality (Kahn et al., 1988), 
one that takes into account the computational complexity 
of f . In (O’Donnell et al., 2005) the authors also gave a 
robust version of their inequality that is qualitative simi-
lar to Theorem 4 (see the discussion following Theorem 
3.2 of (O’Donnell et al., 2005)): under the assumptions 
of Theorem 4, 

Var(f) − 2 · dist(f, g) 
max{Infi(f)} ≥ . 
i∈[n] log s 

This inequality can be used in place of Theorem 4 to prove 
a statement that is qualitatively similar to Theorem 2, but 
with a weaker error bound of O(opt ) + ε rather than the s 
opt + ε of Theorem 2.s 

Fact 2.1 (Infuence ≡ correlation for monotone functions). 
Let f : {±1}n → {0, 1} be a monotone function. Then 
Infi(f) = 2 · | E[f(x)xi]| for all i ∈ [n]. 

Proposition 2.2 (Infuence and purity gain). For all κ-
strongly concave impurity heuristics G , all monotone func-
tions f : {±1}n → {0, 1}, and all coordinates i ∈ [n], 

E [G (E[fxi =b])] ≤ G (E[f ]) − 
κ · Infi(f)2 . 

b∼{±1} 32 

Proof. Note that: 

1E[f(x)xi] = (E[fxi=1] − E[fxi=−1])2 

and that: 

1E[f ] = (E[fxi=1] + E[fxi =−1]).2 

The desired result therefore holds as a direct consequence 
of the κ-strong concavity of G and Fact 2.1. 

2.1. Proof of Theorem 2 

Let f : {±1}n → {0, 1} be a monotone function and g be a 
size-s decision tree for which dist(f, g) = opt . Fix somes 
κ-strongly concave impurity heuristic G . Given a partial 
tree T ◦ (which we should think of as the approximator for f 
that is being built by BUILDTOPDOWNDTG ,U ), we defne 
the potential function: X 

2−|`|G -impurityf (T ◦) := · G (E[f`]). 
leaves ` ∈ T ◦ 

The next lemma records a few useful properties of this po-
tential function G -impurityf . (This lemma can be viewed 



 

  

     
 

      
 

   
  

      

          
 

   

      

        

  

      

        

     

         
 

   
 

  

          
    

   
    

   
    

     

     

        
 

   
  

 

  

  

 

        

    
  

 

    
 

 
        

    
 

  

   

     
   

      

 

      
    

  
   

 
    

    
  

 
    

    
  

   
    

   

     
  

   
    

 
  

   
    

  
    

   
       

   

            
      

    

Provable Guarantees for Decision Tree Induction 

as our analogue of (Blanc et al., 2020)’s Lemma 5.1. (Blanc 
et al., 2020) worked with a potential function that is a variant 
of ours which has Inf(f`) in place of G (E[f`]).) 

Defnition 7 (Purity gain). Let f : {±1}n → {0, 1} be a 
function and G be an impurity heuristic. For a partial tree 
T ◦ and a leaf ` of T ◦, we write T ◦ to denote the extension `,xi 

of T ◦ obtained by splitting ` with a query to xi. The purity 
gain associated with splitting ` with a query to xi is defned 
as 

G -purity-gainf (T ◦, ̀ , xi) 

:= G -impurityf (T ◦) − G -impurityf (T ◦ ).`,xi 

It is easy to verify that given a leaf `, the variable associ-
ated with the largest purity gain is exactly one that is most 
correlated with f`: 

Proposition 2.3 (Proposition 7.7 from (Blanc et al., 2020)). 
For any leaf ` of T ◦, let xi? be the variable that maximizes 
G -purity-gainG (`, xi) among all i ∈ [n]. Then, 

E[f`(x)xi? ] ≥ E[f`(x)xj ] for all j ∈ [n]. 

Lemma 2.4 (Useful properties of G -impurityf ). 

1. G -impurityf (empty tree) = G (E[f ]) ≤ 1. 

2. dist(f, T ◦) ≤ G -impurityf (T ◦).f 

3. For any leaf ` of T ◦ and variable i ∈ [n], 

G -purity-gainf (T ◦, ̀ , xi) ≥ 2−|`| · κ · Infi(f`)2 . 
32 

Proof. The frst claim follows from the defnition of 
G -impurityf . For the second claim, we have that X 
dist(f, Tf 

◦) = Pr[ x reaches ` ] · bias(f`) 
leaves ` ∈ T ◦ X 

2−|`|= · bias(f`) 
leaves ` ∈ T ◦ X 

2−|`|≤ · G (E[f`]) (Defnition 2) 
leaves ` ∈ T ◦ 

= G -impurityf (T ◦). 

As for the third claim, we have that 

G -purity-gainf (T ◦, ̀ , xi)� � 
= 2−|`| G (E[f`]) − E [G (E[(f`)xi =b]) 

b∼{±1} 

≥ 2−|`| 
κ · · Infi(f`)2 ,
32 

where the fnal inequality is by Proposition 2.2. 

The following simple fact states that the error of the f -
completion of a partial tree T ◦ cannot increase with further 
splits: 
Fact 2.5 (Splits cannot increase error). Let T ◦ be a partial 
tree, and Te◦ be the partial tree that results from splitting a 
leaf of T ◦ . Then dist(f, Te◦) ≤ dist(f, T ◦).f f 

We are now ready to prove Theorem 2. By Fact 2.5, it 
suffces to show that error opt + ε is achieved after at most s 
O(log s)/ε2 
s iterations/splits. We do so by lower bounding 
the score of the leaf that is split by BUILDTOPDOWNDT in 
each iteration before error opt +ε is achieved. Let T ◦ be the s 
size-(j+1) partial tree that is built by BUILDTOPDOWNDT 
after j iterations. Suppose dist(f, T ◦) > opt + ε, and let f s 

?`? , x be the leaf and variable of T ◦ that is split in thei 
(j + 1)-st iteration. We claim that 

κ · ε2 
G -purity-gainf (T ◦ , `? , xi? ) > . (1)

32 · (j + 1)(log s)2 

Writing xi(`) to denote variable with the highest correlation 
with f`, we have that X 

G -purity-gainf (T ◦, ̀ , xi(`)) 
leaves ` ∈ T ◦ X 

2−|`| 
κ ≥ · · Infi(`)(f`)2 (Lemma 2.4)
32 

leaves ` ∈ T ◦ � �2X 
2−|`| 

κ bias(f`) − dist(f`, g`)≥ · · 
32 size(g`)

leaves ` ∈ T ◦ 

(Theorem 4)� �2
κ X 

2−|`| 
bias(f`) − dist(f`, g`)≥ · · 

32 log s 
leaves ` ∈ T ◦ 

(size(g`) ≤ size(g) = s)⎡ ⎤2� �Xκ ⎣ 2−|`| 
bias(f`) − dist(f`, g`) ⎦≥ · · 

32 log s 
leaves ` ∈ T ◦ 

(Jensen’s inequality) Xκ 1
2−|`|= · · bias(f`)

32 (log s)2 
leaves ` ∈ T ◦ !2X 

2−|`|− · dist(f`, g`) 
leaves ` ∈ T ◦ 

κ 1 � �2 
= · · dist(f, Tf 

◦) − dist(f, g)
32 (log s)2 � �2
κ 1 κ ε2 

> · · ((opt + ε) − opt ) = · .s s32 (log s)2 32 log s 

It follows that there must be at least one leaf and variable 
with purity gain greater than κε2/32(j + 1)(log s)2 . Since 
BUILDTOPDOWNDT splits the leaf and variable with the 
largest purity gain, this establishes Equation (1). 
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Writing Te◦ to denote the partial tree that is obtained after 
BUILDTOPDOWNDT makes the single split with largest 
purity gain, we have that 

G -impurityf (Te◦) 
`? = G -impurityf (T ◦) − G -purity-gainf (T ◦ , , xi? ) 

κ · ε2 ≤ G -impurityf (T ◦) − . 
32 · (j + 1)(log s)2 

Combining this with the frst and second claims 
of Lemma 2.4, we have the following: the value of the 
potential function starts off at at most 1 with T ◦ being the 
empty tree, decreases by at least κ · ε2/32j(log s)2 with the 
j-th split, and error opt + ε is achieved once this value s 
drops below opt + ε. Therefore, we can bound the number s 
of splits necessary to ensure error opt + ε by the smallest ts 
that satisfes: 

tX κε2 ≥ 1 − (opt + ε).s 
j=1 

32j(log s)2 

Since 
tX κε2 κε2 log t 

j=1 
32j(log s)2 

≥ 
32(log s)2 

, 

O(log s)/κε2 
we conclude that t ≤ s suffces. This completes 
the proof of Theorem 2. 

2.2. Trees for Real-Valued Features 

We will prove an extension of Theorem 2 that applies to 
functions of real-valued features and arbitrary product dis-
tributions over inputs. 

In order to state our result, we need to slightly restrict our 
defnition of opt so it only considers “balanced” trees. 
Defnition 8 (Balanced tree). A decision tree T of depth d 
and size s is balanced if d = O(log s). 
Defnition 9 (balanced opt ). For a function f : Rn →s 
{0, 1}, product distribution D over Rn, and an integer s ∈ 

1N, we write balanced optf,D,s ∈ [0, ] to denote the error 2 
of the best balanced size-s decision tree for f : � 
balanced optf,D,s := min Prx∼D[ T (x) 6= f(x) ] : 

T is a balanced size-s decision tree , 

When f and D are clear from context, we simply write 
balanced opt .s 

We can now formally state our main theorem. 
Theorem 1. Let f : Rn → {0, 1} be a monotone function 
and D be any product distribution over Rn . For any κ-
strongly concave impurity heuristic G and s ∈ N, 

Õ((log s)/ε2 

TOPDOWNERRORG ,D(f, s )) 

≤ balanced opt + ε.s 

The proof of Theorem 1 will follow the same overall struc-
ture as our proof of Theorem 2. One key new ingredient is 
a generalization of Theorem 4 to real-valued features; this 
extension could be of independent interest: 

Theorem 5 (Extension of (Jain & Zhang, 2011) to trees for 
real-valued features). Let f : Rn → {0, 1} be a monotone 
function, D be an arbitrary product distribution over Rn , 
and T be a size-s balanced decision tree. Then, there exist 

1i? ∈ [n] and θ? ∈ R for which Prx∼D[xi? ≥ θ?] = and2 � �� � ε
E f(x) · 1[xi? ≥ θ?] ≥ Ω 

x∼D log(s) log log(s/ε) 

where ε := bias(f) − dist(f, T ). 

where bias(f) and dist(f, T ) are also measured with re-
spect to D. 

To prove Theorem 1, we apply Theorem 5 in the same way 
Theorem 4 is used to prove Theorem 2. The full proof of 
Theorem 1 is deferred to the appendix. 

3. Conclusion 
We have given strengthened provable guarantees on the 
performance of widely employed and empirically success-
ful top-down decision tree learning heuristics such as ID3, 
C4.5, and CART. Compared to previous works, our guaran-
tees: (1) hold in the more realistic and challenging agnostic 
setting; (2) apply to all top-down heuristics and their as-
sociated impurity functions; (3) extend to the setting of 
real-valued features and arbitrary product distributions over 
the domain. Our main result shows that for all monotone 
functions f : Rn → {0, 1} and s ∈ N, these top-down 

Õ((log s)/ε2heuristics build a tree of size s ) that achieves er-
ror within ε of that of the optimal balanced size-s decision 
tree for f . We complement this with a near-matching lower 
bound. While our work was primarily motivated by the 
goal of understanding top-down heuristics, our results yield 
new guarantees that are not known to be achievable by any 
other algorithm, even ones that are not based on top-down 
heuristics. 

There are several concrete avenues for future work: 

1. Beyond monotonicity. As mentioned in the introduc-
tion, any top-down heuristic will fare badly on the 
parity functions f , in the sense of building a tree that is 
much larger than the optimal tree for f . Though broad 
and natural, the class of monotone functions is not the 
only class that excludes the parity function. Another 
fundamental property to consider is noise stability (see 
§2.4 of (O’Donnell, 2014)) — what guarantees can be 
made about the performance of these top-down heuris-
tics when run on noise-stable functions? 



       

  
   

 

 

Provable Guarantees for Decision Tree Induction 

2. Beyond product distributions. In this work our results 
hold for arbitrary product distributions over the domain, 
extending previous work that focuses on the uniform 
distribution. Could we establish provable distribution-
independent guarantees, or failing that, perhaps prov-
able guarantees for distributions with limited depen-
dencies between coordinates? 

3. Polynomial-size approximating trees. Our lower bound 
(Theorem 3) shows a monotone function such that 
any top-down heuristics has to build a tree of size 
˜ 

sΩ(log s) in order to achieve error ≤ opt + ε. Resultss 
of (Blanc et al., 2020) show a similar lower bound of √
Ω̃( 4 
s log s) in the realizable setting. Are there broad and 
natural subclasses of monotone functions that evade 
these lower bounds, and for which polynomial size 
upper bounds do exist? 
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